Myocardial Infarction after Kidney Transplantation: A Risk and Specific Profile Analysis from a Nationwide French Medical Information Database
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Design
2.2. Selection Criteria and Follow-Up
2.3. Data Collection and Outcomes
2.4. Statistical Analysis
3. Results
3.1. Baseline Population
3.2. Myocardial infarct Population
4. Discussion
- -
- Their high CV risk profile, with higher prevalence of CV risk factors (diabetes, hypertension, dyslipidemia).
- -
- The prevalence of vascular disease was higher in RT patients compared to non-RT patients admitted with MI. This finding confirms that patients requiring kidney transplantation have a high prevalence of diffused atherosclerotic disease, suggesting that kidney disease is globally associated with an increased risk of atherosclerosis. This association is in keeping with the results of the study by Gill et al., who showed that the presence of peripheral arterial disease was associated with significantly increased cardiovascular risk [9].
- -
- The higher prevalence of a history of coronary artery disease in kidney transplant patients, which we also found in our study, suggests a more rapid progression of the atherosclerotic process, probably related to chronic inflammation, whose consequences may notably include an increased CV risk [18,19].
- -
- The immediate post-operative period is associated with significant hemodynamic stress in a pro-inflammatory milieu, which can promote the destabilization of atheromatous plaque and endothelial dysfunction, thus leading to MI [20]. This period is associated with an exacerbation of factors that contributes to increased shear stress in coronary arteries, leading not only to plaque rupture and thrombus formation, but also to an increase in myocardial demand for oxygen. There is also a state of acquired thrombophilia after transplantation. The use of immunosuppressive drugs, viral infections, and the interruption of anticoagulants in the first weeks following the transplantation may also play a role in the pro-thrombotic state [15,16,20].
- -
- Moreover, anemia was more frequently observed in the RT patients whilst the role of anemia in type 2 NSTEMI has clearly been established [21].
- -
- Finally, Kasiske showed that MI are more frequent when kidneys come from dead donors than alive donors [7]. Unfortunately, this information is not available in the PMSI database and could therefore not be included in our analysis.
4.1. Impact of Screening or Treatments
4.2. Study Limitation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kasiske, B.L. Cardiovascular disease after renal transplantation. Semin. Nephrol. 2000, 20, 176–187. [Google Scholar]
- Qiu, J.-X.; Cai, J.; Terasaki, P.L. Death with a functioning graft in kidney transplant recipients. Clin. Transpl. 2004, 18, 379–386. [Google Scholar]
- Cecka, J.M. The OPTN/UNOS renal transplant registry. Clin. Transpl. 2004, 18, 1–16. [Google Scholar]
- Awan, A.A.; Niu, J.; Pan, J.S.; Erickson, K.F.; Mandayam, S.; Winkelmayer, W.C.; Navaneethan, S.D.; Ramanathan, V. Trends in the Causes of Death among Kidney Transplant Recipients in the United States (1996–2014). Am. J. Nephrol. 2018, 48, 472–481. [Google Scholar] [CrossRef]
