Accuracy of 3-Dimensionally Printed Full-Arch Dental Models: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Review Question
2.2. Eligibility and Search Strategy
2.3. Data Extraction
- Sample size;
- model type;
- the 3D printing technology used;
- resolution (x,y) and layer thickness (z) used;
- materials and postprocessing protocol;
- accuracy of intraoral/lab scanner;
- accuracy assessment methodology;
- measurement of dimensional accuracy over time;
- presence of a study control;
- findings (accuracy); and
- limitations.
2.4. Statistical Analysis and Risk of Bias (Quality) Assessment
3. Results
3.1. Study Characteristics
3.1.1. Sample Size and Reference Models
3.1.2. Sample Details and Controls
3.2. Additive Manufacturing
3.2.1. D printing Technologies Assessed and Printing Parameters
3.2.2. Layer Thickness
3.2.3. Materials Used
3.2.4. Base Designs and Filling Patterns
3.2.5. Postprocessing Protocol
3.3. Assessment Methodology
3.3.1. Surface Matching and 3D Deviation Analyses
3.3.2. Linear Measurements of Physical and Digital Models
3.3.3. Time of Assessment
3.4. Outcomes Assessed
3.4.1. Clinical Acceptability
3.4.2. Trueness
3.4.3. Precision
3.5. Statistical Analysis
3.6. Risk of Bias Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dawood, A.; Marti, B.M.; Sauret-Jackson, V. 3D printing in dentistry. Br. Dent. J. 2015, 219, 521–529. [Google Scholar] [CrossRef]
- Ender, A.; Mehl, A. Accuracy of complete-arch dental impressions: A new method of measuring trueness and precision. J. Prosthet. Dent. 2013, 109, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, K.E.; Whitters, J.; Ju, X.; Pierce, S.G.; MacLeod, C.N.; Murray, C.A. A Proposed Methodology to Assess the Accuracy of 3D Scanners and Casts and Monitor Tooth Wear Progression in Patients. Int. J. Prosthodont. 2016, 29, 514–521. [Google Scholar] [CrossRef]
- Choi, J.-W.; Ahn, J.-J.; Son, K.; Huh, J.-B. Three-Dimensional Evaluation on Accuracy of Conventional and Milled Gypsum Models and 3D Printed Photopolymer Models. Materials 2019, 12, 3499. [Google Scholar] [CrossRef] [Green Version]
- Patzelt, S.B.; Bishti, S.; Stampf, S.; Att, W. Accuracy of computer-aided design/computer-aided manufacturing–generated dental casts based on intraoral scanner data. J. Am. Dent. Assoc. 2014, 145, 1133–1140. [Google Scholar] [CrossRef]
- Jin, S.-J.; Kim, D.-Y.; Kim, J.-H.; Kim, W.-C. Accuracy of Dental Replica Models Using Photopolymer Materials in Additive Manufacturing: In Vitro Three-Dimensional Evaluation. J. Prosthodont. 2018, 28, e557–e562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joda, T.; Matthisson, L.; Zitzmann, N.U. Impact of Aging on the Accuracy of 3D-Printed Dental Models: An In Vitro Investigation. J. Clin. Med. 2020, 9, 1436. [Google Scholar] [CrossRef] [PubMed]
- Oberoi, G.; Nitsch, S.; Edelmayer, M.; Janjić, K.; Müller, A.S.; Agis, H. 3D Printing—Encompassing the Facets of Dentistry. Front. Bioeng. Biotechnol. 2018, 6, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alifui-Segbaya, F. Biomedical photopolymers in 3D printing. Rapid Prototyp. J. 2019, 26, 437–444. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stansbury, J.W.; Idacavage, M.J. 3D printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 2016, 32, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Zhang, T.; Xu, H.; Luo, S.; Nie, J.; Zhu, X. Photo-curing 3D printing technique and its challenges. Bioact. Mater. 2020, 5, 110–115. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization. Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 1: General Principles and Definitions (ISO 5725-1); International Organization for Standardization: Geneva, Switzerland, 1994; Available online: https://www.iso.org/standard/11833.html (accessed on 25 July 2020).
