Exposure to Porphyromonas gingivalis Induces Production of Proinflammatory Cytokine via TLR2 from Human Respiratory Epithelial Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Reagents
2.2. Bacterial Culture and Sample Adjustment
2.3. mRNA Preparation and Real-Time Polymerase Chain Reaction (PCR)
2.4. Cytokine Measurements
2.5. Transfection and Luciferase Assay
3. Results
3.1. P. gingivalis Induced IL-8 and IL-6 mRNA Expression and Protein Production by Human Bronchial Epithelial Cells
3.2. P. gingivalis Induced IL-8 and IL-6 Production by Human Pharyngeal Epithelial Cells but not by Human Alveolar Epithelial Cells
3.3. P. gingivalis More Strongly Induced IL-8 and IL-6 Production than S. pneumoniae by Human Bronchial Epithelial Cells
3.4. Involvement of TLR2 in P. gingivalis-Induced Proinflammatory Cytokine Production
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Okazaki, T.; Ebihara, S.; Mori, T.; Izumi, S.; Ebihara, T. Association between sarcopenia and pneumonia in older people. Geriatr. Gerontol. Int. 2019, 20, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Strieter, R.M.; Belperio, J.; Keane, M.P. Host innate defenses in the lung: The role of cytokines. Curr. Opin. Infect. Dis. 2003, 16, 193–198. [Google Scholar] [CrossRef]
- Gomez, M.I.; Prince, A. Airway epithelial cell signaling in response to bacterial pathogens. Pediatr. Pulmonol. 2007, 43, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Boutten, A.; Dehoux, M.S.; Seta, N.; Ostinelli, J.; Venembre, P.; Crestani, B.; Dombret, M.C.; Durand, G.; Aubier, M. Compartmentalized IL-8 and elastase release within the human lung in unilateral pneumonia. Am. J. Respir. Crit. Care Med. 1996, 153, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Schütte, H.; Lohmeyer, J.; Rosseau, S.; Ziegler, S.; Siebert, C.; Kielisch, H.; Pralle, H.; Grimminger, F.; Morr, H.; Seeger, W. Bronchoalveolar and systemic cytokine profiles in patients with ARDS, severe pneumonia and cardiogenic pulmonary oedema. Eur. Respir. J. 1996, 9, 1858–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chollet-Martin, S.; Montravers, P.; Gibert, C.; Elbim, C.; Desmonts, J.M.; Fagon, J.Y.; A Gougerot-Pocidalo, M. High levels of interleukin-8 in the blood and alveolar spaces of patients with pneumonia and adult respiratory distress syndrome. Infect. Immun. 1993, 61, 4553–4559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montón, C.; Ewig, S.; Torres, A.; El-Ebiary, M.; Filella, X.; Rañó, A.; Xaubet, A. Role of glucocorticoids on inflammatory response in nonimmunosuppressed patients with pneumonia: A pilot study. Eur. Respir. J. 1999, 14, 218–220. [Google Scholar] [CrossRef] [Green Version]
- Pihlstrom, B.L.; Michalowicz, B.S.; Johnson, N.W. Periodontal diseases. Lancet 2005, 366, 1809–1820. [Google Scholar] [CrossRef] [Green Version]
- Bostanci, N.; Belibasakis, G.N. Porphyromonas gingivalis: An invasive and evasive opportunistic oral pathogen. FEMS Microbiol. Lett. 2012, 333, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iii, F.C.G.; Genco, C.A. Porphyromonas gingivalis Mediated Periodontal Disease and Atherosclerosis: Disparate Diseases with Commonalities in Pathogenesis Through TLRs. Curr. Pharm. Des. 2007, 13, 3665–3675. [Google Scholar] [CrossRef]
- Imai, K.; Ochiai, K.; Okamoto, T. Reactivation of Latent HIV-1 Infection by the Periodontopathic BacteriumPorphyromonas gingivalisInvolves Histone Modification. J. Immunol. 2009, 182, 3688–3695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imai, K.; Inoue, H.; Tamura, M.; Cueno, M.E.; Inoue, H.; Takeichi, O.; Kusama, K.; Saito, I.; Ochiai, K. The periodontal pathogen Porphyromonas gingivalis induces the Epstein–Barr virus lytic switch transactivator ZEBRA by histone modification. Biochimie 2012, 94, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Van Der Maarel-Wierink, C.D.; Vanobbergen, J.N.O.; Bronkhorst, E.M.; Schols, J.M.G.A.; De Baat, C. Oral health care and aspiration pneumonia in frail older people: A systematic literature review. Gerodontology 2012, 30, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Terpenning, M.S.; Taylor, G.W.; Lopatin, D.E.; Kerr, C.K.; Dominguez, B.L.; Loesche, W.J. Aspiration Pneumonia: Dental and Oral Risk Factors in an Older Veteran Population. J. Am. Geriatr. Soc. 2001, 49, 557–563. [Google Scholar] [CrossRef]