- Morales, J.M.; Marcén, R.; Del Castillo, D.; Andres, A.; Gonzalez-Molina, M.; Oppenheimer, F.; Serón, D.; Gil-Vernet, S.; Lampreave, I.; Gainza, F.J.; et al. Risk factors for graft loss and mortality after renal transplantation according to recipient age: A prospective multicentre study. Nephrol. Dial. Transplant. 2012, 27, iv39–iv46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohéac, C.; Aubert, O.; Loupy, A.; Legendre, C. Étude des étiologies spécifiques de perte des greffons rénaux: Place du rejet médié par les anticorps et approche en population. Néphrol. Thér. 2018, 14, S39–S50. [Google Scholar] [CrossRef] [PubMed]
- Kasiske, B.L.; MacLean, J.R.; Snyder, J.J. Acute Myocardial Infarction and Kidney Transplantation. J. Am. Soc. Nephrol. 2006, 17, 900–907. [Google Scholar] [CrossRef] [Green Version]
- Paizis, I.A.; Mantzouratou, P.D.; Tzanis, G.S.; Melexopoulou, C.A.; Darema, M.N.; Boletis, J.N.; Barbetseas, J.D. Coronary artery disease in renal transplant recipients: An angiographic study. Hell. J. Cardiol. 2018. [Google Scholar] [CrossRef]
- Gill, J.S.; Ma, I.W.Y.; Landsberg, D.; Johnson, N.; Levin, A. Cardiovascular Events and Investigation in Patients Who Are Awaiting Cadaveric Kidney Transplantation. J. Am. Soc. Nephrol. 2005, 16, 808–816. [Google Scholar] [CrossRef] [Green Version]
- Lentine, K.L.; Brennan, D.C.; Schnitzler, M.A. Incidence and Predictors of Myocardial Infarction after Kidney Transplantation. J. Am. Soc. Nephrol. 2004, 16, 496–506. [Google Scholar] [CrossRef] [Green Version]
- Chuang, P.; Gibney, E.; Chan, L.; Ho, P.; Parikh, C. Predictors of cardiovascular events and associated mortality within two years of kidney transplantation. Transplant. Proc. 2004, 36, 1387–1391. [Google Scholar] [CrossRef]
- Israni, A.K.; Snyder, J.J.; Skeans, M.A.; Peng, Y.; MacLean, J.R.; Weinhandl, E.D.; Kasiske, B.L.; PORT Investigators. Predicting Coronary Heart Disease after Kidney Transplantation: Patient Outcomes in Renal Transplantation (PORT) Study. Arab. Archaeol. Epigr. 2010, 10, 338–353. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kriesche, H.-U.; Schold, J.D.; Srinivas, T.R.; Reed, A.; Kaplan, B. Kidney Transplantation Halts Cardiovascular Disease Progression in Patients with End-Stage Renal Disease. Arab. Archaeol. Epigr. 2004, 4, 1662–1668. [Google Scholar] [CrossRef]
- Ribic, C.M.; Holland, D.; Howell, J.; Jevnikar, A.; Kim, S.J.; Knoll, G.A.; Lee, B.; Zaltzman, J.; Gangji, A.S. Study of Cardiovascular Outcomes in Renal Transplantation: A Prospective, Multicenter Study to Determine the Incidence of Cardiovascular Events in Renal Transplant Recipients in Ontario, Canada. Can. J. Kidney Health Dis. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Humar, A.; Kerr, S.R.; Ramcharan, T.; Gillingham, K.J.; Matas, A.J. Peri-operative cardiac morbidity in kidney transplant recipients: Incidence and risk factors. Clin. Transplant. 2001, 15, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Claes, K.; Bammens, B.; Evenepoel, P.; Kuypers, D.; Coosemans, W.; Darius, T.; Monbaliu, D.; Pirenne, J.; Vanrenterghem, Y. Troponin I Is a Predictor of Acute Cardiac Events in the Immediate Postoperative Renal Transplant Period. Transplantation 2010, 89, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Garg, L.; Garg, A.; Mohananey, D.; Jain, A.; Manda, Y.; Singh, A.; Nanda, S.; Durkin, R.; Puleo, P.; et al. Recent Trends in Management and Inhospital Outcomes of Acute Myocardial Infarction in Renal Transplant Recipients. Am. J. Cardiol. 2017, 119, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Ruilope, L.M.; Salvetti, A.; Jamerson, K.; Hansson, L.; Warnold, I.; Wedel, H.; Zanchetti, A. Renal function and intensive lowering of blood pressure in hypertensive participants of the hypertension optimal treatment (HOT) study. J. Am. Soc. Nephrol. 2001, 12, 218–225. [Google Scholar]