- Sayers, A. Tips and tricks in performing a systematic review. Br. J. Gen. Pract. 2008, 58, 136. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- McGowan, J.; Sampson, M.; Salzwedel, D.M.; Cogo, E.; Foerster, V.; Lefebvre, C. PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. J. Clin. Epidemiol. 2016, 75, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.M. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Jeong, Y.-G.; Lee, W.-S.; Lee, K.-B. Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method. J. Adv. Prosthodont. 2018, 10, 245–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.-Y.; Shin, Y.-S.; Jung, H.-D.; Hwang, C.-J.; Baik, H.-S.; Cha, J.-Y. Precision and trueness of dental models manufactured with different 3-dimensional printing techniques. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Al-Imam, H.; Gram, M.; Benetti, A.R.; Gotfredsen, K. Accuracy of stereolithography additive casts used in a digital workflow. J. Prosthet. Dent. 2018, 119, 580–585. [Google Scholar] [CrossRef]
- Budzik, G.; Bazan, A.; Turek, P.; Burek, J. Analysis of the Accuracy of Reconstructed Two Teeth Models Manufactured Using the 3DP and FDM Technologies. Strojniški Vestnik J. Mech. Eng. 2016, 62. [Google Scholar] [CrossRef] [Green Version]
- Ishida, Y.; Miyasaka, T. Dimensional accuracy of dental casting patterns created by 3D printers. Dent. Mater. J. 2016, 35, 250–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, C.; Monsees, D.; Hey, J.; Schweyen, R. Surface Quality of 3D-Printed Models as a Function of Various Printing Parameters. Materials 2019, 12, 1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.-E.; Shin, S.-Y. Three-dimensional comparative study on the accuracy and reproducibility of dental casts fabricated by 3D printers. J. Prosthet. Dent. 2018, 119, 861.e1–861.e7. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, A.; Rehab, M.; O’Neil, M.; Khambay, B.; Ju, X.; Barbenel, J.; Naudi, K. A novel approach for planning orthognathic surgery: The integration of dental casts into three-dimensional printed mandibular models. Int. J. Oral Maxillofac. Surg. 2014, 43, 454–459. [Google Scholar] [CrossRef]
- Hatz, C.; Msallem, B.; Aghlmandi, S.; Brantner, P.; Thieringer, F.M. Can an entry-level 3D printer create high-quality anatomical models? Accuracy assessment of mandibular models printed by a desktop 3D printer and a professional device. Int. J. Oral Maxillofac. Surg. 2020, 49, 143–148. [Google Scholar] [CrossRef]
- Jang, Y.; Sim, J.-Y.; Park, J.-K.; Kim, W.-C.; Kim, H.-Y.; Kim, J.-H. Accuracy of 3-unit fixed dental prostheses fabricated on 3D-printed casts. J. Prosthet. Dent. 2020, 123, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.-R.; Yin, L.-F.; Liu, Y.-L.; Yan, L.-Y.; Wang, N.; Liu, G.; An, X.-L.; Liu, B. Fabrication and accuracy research on 3D printing dental model based on cone beam computed tomography digital modeling. West China J. Stomatol. 2018, 36, 156–161. [Google Scholar]
- Xiao, N.; Sun, Y.C.; Zhao, Y.J.; Wang, Y. A method to evaluate the trueness of reconstructed dental models made with photo-curing 3D printing technologies. Beijing Da Xue Xue Bao Yi Xue Ban 2019, 51, 120–130. [Google Scholar]
- Zeng, F.-H.; Xu, Y.-Z.; Fang, L.; Tang, X.-S. Reliability of three dimensional resin model by rapid prototyping manufacturing and digital modeling. Shanghai Kou Qiang Yi Xue Shanghai J. Stomatol. 2012, 21, 53–56. [Google Scholar]
- AlShawaf, B.; Weber, H.-P.; Finkelman, M.; El Rafie, K.; Kudara, Y.; Papaspyridakos, P. Accuracy of printed casts generated from digital implant impressions versus stone casts from conventional implant impressions: A comparative in vitro study. Clin. Oral Implant. Res. 2018, 29, 835–842. [Google Scholar] [CrossRef]
