Relative Skeletal Muscle Mass Is an Important Factor in Non-Alcoholic Fatty Liver Disease in Non-Obese Children and Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Anthropometric Measurements
2.3. Definition of Skeletal Muscle Mass (SMM) Values and Sarcopenia
2.4. Laboratory Measurements
2.5. Evaluation of NAFLD
2.6. Statistical Analysis
3. Results
3.1. Comparison of Baseline Characteristics Between The Control and NAFLD Group
3.2. Severity of Fatty Liver in the NAFLD Group
3.3. Prevalence of Sarcopenia According to NAFLD
3.4. Association Between MFR and NAFLD
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anderson, E.L.; Howe, L.D.; Jones, H.E.; Higgins, J.P.; Lawlor, D.A.; Fraser, A. The prevalence of non-alcoholic fatty liver disease in children and adolescents: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0140908. [Google Scholar] [CrossRef] [Green Version]
- Fazel, Y.; Koenig, A.B.; Sayiner, M.; Goodman, Z.D.; Younossi, Z.M. Epidemiology and natural history of non-alcoholic fatty liver disease. Metabolism 2016, 65, 1017–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jou, J.; Choi, S.S.; Diehl, A.M. Mechanisms of Disease Progression in Nonalcoholic Fatty Liver Disease; Thieme Medical Publishers: New York, NY, USA, 2008; pp. 370–379. [Google Scholar]
- Smith, S.K.; Perito, E.R. Nonalcoholic liver disease in children and adolescents. Clin. Liver Dis. 2018, 22, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Noh, J. Sarcopenia as a novel risk factor for nonalcoholic fatty liver disease. J. Obes. Metab. Syndr. 2020, 29, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobili, V.; Alisi, A.; Valenti, L.; Miele, L.; Feldstein, A.E.; Alkhouri, N. Nafld in children: New genes, new diagnostic modalities and new drugs. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Draijer, L.; Benninga, M.; Koot, B. Pediatric nafld: An overview and recent developments in diagnostics and treatment. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 447–461. [Google Scholar] [CrossRef]
- Schwimmer, J.B.; Deutsch, R.; Kahen, T.; Lavine, J.E.; Stanley, C.; Behling, C. Prevalence of fatty liver in children and adolescents. Pediatrics 2006, 118, 1388–1393. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Hong, S.; Kim, E.Y. Reference values of skeletal muscle mass for korean children and adolescents using data from the korean national health and nutrition examination survey 2009–2011. PLoS ONE 2016, 11, e0153383. [Google Scholar] [CrossRef] [PubMed]
- Chung, G.E.; Kim, M.J.; Yim, J.Y.; Kim, J.S.; Yoon, J.W. Sarcopenia is significantly associated with presence and severity of nonalcoholic fatty liver disease. J. Obes. Metab. Syndr. 2019, 28, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-H.; Jung, K.S.; Kim, S.U.; Yoon, H.-j.; Yun, Y.J.; Lee, B.-W.; Kang, E.S.; Han, K.-H.; Lee, H.C.; Cha, B.-S. Sarcopaenia is associated with nafld independently of obesity and insulin resistance: Nationwide surveys (knhanes 2008–2011). J. Hepatol. 2015, 63, 486–493. [Google Scholar] [CrossRef]
- Cai, C.; Song, X.; Chen, Y.; Chen, X.; Yu, C. Relationship between relative skeletal muscle mass and nonalcoholic fatty liver disease: A systematic review and meta-analysis. Hepatol. Int. 2020, 14, 115–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, H.C.; Hwang, S.Y.; Choi, H.Y.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; Choi, D.S.; Choi, K.M. Relationship between sarcopenia and nonalcoholic fatty liver disease: The korean sarcopenic obesity study. Hepatology 2014, 59, 1772–1778. [Google Scholar] [CrossRef] [PubMed]