- Mann, J.F.; Gerstein, H.C.; Dulau-Florea, I.; Lonn, E. Cardiovascular risk in patients with mild renal insufficiency. Kidney Int. 2003, 63, S192–S196. [Google Scholar] [CrossRef] [Green Version]
- Devereaux, P.; Goldman, L.; Cook, D.J.; Gilbert, K.; Leslie, K.; Guyatt, G.H. Perioperative cardiac events in patients undergoing noncardiac surgery: A review of the magnitude of the problem, the pathophysiology of the events and methods to estimate and communicate risk. Can. Med. Assoc. J. 2005, 173, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Saaby, L.; Poulsen, T.S.; Hosbond, S.; Larsen, T.B.; Diederichsen, A.C.P.; Hallas, J.; Thygesen, K.; Mickley, H. Classification of Myocardial Infarction: Frequency and Features of Type 2 Myocardial Infarction. Am. J. Med. 2013, 126, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Pocock, S.; McCormack, V.; Gueyffier, F.; Boutitie, F.; Fagard, R.H.; Boissel, J.-P. A score for predicting risk of death from cardiovascular disease in adults with raised blood pressure, based on individual patient data from randomised controlled trials. BMJ 2001, 323, 75–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, R.; Boucher, A.; Carter, J.; Kim, S.J.; Kiberd, B.; Loertscher, R.; Mongeau, J.G.; Prasad, G.V.R.; Vautour, L.; Board, P.D.M.A. Diabetes mellitus in transplantation: 2002 consensus guidelines. Transplant. Proc. 2003, 35, 1265–1270. [Google Scholar] [CrossRef]
- Davidson, J.A.; Wilkinson, A.; Dantal, J.; Dotta, F.; Haller, H.; Hernandez, D.; Kasiske, B.L.; Kiberd, B.; Krentz, A.; Legendre, C.; et al. New-onset diabetes after transplantation: 2003 international consensus guidelines1. Transplantation 2003, 75, SS3–SS24. [Google Scholar] [CrossRef]
- Montori, V.M.; Basu, A.; Erwin, P.J.; Velosa, J.A.; Gabriel, S.E.; Kudva, Y.C. Posttransplantation diabetes: A systematic review of the literature. Diabetes Care 2002, 25, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Kasiske, B.L.; A Chakkera, H.; Roel, J. Explained and unexplained ischemic heart disease risk after renal transplantation. J. Am. Soc. Nephrol. 2000, 11, 9. [Google Scholar]
- Ducloux, D.; Motte, G.; Challier, B.; Gibey, R.; Chalopin, J.M. Serum total homocysteine and cardiovascular disease occurrence in chronic, stable renal transplant recipients: A prospective study. J. Am. Soc. Nephrol. 2000, 11, 4. [Google Scholar]
- Mailloux, L.U.; Levey, A.S. Hypertension in patients with chronic renal disease. Am. J. Kidney Dis. 1998, 32, S120–S141. [Google Scholar] [CrossRef]
- Sahadevan, M.; Kasiske, B.L. Hyperlipidemia in kidney disease: Causes and consequences. Curr. Opin. Nephrol. Hypertens. 2002, 11, 323–329. [Google Scholar] [CrossRef]
- Lentine, K.L.; Costa, S.P.; Weir, M.R.; Robb, J.F.; Fleisher, L.A.; Kasiske, B.L.; Carithers, R.L.; Ragosta, M.; Bolton, K.; Auerbach, A.D.; et al. Cardiac Disease Evaluation and Management Among Kidney and Liver Transplantation Candidates. Circulation 2012, 126, 617–663. [Google Scholar] [CrossRef]
- Ohtake, T.; Kobayashi, S.; Moriya, H.; Negishi, K.; Okamoto, K.; Maesato, K.; Saito, S. High Prevalence of Occult Coronary Artery Stenosis in Patients with Chronic Kidney Disease at the Initiation of Renal Replacement Therapy: An Angiographic Examination. J. Am. Soc. Nephrol. 2005, 16, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Fabbian, F.; Cacici, G.; De Biase, V.; Yabarek, T.; Gangemi, C.; Franceschini, L.; De Giorgi, A.; Benussi, P.; Lupo, A.; Portaluppi, F. Relationship between major adverse cardiac events and angiographic findings in dialysis patients. Int. Urol. Nephrol. 2010, 43, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Ives, C.W.; AlJaroudi, W.A.; Kumar, V.; Farag, A.; Rizk, D.V.; Oparil, S.; Iskandrian, A.E.; Hage, F.G. Prognostic value of myocardial perfusion imaging performed pre-renal transplantation: Post-transplantation follow-up and outcomes. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1998–2008. [Google Scholar] [CrossRef] [PubMed]