- Dostálová, T.; Kasparova, M.; Kriz, P.; Halamova, S.; Jelinek, M.; Bradna, P.; Mendricky, J. Intraoral scanner and stereographic 3D print in dentistry—Quality and accuracy of model—New laser application in clinical practice. Laser Phys. 2018, 28, 125602. [Google Scholar] [CrossRef]
- Burde, A.V.; VarvarǍ, M.; Dudea, D.; Câmpian, R.S. Quantitative evaluation of accuracy for two rapid prototyping systems in dental model manufacturing. Clujul Med. 2015, 88, S44. [Google Scholar]
- Aly, P.; Mohsen, C. Comparison of the Accuracy of Three-Dimensional Printed Casts, Digital, and Conventional Casts: An In Vitro Study. Eur. J. Dent. 2020, 14, 189–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohner, L.; Hanisch, M.; Canto, G.D.L.; Mukai, E.; Sesma, N.; Neto, P.T.; Tortamano, P. Accuracy of Casts Fabricated by Digital and Conventional Implant Impressions. J. Oral Implant. 2019, 45, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.B.; Currier, G.F.; Kadioglu, O.; Kierl, J.P. Accuracy of 3-dimensional printed dental models reconstructed from digital intraoral impressions. Am. J. Orthod. Dentofac. Orthop. 2018, 154, 733–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burde, A.V.; Gasparik, C.; Baciu, S.; Manole, M.; Dudea, D.; Câmpian, R.S. Three-Dimensional Accuracy Evaluation of Two Additive Manufacturing Processes in the Production of Dental Models. Key Eng. Mater. 2017, 752, 119–125. [Google Scholar] [CrossRef]
- Camardella, L.T.; Vilella, O.D.V.; Breuning, H. Accuracy of printed dental models made with 2 prototype technologies and different designs of model bases. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 1178–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camardella, L.T.; Vilella, O.V.; Van Hezel, M.M.; Breuning, K.H. Accuracy of stereolithographically printed digital models compared to plaster models Genauigkeit von stereolitographisch gedruckten digitalen Modellen im Vergleich zu Gipsmodellen. J. Orofac. Orthop. Fortschritte Kieferorthopädie 2017, 40, 162–402. [Google Scholar] [CrossRef]
- Cho, S.-H.; Schaefer, O.; Thompson, G.A.; Guentsch, A. Comparison of accuracy and reproducibility of casts made by digital and conventional methods. J. Prosthet. Dent. 2015, 113, 310–315. [Google Scholar] [CrossRef] [Green Version]
- Cuperus, A.M.R.; Harms, M.C.; Rangel, F.A.; Bronkhorst, E.M.; Schols, J.G.; Breuning, K.H. Dental models made with an intraoral scanner: A validation study. Am. J. Orthod. Dentofac. Orthop. 2012, 142, 308–313. [Google Scholar] [CrossRef]
- Dietrich, C.A.; Ender, A.; Baumgartner, S.; Mehl, A. A validation study of reconstructed rapid prototyping models produced by two technologies. Angle Orthod. 2017, 87, 782–787. [Google Scholar] [CrossRef] [Green Version]
- Favero, C.S.; English, J.D.; Cozad, B.E.; Wirthlin, J.O.; Short, M.M.; Kasper, F.K. Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models. Am. J. Orthod. Dentofac. Orthop. 2017, 152, 557–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hazeveld, A.; Slater, J.J.H.; Ren, Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am. J. Orthod. Dentofac. Orthop. 2014, 145, 108–115. [Google Scholar] [CrossRef]
- Jin, S.-J.; Jeong, I.-D.; Kim, J.-H.; Kim, W.-C. Accuracy (trueness and precision) of dental models fabricated using additive manufacturing methods. Int. J. Comput. Dent. 2018, 21, 107–113. [Google Scholar] [PubMed]
- Kasparova, M.; Grafova, L.; Dvorak, P.; Dostalova, T.; Prochazka, A.; Eliasova, H.; Prusa, J.; Kakawand, S. Possibility of reconstruction of dental plaster cast from 3D digital study models. Biomed. Eng. Online 2013, 12, 49. [Google Scholar] [CrossRef] [Green Version]