- Choe, E.K.; Kang, H.Y.; Park, B.; Yang, J.I.; Kim, J.S. The association between nonalcoholic fatty liver disease and ct-measured skeletal muscle mass. J. Clin. Med. 2018, 7, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.J.; Kim, E.-H.; Bae, S.-J.; Kim, G.-A.; Park, S.W.; Choe, J.; Jung, C.H.; Lee, W.J.; Kim, H.-K. Age-related decrease in skeletal muscle mass is an independent risk factor for incident nonalcoholic fatty liver disease: A 10-year retrospective cohort study. Gut Liver 2019, 13, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, G.; Lee, S.E.; Lee, Y.B.; Jun, J.E.; Ahn, J.; Bae, J.C.; Jin, S.M.; Hur, K.Y.; Jee, J.H.; Lee, M.K. Relationship between relative skeletal muscle mass and nonalcoholic fatty liver disease: A 7-year longitudinal study. Hepatology 2018, 68, 1755–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.N.; Fowler, K.J.; Hamilton, G.; Cui, J.Y.; Sy, E.Z.; Balanay, M.; Hooker, J.C.; Szeverenyi, N.; Sirlin, C.B. Liver fat imaging—A clinical overview of ultrasound, ct, and mr imaging. Br. J. Radiol. 2018, 91, 20170959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwiebel, W.J. Sonographic diagnosis of diffuse liver disease. In Seminars in Ultrasound, CT and MRI; Elsevier: Amsterdam, The Netherlands, 1995; pp. 8–15. [Google Scholar]
- Saadeh, S.; Younossi, Z.M.; Remer, E.M.; Gramlich, T.; Ong, J.P.; Hurley, M.; Mullen, K.D.; Cooper, J.N.; Sheridan, M.J. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 2002, 123, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.-S. Low skeletal muscle mass is associated with insulin resistance, diabetes, and metabolic syndrome in the korean population: The korea national health and nutrition examination survey (knhanes) 2009–2010. Endocr. J. 2013, EJ13-0244. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Kim, J.H.; Yoon, J.W.; Kang, S.M.; Choi, S.H.; Park, Y.J.; Kim, K.W.; Lim, J.Y.; Park, K.S.; Jang, H.C. Sarcopenic obesity: Prevalence and association with metabolic syndrome in the korean longitudinal study on health and aging (klosha). Diabetes Care 2010, 33, 1652–1654. [Google Scholar] [CrossRef] [Green Version]
- Ooi, P.H.; Thompson-Hodgetts, S.; Pritchard-Wiart, L.; Gilmour, S.M.; Mager, D.R. Pediatric sarcopenia: A paradigm in the overall definition of malnutrition in children? J. Parenter. Enter. Nutr. 2020, 44, 407–418. [Google Scholar] [CrossRef]
- Guillet, C.; Boirie, Y. Insulin resistance: A contributing factor to age-related muscle mass loss? Diabetes Metab. 2005, 31, 5S20–5S26. [Google Scholar] [CrossRef]
- Utzschneider, K.M.; Kahn, S.E. The role of insulin resistance in nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 2006, 91, 4753–4761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhanji, R.A.; Narayanan, P.; Allen, A.M.; Malhi, H.; Watt, K.D. Sarcopenia in hiding: The risk and consequence of underestimating muscle dysfunction in nonalcoholic steatohepatitis. Hepatology 2017, 66, 2055–2065. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.M.; Wang, H.; Bertola, A.; Park, O.; Horiguchi, N.; Hwan Ki, S.; Yin, S.; Lafdil, F.; Gao, B. Inflammation-associated interleukin-6/signal transducer and activator of transcription 3 activation ameliorates alcoholic and nonalcoholic fatty liver diseases in interleukin-10–deficient mice. Hepatology 2011, 54, 846–856. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, B.K.; Febbraio, M.A. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef] [Green Version]