- Delville, M.; Sabbah, L.; Girard, D.; Elie, C.; Manceau, S.; Piketty, M.; Martinez, F.; Méjean, A.; Legendre, C.; Sberro-Soussan, R. Prevalence and Predictors of Early Cardiovascular Events after Kidney Transplantation: Evaluation of Pre-Transplant Cardiovascular Work-Up. PLoS ONE 2015, 10, e0131237. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Total (n = 3,306,383) | No RT (n = 3,288,857) | RT (n = 17,526) | p | |
---|---|---|---|---|
Age (years), (m ± SD) | 59.1 ± 21.6 | 59.1 ± 21.6 | 55.4 ± 14.5 | <0.0001 |
Gender (male) | 1,538,428 (46.5) | 1,527,851 (46.5) | 10,577 (60.4) | <0.0001 |
Hypertension | 981,355 (29.7) | 969,014 (29.5) | 12,341 (70.4) | <0.0001 |
Diabetes mellitus | 437,463 (13.2) | 432,503 (13.2) | 4960 (28.3) | <0.0001 |
Smoker | 224,978 (6.8) | 223,715 (6.8) | 1263 (7.2) | 0.03 |
Dyslipidemia | 423,169 (12.8) | 418,773 (12.7) | 4396 (25.1) | <0.0001 |
Obesity | 342,223 (10.4) | 340,066 (10.3) | 2157 (12.3) | <0.0001 |
Heart failure | 331,104 (10.0) | 327,218 (9.9) | 3886 (22.2) | <0.0001 |
History of pulmonary edema | 23,180 (0.7) | 22,504 (0.7) | 676 (3.9) | <0.0001 |
Valvular heart disease | 115,792 (3.5) | 114,746 (3.5) | 1046 (6.0) | <0.0001 |
Previous endocarditis | 4095 (0.1) | 4011 (0.1) | 84 (0.5) | <0.0001 |
Dilated cardiomyopathy | 72,322 (2.2) | 71,411 (2.2) | 911 (5.2) | <0.0001 |
Coronary artery disease | 340,834 (10.3) | 337,422 (10.3) | 3412 (19.5) | <0.0001 |
Previous myocardial infarction | 54,777 (1.7) | 54,371 (1.7) | 406 (2.3) | <0.0001 |
Previous PCI | 84,560 (2.6) | 83,883 (2.6) | 677 (3.9) | <0.0001 |
Previous CABG | 11,426 (0.3) | 11,267 (0.3) | 159 (0.9) | <0.0001 |
Vascular disease | 272,496 (8.2) | 269,344 (8.2) | 3152 (18.0) | <0.0001 |
Atrial fibrillation | 311,035 (9.4) | 309,040 (9.4) | 1995 (11.4) | <0.0001 |
Ischemic stroke | 61,970 (1.9) | 61,688 (1.9) | 282 (1.6) | 0.01 |
Alcohol related diagnoses | 183,092 (5.5) | 182,587 (5.6) | 505 (2.9) | <0.0001 |
Chronic kidney disease | 72,510 (2.2) | 60,164 (1.8) | 12,346 (70.4) | <0.0001 |
Lung disease | 331,899 (10.0) | 330,417 (10.0) | 1482 (8.5) | <0.0001 |
Sleep apnea syndrome | 128,674 (3.9) | 127,994 (3.9) | 680 (3.9) | 0.94 |
COPD | 180,632 (5.5) | 179,948 (5.5) | 684 (3.9) | <0.0001 |
Inflammatory disease | 171,715 (5.2) | 169,675 (5.2) | 2040 (11.6) | <0.0001 |
Anemia | 258,380 (7.8) | 251,824 (7.7) | 6556 (37.4) | <0.0001 |
Death during follow-up | 916,966 (27.7) | 912,462 (27.7) | 4504 (25.7) | <0.0001 |
Cardiovascular death | 184,216 (5.6) | 183,157 (5.6) | 1059 (6.0) | 0.01 |
Total (n = 94,340) | No RT (n = 93,320) | RT (n = 1020) | p | |
---|---|---|---|---|
Age, years | 70.5 ± 13.3 | 70.6 ± 13.3 | 59.5 ± 11.5 | <0.0001 |
Gender (male) | 59,269 (62.8) | 58,561 (62.8) | 708 (69.4) | <0.0001 |
Hypertension | 45,679 (48.4) | 44,904 (48.1) | 775 (76.0) | <0.0001 |
Diabetes mellitus | 23,955 (25.4) | 23,560 (25.2) | 395 (38.7) | <0.0001 |
Smoker | 8619 (9.1) | 8522 (9.1) | 97 (9.5) | 0.68 |
Dyslipidemia | 21,977 (23.3) | 21,638 (23.2) | 339 (33.2) | <0.0001 |
Obesity | 12,130 (12.9) | 11,979 (12.8) | 151 (14.8) | 0.06 |