- Keating, A.P.; Knox, J.; Bibb, R.; Zhurov, A.I. A comparison of plaster, digital and reconstructed study model accuracy. J. Orthod. 2008, 35, 191–201. [Google Scholar] [CrossRef]
- Kuo, R.-F.; Chen, S.-J.; Wong, T.-Y.; Lu, B.-C.; Huang, Z.-H. Digital Morphology Comparisons between Models of Conventional Intraoral Casting and Digital Rapid Prototyping. In Proceedings of the 5th International Conference on Biomedical Engineering in Vietnam, Ho Chi Minh, Viet Nam, 16–18 June 2014; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Loflin, W.A.; English, J.D.; Borders, C.; Harris, L.M.; Moon, A.; Holland, J.N.; Kasper, F.K. Effect of print layer height on the assessment of 3D-printed models. Am. J. Orthod. Dentofac. Orthop. 2019, 156, 283–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nestler, N.; Wesemann, C.; Spies, B.C.; Beuer, F.; Bumann, A. Dimensional accuracy of extrusion- and photopolymerization-based 3D printers: In vitro study comparing printed casts. J. Prosthet. Dent. 2020. [Google Scholar] [CrossRef]
- Papaspyridakos, P.; Chen, Y.-W.; AlShawaf, B.; Kang, K.; Finkelman, M.; Chronopoulos, V.; Weber, H.-P. Digital workflow: In vitro accuracy of 3D printed casts generated from complete-arch digital implant scans. J. Prosthet. Dent. 2020. [Google Scholar] [CrossRef]
- Rebong, R.E.; Stewart, K.T.; Utreja, A.; Ghoneima, A.A. Accuracy of three-dimensional dental resin models created by fused deposition modeling, stereolithography, and Polyjet prototype technologies: A comparative study. Angle Orthod 2018, 88, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Rungrojwittayakul, O.; Kan, J.Y.; Shiozaki, K.; Swamidass, R.S.; Goodacre, B.J.; Goodacre, C.J.; Lozada, J.L. Accuracy of 3D Printed Models Created by Two Technologies of Printers with Different Designs of Model Base. J. Prosthodont. 2019, 29, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Saleh, W.K.; Ariffin, E.; Sherriff, M.; Bister, D. Accuracy and reproducibility of linear measurements of resin, plaster, digital and printed study-models. J. Orthod. 2015, 42, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Sherman, S.L.; Kadioglu, O.; Currier, G.F.; Kierl, J.P.; Li, J. Accuracy of digital light processing printing of 3-dimensional dental models. Am. J. Orthod. Dentofac. Orthop. 2020, 157, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Hassan, W.W.; Yusoff, Y.; Mardi, N.A. Comparison of reconstructed rapid prototyping models produced by 3-dimensional printing and conventional stone models with different degrees of crowding. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.-C.; Li, P.-L.; Chu, F.-T.; Shen, G. Influence of the three-dimensional printing technique and printing layer thickness on model accuracy. J. Orofac. Orthop. Fortschritte Kieferorthopädie 2019, 80, 194–204. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Hirogaki, Y.; Sohmura, T.; Satoh, H.; Takahashi, J.; Takada, K. Complete 3-D reconstruction of dental cast shape using perceptual grouping. IEEE Trans. Med. Imaging 2001, 20, 1093–1101. [Google Scholar] [CrossRef]
- Bell, A.; Ayoub, A.F.; Siebert, P. Assessment of the accuracy of a three-dimensional imaging system for archiving dental study models. J. Orthod. 2003, 30, 219–223. [Google Scholar] [CrossRef]
- Naidu, D.; Freer, T.J. Validity, reliability, and reproducibility of the iOC intraoral scanner: A comparison of tooth widths and Bolton ratios. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 304–310. [Google Scholar] [CrossRef]
- McLean, J.W.; Von Fraunhofer, J.A. The estimation of cement film thickness by an in vivo technique. Br. Dent. J. 1971, 131, 107–111. [Google Scholar] [CrossRef]