- Nagaoka, K.; Yanagihara, K.; Harada, Y.; Yamada, K.; Migiyama, Y.; Morinaga, Y.; Izumikawa, K.; Kohno, S. Quantitative detection of periodontopathic bacteria in lower respiratory tract specimens by real-time PCR. J. Infect. Chemother. 2017, 23, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Yatera, K.; Noguchi, S.; Mukae, H. The microbiome in the lower respiratory tract. Respir. Investig. 2018, 56, 432–439. [Google Scholar] [CrossRef]
- Bartlett, J.G.; Finegold, S.M. Anaerobic infections of the lung and pleural space. Am. Rev. Respir. Dis. 1974, 110, 56–77. [Google Scholar] [CrossRef]
- Bartlett, J.G. Anaerobic bacterial infection of the lung. Anaerobe 2012, 18, 235–239. [Google Scholar] [CrossRef]
- Awano, S.; Ansai, T.; Takata, Y.; Soh, I.; Akifusa, S.; Hamasaki, T.; Yoshida, A.; Sonoki, K.; Fujisawa, K.; Takehara, T. Oral Health and Mortality Risk from Pneumonia in the Elderly. J. Dent. Res. 2008, 87, 334–339. [Google Scholar] [CrossRef]
- Scannapieco, F.A.; Bush, R.B.; Paju, S. Associations Between Periodontal Disease and Risk for Nosocomial Bacterial Pneumonia and Chronic Obstructive Pulmonary Disease. A Systematic Review. Ann. Periodontol. 2003, 8, 54–69. [Google Scholar] [CrossRef] [Green Version]
- Faverio, P.; Aliberti, S.; Bellelli, G.; Suigo, G.; Lonni, S.; Pesci, A.; Restrepo, M.I. The management of community-acquired pneumonia in the elderly. Eur. J. Intern. Med. 2014, 25, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Imai, K.; Kamio, N.; Cueno, M.E.; Saito, Y.; Inoue, H.; Saito, I.; Ochiai, K. Role of the histone H3 lysine 9 methyltransferase Suv39 h1 in maintaining Epsteinn-Barr virus latency in B95-8 cells. FEBS J. 2014, 281, 2148–2158. [Google Scholar] [CrossRef]
- Liu, X.; Wetzler, L.M.; Nascimento, L.E.O.; Massari, P. Human Airway Epithelial Cell Responses to Neisseria lactamica and Purified Porin via Toll-Like Receptor 2-Dependent Signaling. Infect. Immun. 2010, 78, 5314–5323. [Google Scholar] [CrossRef] [Green Version]
- Rydberg, C.; Månsson, A.; Uddman, R.; Riesbeck, K.; Cardell, L.-O. Toll-like receptor agonists induce inflammation and cell death in a model of head and neck squamous cell carcinomas. Immunology 2009, 128, e600–e611. [Google Scholar] [CrossRef]
- Dogan, S.; Zhang, Q.; Pridmore, A.C.; Mitchell, T.J.; Finn, A.; Murdoch, C. Pneumolysin-induced CXCL8 production by nasopharyngeal epithelial cells is dependent on calcium flux and MAPK activation via Toll-like receptor 4. Microbes Infect. 2011, 13, 65–75. [Google Scholar] [CrossRef]
- Hayden, M.S.; Ghosh, S. Signaling to NF-KappaB. Genes Dev. 2004, 18, 2195–2224. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.T.; Campbell, E.J.; Hill, S.L.; Bayley, D.L.; Stockley, R.A. Association between airway bacterial load and markers of airway inflammation in patients with stable chronic bronchitis. Am. J. Med. 2000, 109, 288–295. [Google Scholar] [CrossRef]
- Nocker, R.E.; Schoonbrood, D.F.; Graaf, E.A.v.d.G.; Hack, C.E.; Lutter, R.; Jansen, H.M.; Out, T.A. Interleukin-8 in airway inflammation in patients with asthma and chronic obstructive pulmonary disease. Int. Arch. Allergy Immunol. 1996, 109, 183–191. [Google Scholar] [CrossRef]
- Boutaga, K.; Savelkoul, P.H.M.; Winkel, E.G.; Van Winkelhoff, A.J. Comparison of Subgingival Bacterial Sampling with Oral Lavage for Detection and Quantification of Periodontal Pathogens by Real-Time Polymerase Chain Reaction. J. Periodontol. 2007, 78, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Von Troil-Linden, B.; Torkko, H.; Alaluusua, S.; Jousimies-Somer, H.; Asikainen, S. Salivary Levels of Suspected Periodontal Pathogens in Relation to Periodontal Status and Treatment. J. Dent. Res. 1995, 74, 1789–1795. [Google Scholar] [CrossRef]