- Perakakis, N.; Triantafyllou, G.A.; Fernández-Real, J.M.; Huh, J.Y.; Park, K.H.; Seufert, J.; Mantzoros, C.S. Physiology and role of irisin in glucose homeostasis. Nat. Rev. Endocrinol. 2017, 13, 324–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.-J.; Zhang, X.-F.; Ma, Z.-M.; Pan, L.-L.; Chen, Z.; Han, H.-W.; Han, C.-K.; Zhuang, X.-J.; Lu, Y.; Li, X.-J. Irisin is inversely associated with intrahepatic triglyceride contents in obese adults. J. Hepatol. 2013, 59, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, R.J.; Hasni, S. Pathogenesis and management of sarcopenia. Clin. Geriatr. Med. 2017, 33, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Marty, E.; Liu, Y.; Samuel, A.; Or, O.; Lane, J.J.B. A review of sarcopenia: Enhancing awareness of an increasingly prevalent disease. Bone 2017, 105, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Schaap, L.A.; Pluijm, S.M.; Deeg, D.J.; Harris, T.B.; Kritchevsky, S.B.; Newman, A.B.; Colbert, L.H.; Pahor, M.; Rubin, S.M.; Tylavsky, F.A.; et al. Higher inflammatory marker levels in older persons: Associations with 5-year change in muscle mass and muscle strength. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 1183–1189. [Google Scholar] [CrossRef] [Green Version]
- Gibson, P.S.; Quaglia, A.; Dhawan, A.; Wu, H.; Lanham-New, S.; Hart, K.; Fitzpatrick, E.; Moore, J.B. Vitamin D status and associated genetic polymorphisms in a cohort of uk children with non-alcoholic fatty liver disease. Pediatric Obes. 2018, 13, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Wang, Y.; Luo, F.; Liu, J.; Xiu, L.; Qin, J.; Wang, T.; Yu, N.; Wu, H.; Zou, T.J.B.R.I. The level of vitamin d in children and adolescents with nonalcoholic fatty liver disease: A meta-analysis. BioMed Res. Int. 2019, 2019, 7643542. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, H.; Samani-Radia, D.; Jebb, S.; Prentice, A. Skeletal muscle mass reference curves for children and adolescents. Pediatric Obes. 2014, 9, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Tokar, J.L.; Berg, C.L. Therapeutic options in nonalcoholic fatty liver disease. Curr. Treat. Options Gastroenterol. 2002, 5, 425–436. [Google Scholar] [CrossRef] [PubMed]
Parameters | Mean ± SD or n (%) | ||
---|---|---|---|
Control (n = 73) | NAFLD (n = 53) | p Value | |
Demographics | |||
Age (Year) | 10.8 ± 1.4 | 10.8 ± 1.3 | 0.987 |
Sex, Male | 40 (54.8) | 33 (62.3) | 0.402 |
Anthropometrics | |||
Height (cm) | 145.3 ± 11.2 | 144.6 ± 10.1 | 0.729 |
Weight (kg) | 44.6 ± 7.4 | 45.2 ± 7.5 | 0.648 |
BMI (kg/m2) | 21.0 ± 1.5 | 21.5 ± 1.3 | 0.057 |
ASM (kg) | 12.0 ± 3.3 | 11.4 ± 3.1 | 0.344 |
MFR | 1.04 ± 0.5 | 0.83 ± 0.3 | 0.005 |
Male | 1.11 ± 0.6 | 0.85 ± 0.3 | 0.032 |
Female | 0.96 ± 0.3 | 0.80 ± 0.2 | 0.041 |
Biochemistry | |||
AST (IU/L) | 19.5 ± 3.4 | 33.7 ± 19.2 | <0.001 |
ALT (IU/L) | 13.3 ± 4.2 | 45.6 ± 42.9 | <0.001 |
Glucose (mg/dL) | 95.7 ± 6.8 | 98.3 ± 10.2 | 0.110 |
Control | NAFLD | OR (95% CI) | p Value | |
---|---|---|---|---|
Sarcopenia *, n (%) | 35/73 (47.9) | 37/53 (69.8) | 2.511 (1.192–5.288) | 0.014 |
Male, n (%) | 31/40 (77.5) | 30/33 (90.9) | 0.124 | |
Female, n (%) | 4/33 (11.8) | 7/20 (35) | 3.904 (0.971–15.702) | 0.047 |
Presence of NAFLD (n = 126) | ||||
---|---|---|---|---|
B | SE | OR (95% CI) | p Value | |
MFR | 2.157 | 0.892 | 8.649 (1.505–49.711) | 0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, Y.; Jeong, S.J. Relative Skeletal Muscle Mass Is an Important Factor in Non-Alcoholic Fatty Liver Disease in Non-Obese Children and Adolescents. J. Clin. Med. 2020, 9, 3355. https://doi.org/10.3390/jcm9103355
Kwon Y, Jeong SJ. Relative Skeletal Muscle Mass Is an Important Factor in Non-Alcoholic Fatty Liver Disease in Non-Obese Children and Adolescents. Journal of Clinical Medicine. 2020; 9(10):3355. https://doi.org/10.3390/jcm9103355
Chicago/Turabian StyleKwon, Yoowon, and Su Jin Jeong. 2020. "Relative Skeletal Muscle Mass Is an Important Factor in Non-Alcoholic Fatty Liver Disease in Non-Obese Children and Adolescents" Journal of Clinical Medicine 9, no. 10: 3355. https://doi.org/10.3390/jcm9103355
APA StyleKwon, Y., & Jeong, S. J. (2020). Relative Skeletal Muscle Mass Is an Important Factor in Non-Alcoholic Fatty Liver Disease in Non-Obese Children and Adolescents. Journal of Clinical Medicine, 9(10), 3355. https://doi.org/10.3390/jcm9103355