- Jemt, T.; Book, K. Prosthesis misfit and marginal bone loss in edentulous implant patients. Int. J. Oral Maxillofac. Implant. 1996, 11, 620–625. [Google Scholar]
- Jemt, T. In vivo measurements of precision of fit involving implant-supported prostheses in the edentulous jaw. Int. J. Oral Maxillofac. Implant. 1996, 11, 151–158. [Google Scholar]
- Papaspyridakos, P.; Chen, C.-J.; Chuang, S.-K.; Weber, H.-P.; Gallucci, G.O. A systematic review of biologic and technical complications with fixed implant rehabilitations for edentulous patients. Int. J. Oral Maxillofac. Implant. 2012, 27, 102–110. [Google Scholar]
1. Search (print * OR “rapid prototyping” OR “additive manufacturing” OR fabrication OR stereolithography OR “stereo-lithography” OR “stereo lithography” OR photopolymer * OR photopolymer * OR “fused deposition Ωmodelling” OR “fused filament fabrication” OR “material extrusion” OR “material jetting” OR photojet OR polyjet OR “photopolymer jetting” OR “multijet printing” OR “binder jetting” OR “digital light processing” OR “selective laser sintering” OR “continuous liquid interface production” OR photopolymer * OR RP OR AM OR SLA OR SL OR FDM OR FFF OR PPJ OR PJ OR MJP OR MJ OR DLP OR CLIP OR SLS) |
2. Search (“dental cast *” OR “dental model *” OR edentulous * OR edentate * OR dentate OR “full arch” OR “replica cast *”) AND (3 D OR 3D OR 3 dimensional OR three dimensional) |
3. Search (accuracy OR accuracies OR applicability OR precision OR repeatability OR reproducibility OR trueness OR sensitivity OR specificity OR specificities OR validation OR validity OR value OR agreement OR “spatial error *” OR “geometric error *” OR “dimensional error *” OR correctness OR exactness) |
4. Search ((#1 and #2 and #3)) Filters: Publication date from 01/01/2005 to 13/05/2020 |
Authors/Date | 3D printing Material | Model Data Source | Model Data Source | 3D Printing System | 3D Printer Details | Resolution x, y, z (µm) | Sample Size (Single Arch/Printer) | Assessment Method | Trueness (SD) (µm) | Precision (µm, ICC and IQR) |
---|---|---|---|---|---|---|---|---|---|---|
Aly and Mohsen, 2020 [34] | Photocurable polymer (liquid resin) | IOS scanned full dentate Typodont (Mx and Md) | IOS scanned Typodont | SLA | ProJet 6000, 3D Systems | Unclear | 10 | Digital callipers Tooth: MD, CH Arch: IC, IM | 190 (100) | Unclear |
Bohner et al. 2019 [35] | Unclear | Typodont (Mx, 7–7) containing implants at sites of 21, 24 and 26 | Typodont (maxillary) | SLA | Unclear, Envisiontec | Unclear | 10 | Surveying software Arch: IP, IM | 19.7 (13.3) | Unclear |
Brown, Currier, Kadioglu and Kierl, (2018) [36] | Unclear | Patient IOS and alginate impressions (Mx and Md, min 6–6) 30 cases | Patient IOS and alginate impressions 30 cases | DLP MJ | Juell 3D Flash OC, Park Dental Research Objet Eden 260VS, Stratasys | z: 50, 100 z: 16 | 60 | Digital callipers Arch: IC, IM, AD Tooth: MD, CH Occlusion: Unclear | 70 80 | Unclear |
Burde et al. (2017) [37] | Poly-L-lactic acid wire Poly-L-lactic acid wire Grey light-curing resin | Patient stone model (Mx and Md) 10 cases. Unclear number of teeth present | Patient stone model 10 cases | FFF FFF SLA | Creatr HS, Leapfrog Custom RepRap, (based on a PrusaI3 kit) Form 1+, Formlabs | z: 100 z: 100 z: 25 | 20 | 3D assessment Nominal ±11.51 Critical: ±230 | 156.2 (22.4) 128.3 (18.3) 207.9 (44.6) | Unclear |
Camardella, de Vasconcellos Vilella and Breuning, (2017) [38] | Photopolymer resin Light-curing methacrylic resin (E-Denstone; Envisiontec) | Patient IOS 10 cases (Mx and Md, min 7–7) | Patient IOS 10 cases (mandibular) | MJ SLA | Objet Eden 260VS, Stratasys Ultra 3SP Ortho, Envisiontec | z: 16 z: 100 | 20 | Surveying software Arch: IC, IP, IM Tooth: Unclear Occlusion: Unclear | Unclear | 0.999ICC 0.998 ICC |