Heart failure | 16,679 (17.7) | 16,350 (17.5) | 329 (32.3) | <0.0001 |
History of pulmonary edema | 636 (0.7) | 592 (0.6) | 44 (4.3) | <0.0001 |
Valvular heart disease | 5309 (5.6) | 5232 (5.6) | 77 (7.5) | 0.01 |
Previous endocarditis | 151 (0.2) | 142 (0.2) | 9 (0.9) | <0.0001 |
Dilated cardiomyopathy | 3086 (3.3) | 3023 (3.2) | 63 (6.2) | <0.0001 |
Coronary artery disease | 23,752 (25.2) | 23,390 (25.1) | 362 (35.5) | <0.0001 |
Previous PCI | 6032 (6.4) | 5952 (6.4) | 80 (7.8) | 0.06 |
Previous CABG | 575 (0.6) | 562 (0.6) | 13 (1.3) | 0.01 |
Vascular disease | 16,421 (17.4) | 16,103 (17.3) | 318 (31.2) | <0.0001 |
Atrial fibrillation | 11,522 (12.2) | 11,383 (12.2) | 139 (13.6) | 0.17 |
Ischemic stroke | 2582 (2.7) | 2559 (2.7) | 23 (2.3) | 0.34 |
Alcohol related diagnoses | 5210 (5.5) | 5182 (5.6) | 28 (2.7) | 0.0001 |
Chronic kidney disease | 3619 (3.8) | 2865 (3.1) | 754 (73.9) | <0.0001 |
Lung disease | 12,171 (12.9) | 12,099 (13.0) | 72 (7.1) | <0.0001 |
Sleep apnea syndrome | 5133 (5.4) | 5069 (5.4) | 64 (6.3) | 0.24 |
COPD | 7932 (8.4) | 7893 (8.5) | 39 (3.8) | <0.0001 |
Inflammatory disease | 5412 (5.7) | 5254 (5.6) | 158 (15.5) | <0.0001 |
Anemia | 7979 (8.5) | 7599 (8.1) | 380 (37.3) | <0.0001 |
STEMI | 46,283 (49.1) | 45,835 (49.1) | 448 (43.9) | 0.001 |
NSTEMI | 48,057 (50.9) | 47,485 (50.9) | 572 (56.1) | 0.001 |
Anterior MI | 23,738 (25.2) | 23,523 (25.2) | 215 (21.1) | 0.003 |
Inferior MI | 15,454 (16.4) | 15,302 (16.4) | 152 (14.9) | 0.2 |
MI with other location | 55,148 (58.5) | 54,495 (58.4) | 653 (64.0) | 0.0003 |
HF at the acute phase | 22,380 (23.7) | 22,200 (23.8) | 180 (17.6) | <0.0001 |
Pulm. edema/shock at the acute phase | 7808 (8.3) | 7724 (8.3) | 84 (8.2) | 0.96 |
PCI during first 8 days | 41,619 (44.1) | 41,189 (44.1) | 430 (42.2) | 0.21 |
Death day 0–8 post MI | 10,685 (11.3) | 10,617 (11.4) | 68 (6.7) | <0.0001 |
Death day 0–30 post MI | 16,864 (17.9) | 16,751 (18.0) | 113 (11.1) | <0.0001 |
Cardiovascular death day 0–8 post MI | 8012 (8.5) | 7958 (8.5) | 54 (5.3) | 0.0002 |
Cardiovascular death day 0–30 post MI | 11,532 (12.2) | 11,452 (12.3) | 80 (7.8) | <0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Didier, R.; Yao, H.; Legendre, M.; Halimi, J.M.; Rebibou, J.M.; Herbert, J.; Zeller, M.; Fauchier, L.; Cottin, Y. Myocardial Infarction after Kidney Transplantation: A Risk and Specific Profile Analysis from a Nationwide French Medical Information Database. J. Clin. Med. 2020, 9, 3356. https://doi.org/10.3390/jcm9103356
Didier R, Yao H, Legendre M, Halimi JM, Rebibou JM, Herbert J, Zeller M, Fauchier L, Cottin Y. Myocardial Infarction after Kidney Transplantation: A Risk and Specific Profile Analysis from a Nationwide French Medical Information Database. Journal of Clinical Medicine. 2020; 9(10):3356. https://doi.org/10.3390/jcm9103356
Chicago/Turabian StyleDidier, Romain, Hermann Yao, Mathieu Legendre, Jean Michel Halimi, Jean Michel Rebibou, Julien Herbert, Marianne Zeller, Laurent Fauchier, and Yves Cottin. 2020. "Myocardial Infarction after Kidney Transplantation: A Risk and Specific Profile Analysis from a Nationwide French Medical Information Database" Journal of Clinical Medicine 9, no. 10: 3356. https://doi.org/10.3390/jcm9103356
APA StyleDidier, R., Yao, H., Legendre, M., Halimi, J. M., Rebibou, J. M., Herbert, J., Zeller, M., Fauchier, L., & Cottin, Y. (2020). Myocardial Infarction after Kidney Transplantation: A Risk and Specific Profile Analysis from a Nationwide French Medical Information Database. Journal of Clinical Medicine, 9(10), 3356. https://doi.org/10.3390/jcm9103356