- Marik, P.E.; Kaplan, D. Aspiration Pneumonia and Dysphagia in the Elderly. Chest 2003, 124, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Ebihara, S.; Ebihara, T.; Kohzuki, M. Effect of Aging on Cough and Swallowing Reflexes: Implications for Preventing Aspiration Pneumonia. Lung 2011, 190, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Hamedi, M.; Belibasakis, G.N.; Cruchley, A.T.; Rangarajan, M.; Curtis, M.A.; Bostanci, N. Porphyromonas gingivalis culture supernatants differentially regulate interleukin-1beta and interleukin-18 in human monocytic cells. Cytokine 2009, 45, 99–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, N.; Honda, T.; Domon, H.; Nakajima, T.; Tabeta, K.; Yamazaki, K. Interleukin-1 receptor-associated kinase-M in gingival epithelial cells attenuates the inflammatory response elicited byPorphyromonas gingivalis. J. Periodontal Res. 2010, 45, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Shu, R.; Li, C.-L.; Zhang, M.-Z. Gram-Negative Periodontal Bacteria Induce the Activation of Toll-Like Receptors 2 and 4, and Cytokine Production in Human Periodontal Ligament Cells. J. Periodontol. 2010, 81, 1488–1496. [Google Scholar] [CrossRef]
- Tietze, K.; Dalpke, A.; Morath, S.; Mutters, R.; Heeg, K.; Nonnenmacher, C. Differences in innate immune responses upon stimulation with gram-positive and gram-negative bacteria. J. Periodontal Res. 2006, 41, 447–454. [Google Scholar] [CrossRef]
- Andrukhov, O.; Ertlschweiger, S.; Moritz, A.; Bantleon, H.P.; Rausch-Fan, X. Different effects of P. gingivalis LPS and E. coli LPS on the expression of interleukin-6 in human gingival fibroblasts. Acta Odontol. Scand. 2014, 72, 337–345. [Google Scholar] [CrossRef]
- Burns, E.; Bachrach, G.; Shapira, L.; Nussbaum, G. Cutting Edge: TLR2 Is Required for the Innate Response toPorphyromonas gingivalis: Activation Leads to Bacterial Persistence and TLR2 Deficiency Attenuates Induced Alveolar Bone Resorption. J. Immunol. 2006, 177, 8296–8300. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, C.; Madrigal, A.G.; Liu, X.; Ukai, T.; Goswami, S.; Gudino, C.V.; Gibson, F.C.; Genco, C.A.; Gibson, I.F.C. Pathogen-mediated inflammatory atherosclerosis is mediated in part via Toll-like receptor 2-induced inflammatory responses. J. Innate Immun. 2010, 2, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Hajishengallis, G.; Tapping, R.I.; Harokopakis, E.; Nishiyama, S.-I.; Ratti, P.; Schifferle, R.E.; Lyle, E.A.; Triantafilou, M.; Triantafilou, K.; Yoshimura, F. Differential interactions of fimbriae and lipopolysaccharide from Porphyromonas gingivalis with the Toll-like receptor 2-centred pattern recognition apparatus. Cell Microbiol. 2006, 8, 1557–1570. [Google Scholar] [CrossRef]
- Jain, S.; Coats, S.R.; Chang, A.M.; Darveau, R.P. A Novel Class of Lipoprotein Lipase-Sensitive Molecules Mediates Toll-Like Receptor 2 Activation by Porphyromonas gingivalis. Infect. Immun. 2013, 81, 1277–1286. [Google Scholar] [CrossRef] [Green Version]
- Nichols, F.C.; Bajrami, B.; Clark, R.B.; Housley, W.; Yao, X. Free Lipid A Isolated from Porphyromonas gingivalis Lipopolysaccharide Is Contaminated with Phosphorylated Dihydroceramide Lipids: Recovery in Diseased Dental Samples. Infect. Immun. 2011, 80, 860–874. [Google Scholar] [CrossRef] [Green Version]
- Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, N.; Yokoe, S.; Ogata, Y.; Sato, S.; Imai, K. Exposure to Porphyromonas gingivalis Induces Production of Proinflammatory Cytokine via TLR2 from Human Respiratory Epithelial Cells. J. Clin. Med. 2020, 9, 3433. https://doi.org/10.3390/jcm9113433
Watanabe N, Yokoe S, Ogata Y, Sato S, Imai K. Exposure to Porphyromonas gingivalis Induces Production of Proinflammatory Cytokine via TLR2 from Human Respiratory Epithelial Cells. Journal of Clinical Medicine. 2020; 9(11):3433. https://doi.org/10.3390/jcm9113433
Chicago/Turabian StyleWatanabe, Norihisa, Sho Yokoe, Yorimasa Ogata, Shuichi Sato, and Kenichi Imai. 2020. "Exposure to Porphyromonas gingivalis Induces Production of Proinflammatory Cytokine via TLR2 from Human Respiratory Epithelial Cells" Journal of Clinical Medicine 9, no. 11: 3433. https://doi.org/10.3390/jcm9113433
APA StyleWatanabe, N., Yokoe, S., Ogata, Y., Sato, S., & Imai, K. (2020). Exposure to Porphyromonas gingivalis Induces Production of Proinflammatory Cytokine via TLR2 from Human Respiratory Epithelial Cells. Journal of Clinical Medicine, 9(11), 3433. https://doi.org/10.3390/jcm9113433