Camardella, Vilella, van Hezel and Breuning, (2017) [39] | Light curing methacrylic resin (RC31, Envi- siontec) | Patients IOS and impressions (Mx and Md, min 6–6) 28 cases | Patients IOS and impressions 28 cases | SLA | Ultra 3SP, Envisiontec | Unclear | 56 | Digital callipers Arch: IC, IM Tooth: MD, CH Occlusion: OJ, OB AND 3D assessment Nominal: ±50 Critical: ±500 | 579 (1050) | Unclear |
Cho, Schaefer, Thompson and Guentsch, (2015) [40] | Unclear | Lab scanned fully dentate Typodont (Mx) with 5 prepared teeth (16, 15, 21, 23, 26) | Lab scanned Typodont (maxillary) | SLA | Unclear | Unclear | 5 | 3D assessment Nominal: ±50 Critical: ±500 | 27 (7) | 91 (10) |
Choi, Ahn, Son and Huh, (2019) [4] | Photopolymer Photopolymer | Typodont (Mx, 7–7) with prepared teeth (16, 11, 24 and 26) | Typodont (maxillary) | SLA DLP | ZENITH U, Dentis DIOPROBO, DIO | z: 50 z: 50 | 10 | 3D assessment Nominal: ±50 Critical: ±500 | 85.2 (13.1) 105.5 (22.5) | 49.6 (12.1) 53.8 (17.5) |
Cuperus et al. (2012) [41] | Epoxy Resin | IOS Dry human skull (min 6–6, with max 1 missing or deciduous tooth per skull) 10 cases Intra-oral scanner | IOS Dry human skull 10 cases | SLA | Unclear | Unclear | 20 | Digital callipers Arch: IC, IM Tooth: MD Occlusion: Unclear | 100 | Unclear |
Dietrich, Ender, Baumgartnerand Mehl, (2017) [42] | Epoxy-based resin (Accura) photopolymer resins | Patient IOS 2 cases (Mx). Unclear number of teeth present | Patient IOS 2 cases (maxillary) | SLA MJ | Viper si2 SLA, 3D Systems Objet Eden 260, Stratasys | z: 100 at base and 50 at tooth level z: 16 | 10 | 3D assessment Nominal: ±20 Critical: ±100 | 92 (23) 62 (8) | 20 (4) 38 (14) |
Favero et al. (2017) [43] | Grey photopolymer resin (FLGPGR02; Formlabs). Unclear | Typodont (Mx, 7-7) | Typodont (maxillary) | SLA SLA DLP DLP MJ | Form 2, Formlabs Vector 3sp, Envisiontec Juell 3D, Park Dental Perfactory Desktop Vida, Envisiontec Objet Eden 260V, Stratasys | z: 25, 50, 100 z: 100 z: 100 z: 100 z: 28 | 12 | 3D assessment Nominal: ±20 Critical: ±250 | 64 79 44 56 85 | Unclear |
Hazeveld, Huddleston Slater and Ren, (2014) [44] | Unclear | Patient Stone model (Mx and Md, min 6–6) 6 cases | Patient Stone model 6 cases | DLP BJ MJ | Unclear, Envisiontec, Unclear, Z-Corp Unclear, Objet Geometries | Unclear | 12 | Digital callipers Arch: Unclear Tooth: MD, CH Occlusion: Unclear | Unclear | Unclear |
Jin, Jeong, Kim and Kim, (2018) [45] | Unclear | Lab scanned Typodont (Mx, 7–7) | Lab scanned Typodont (maxillary) | MJ FFF | ProJet 3500 HDMax, 3D Systems Cube, 3D Systems | z: 31.97 z: 123.71 (thickness measured after printing) | 10 | 3D assessment Nominal: ±50 Critical: ±500 | 129.1 (7.8) 149.0 (4.7) | 44.6 (8.9) 52.1 (10.9) |
Jin, Kim, Kim and Kim, (2019) [6] | Photocurable liquid resin Acrylic polymer | Lab scanned Typodont (Mx and Md, 7–7) | Lab scanned Typodont (maxillary) | SLA MJ | ProJet 6000, 3D Systems ProJet 3500 HD Max, 3D Systems | FMR FMR | 10 | 3D assessment Nominal: ±50 Critical: ±500 | 114.3 (1.8) 124 (3.7) | 59.6 (8.2) 41.0 (5.8) |
Joda, Matthisson and Zitzmann, (2020) [7] | Light-curing polymer, (SHERAPrint-model plus “sand” UV, SHERA) | IOS Typodont (Mx, 7–7), with missing 25 and prepared 24 and 26) | IOS Typodont (maxillary) | SLA | P30, Straumann | Unclear | 10 | 3D assessment Nominal: unclear Critical: unclear | 3.3 (1.3) | Unclear |
Kasparova et al. (2013) [46] | ABS plastic material, Clear resin | Patient stone model 10 cases. Unclear number of teeth present | Patient stone model 10 cases | FFF MJ | RepRap, Unclear ProJetHD3000, 3D Systems | x,y: 200, z: 0.35 Unclear | 20 2 | Digital callipers Tooth: CH Arch: IC | Unclear Unclear | Unclear Unclear |
Keating, Knox, Bibb and Zhurov, (2008) [47] | Hybrid epoxy-based resin | Patient stone model 15 cases. Unclear number of teeth present | Patient stone model 15 cases | SLA | SLA-250/40, 3D Systems | z: 150 | 30 | Digital callipers Tooth: CH Arch: IC, IP, IM | 150 (160) | Unclear |
Kim et al. (2018) [19] | Unclear | Lab scanned Typodont (Mx and Md, 7–7) | Lab scanned Typodont | SLA: DLP MJ FFF | ZENITH, Dentis M-One, MAKEX Technology Objet Eden 260VS, Stratasys Cubicon 3DP-110F, HyVISION System | x,y: 50 z: 50 x,y: 70 z: 75 z: 16 x,y: 100 z: 100 | 10 | Surveying software Tooth: MD, BL, CH Arch: IC, IM | 138 (79) 446 (46) 74 (39) 307 (61) | 88 (14) 76 (14) 68 (9) 99 (14) |
Kuo, Chen, Wong, Lu and Huang, (2015) [48] | Unclear | Patient IOS Patient impressions poured, and lab scanned (Md, 7–7) 1 case | Patient IOS Patient impressions poured, and lab scanned 1 case | MJ | Connex 350, Stratasys | Unclear | 1 | 3D assessment Nominal: ±60 Critical: ±300 | 140 | Unclear |
Loflin et al. (2019) [49] | Grey photopolymer resin, (FLGPGR03; Formlabs) | Patient stone models (Mx and Md) 12 cases. Unclear number of teeth present | Patient stone model 12 cases | SLA | Form 2, Formlabs | z: 25, 50,100 | 24 | ABO tool Tooth: marginal ridge Occlusion: OJ, occlusal contacts | Unclear | Unclear |
Nestler, Wesemann, Spies, Beuer and Bumann, (2020) [50] | Dental SG Optiprint Imprimo LC model ABS Polylactide | Cast in standard tessellation language (STL) format (Mx, 7–7) including 5 measuring cubes in areas 16, 26, 13, 23 and between 11 and 21) | Maxillary cast in standard tessellation language (STL) format | SLA SLA DLP FFF FFF | Forms 2, Formlabs Myrev140, Sisma Asiga Max UV, Asiga M2, Makergear Ultimaker 2+, Ultimaker | Unclear Unclear Xy: 62, Z: Unclear Unclear x,y: 12.5, z: Unclear | 37 34 for Myrev140 | Surveying software Arch: IC, IM, arch length | -80 (94 −175 (28) −16 (32) −55 (39) 12 (43) | 134 28 47 55 56 |
Papaspyridakos et al., (2020) [51] | Photopolymer resin, dental model resin (Formlabs) | Lab scanned Patient stone model 1 case (Md) with 4 abutment-level implant analogs | Lab scanned Patient stone model 1 case (mandibular) | SLA | Form 2, Formlab | z: 25 | 25 | 3D assessment Nominal ±50 Critical: ±200 | 59 (16) | Unclear |
Rebong, Stewart, Utreja and Ghoneima, (2018) [52] | Unclear | Patient stone models (Mx and Md, min 6–6) 12 cases | Patient stone model 12 cases | FFF SLA MJ | Makerbot Replicator, Makerbot Industries Projet 6000, 3DSystems Objet Eden 500V, Stratasys | z: 100 z: 50 z: 16 | 24 | Digital calipers Arch: IC, IM Tooth: Unclear Occlusion: OJ, OB | 110 (420) −20 (370) −190 (330) | Unclear |
Rungrojwittayakul et al. (2020) [53] | Unclear | Lab scanned fully dentate Typodont (Mx,) | Lab scanned Typodont (maxillary | CLIP DLP | Carbon M2, Carbon MoonRay S100, SprintRay | Unclear | 10 | 3D assessment Nominal: ±10 Critical: ±100 | 48 (44) 87 (57) | 0.968 ICC 0.983 ICC |
Saleh, Ariffin, Sherriff and Bister, (2015) [54] | Unclear | Lab scanned Typodont (Mx and Md, 7–7) | Lab scanned Typodont | MJ | Objet Eden 250, Stratasys | Unclear | 8 | Digital calipers Tooth: MD Arch: IC, IM Occlusion: OJ, OB | 320 (156) | Unclear |
Sherman, Kadioglu, Currier, Kierl and Li, (2020) [55] | Unclear | Patient IOS (Mx and Md, min 6–6) 15 cases | Patient IOS 15 cases | DLP | JUELL 3D Flash OC, Park Dental Research Corporation | z: 50, 100 | 30 | Digital calipers Arch: IC, IM, AD Tooth: MD, CH Occlusion: Unclear | Unclear | Unclear |
Wan Hassan, Yusoff and Mardi, 2017 [56] | High-performance composite (Zp151; 3D Systems). | Patient impression (Mx and Md, min 6–6) 10 cases | Patient impression 10 cases | BJ | Z Printer 450, 3D Systems | z: 89–102 | 30 | Digital callipers Arch: IC, IP, IM Tooth: MD, CH, BL Occlusion: Unclear | −20 | Unclear |
Zhang, Li, Chu and Shen, (2019) [57] | Dental model resin (Formlabs) Model Ortho resin (Union Tec) Encashape, ENCA-Model resin Light curing methacrylate resin E-Denstone, EnvisionTEC | Patient IOS (Mx and Md, 7–7) 1 case | Patient IOS 1 case | SLA DLP DLP DLP | Form 2, Formlabs EvoDent, UnionTec EncaDent, Encashape Vida HD, EnvisionTec | x,y: 140 z:25, 30,10 z: 50,100 x,y: 58 z: 20, 30, 50,100 x,y: 50 z: 50, 100 | 2 | 3D assessment Nominal: ±50 Critical: ±250 | 34.4 23.3 26.5 31.7 | Unclear |
Study | Risk of Bias | Applicability Concerns | ||||
---|---|---|---|---|---|---|
Patient (Sample) Selection | Index Test | Reference Standard | Patient (Sample) Selection | Index Test | Reference Standard | |
Aly and Mohsen, 2020 [34] | − | − | + | + | − | + |
Bohner et al. 2019 [35] | − | − | + | − | − | + |
Brown, Currier, Kadioglu and Kierl, 2018 [36] | − | − | + | + | − | + |
Burde et al. 2017 [37] | − | + | + | + | + | + |
Camardella, de Vasconcellos Vilella and Breuning, 2017 [38] | + | − | + | + | − | + |
Camardella, Vilella, van Hezel and Breuning, (2017) [39] | − | − | + | + | − | + |
Cho, Schaefer, Thompson and Guentsch, 2015 [40] | − | + | + | − | + | + |
Choi, Ahn, Son and Huh, 2019 [4] | − | + | + | + | + | + |
Cuperus et al. 2012 [41] | − | − | + | − | − | + |
Dietrich, Ender, Baumgartner and Mehl, 2017 [42] | − | − | + | + | − | + |
Favero et al. 2017 [43] | − | + | + | + | + | + |
Hazeveld, Huddleston Slater and Ren, 2014 [44] | − | − | + | − | − | + |
Jin, Jeong, Kim and Kim, 2018 [45] | − | + | + | + | + | + |
Jin, Kim, Kim and Kim, 2019 [6] | − | + | + | + | + | + |
Joda, Matthisson and Zitzmann, 2020 [7] | − | − | + | + | − | + |
Kasparova et al. 2013 [46] | − | − | + | + | − | + |
Keating, Knox, Bibb and Zhurov, 2008 [47] | − | − | + | + | − | + |
Kim et al. 2018 [19] | − | + | + | + | + | + |
Kuo, Chen, Wong, Lu and Huang, 2015 [48] | − | − | + | + | − | + |
Loflin et al. 2019 [49] | − | − | + | + | − | + |
Nestler, Wesemann, Spies, Beuer and Bumann, 2020 [50] | − | - | + | + | − | + |
Papaspyridakos et al., 2020 [51] | + | − | + | + | − | + |
Rebong, Stewart, Utreja and Ghoneima, 2018 [52] | − | − | + | + | − | + |
Rungrojwittayakul et al. 2020 [53] | − | − | + | + | − | + |
Saleh, Ariffin, Sherriff and Bister, 2015 [54] | − | − | + | + | − | + |
Sherman, Kadioglu, Currier, Kierl and Li, 2020 [55] | − | − | + | + | − | + |
Wan Hassan, Yusoff and Mardi, 2017 [56] | + | − | + | + | − | + |
Zhang, Li, Chu and Shen, 2019 [57] | − | − | + | + | − | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etemad-Shahidi, Y.; Qallandar, O.B.; Evenden, J.; Alifui-Segbaya, F.; Ahmed, K.E. Accuracy of 3-Dimensionally Printed Full-Arch Dental Models: A Systematic Review. J. Clin. Med. 2020, 9, 3357. https://doi.org/10.3390/jcm9103357
Etemad-Shahidi Y, Qallandar OB, Evenden J, Alifui-Segbaya F, Ahmed KE. Accuracy of 3-Dimensionally Printed Full-Arch Dental Models: A Systematic Review. Journal of Clinical Medicine. 2020; 9(10):3357. https://doi.org/10.3390/jcm9103357
Chicago/Turabian StyleEtemad-Shahidi, Yasaman, Omel Baneen Qallandar, Jessica Evenden, Frank Alifui-Segbaya, and Khaled Elsayed Ahmed. 2020. "Accuracy of 3-Dimensionally Printed Full-Arch Dental Models: A Systematic Review" Journal of Clinical Medicine 9, no. 10: 3357. https://doi.org/10.3390/jcm9103357
APA StyleEtemad-Shahidi, Y., Qallandar, O. B., Evenden, J., Alifui-Segbaya, F., & Ahmed, K. E. (2020). Accuracy of 3-Dimensionally Printed Full-Arch Dental Models: A Systematic Review. Journal of Clinical Medicine, 9(10), 3357. https://doi.org/10.3390/jcm9103357