Current Treatments of Metastatic Colorectal Cancer with Immune Checkpoint Inhibitors—2020 Update
Abstract
:1. Introduction
2. Treatment Efficacy
2.1. Pembrolizumab (Anti PD-1) for Treatment Refractory mCRC
2.2. Pembrolizumab as First Line Treatment for MMRd mCRC
2.3. Nivolumab (Anti-PD-1) in Monotherapy and Combination of Nivolumab and Ipilimumab (Anti-CTLA-4) for Treatment Refractory MMRd mCRC
2.4. Nivolumab–Ipilimumab Combination Therapy as Neoadjuvant Treatment for Early Stage CRC
2.5. Atezolizumab (Anti-PD-L1) and Cobimetinib (Anti-MAPK) as Third Line for Chemo-Resistant mCRC
2.6. Atezolizumab Combined with Chemotherapy as a First Line Treatment in Unresectable mCRC
3. Predictive Biomarkers
4. Quality of Life Indicators
5. Safety and Security
6. Future Studies
7. Search Strategy
8. General Recommendation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Das, S.; Ciombor, K.K.; Haraldsdottir, S.; Goldberg, R.M. Promising New Agents for Colorectal Cancer. Curr. Treat. Options Oncol. 2018, 19, 29. [Google Scholar] [CrossRef]
- Bilgin, B.; Sendur, M.A.N.; Bülent Akıncı, M.; Şener Dede, D.; Yalçın, B. Targeting the PD-1 pathway: A new hope for gastrointestinal cancers. Curr. Med. Res. Opin. 2017, 33, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Garner, H.; de Visser, K.E. Immune crosstalk in cancer progression and metastatic spread: A complex conversation. Nat. Rev. Immunol. 2020. [Google Scholar] [CrossRef]
- Giardiello, F.M.; Allen, J.I.; Axilbund, J.E.; Boland, C.R.; Burke, C.A.; Burt, R.W.; Church, J.M.; Dominitz, J.A.; Johnson, D.A.; Kaltenbach, T.; et al. Guidelines on genetic evaluation and management of Lynch syndrome: A consensus statement by the US Multi-Society Task Force on colorectal cancer. Gastroenterology 2014, 147, 502–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoffel, E.M.; Mangu, P.B.; Gruber, S.B.; Hamilton, S.R.; Kalady, M.F.; Lau, M.W.Y.; Lu, K.H.; Roach, N.; Limburg, P.J. Hereditary colorectal cancer syndromes: American society of clinical oncology clinical practice guideline endorsement of familial risk-colorectal cancer: European Society for medical oncology clinical practice guidelines. J. Clin. Oncol. 2015, 33, 209–217. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network Genetic/Familial High-Risk Assessment: Colorectal (Version 1 2018). Available online: https://www.nccn.org/store/login/login.aspx?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/genetics_colon.pdf (accessed on 19 October 2020).
- Luchini, C.; Bibeau, F.; Ligtenberg, M.J.L.; Singh, N.; Nottegar, A.; Bosse, T.; Miller, R.; Riaz, N.; Douillard, J.Y.; Andre, F.; et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: A systematic review-based approach. Ann. Oncol. 2019, 30, 1232–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monahan, K.J.; Bradshaw, N.; Dolwani, S.; Desouza, B.; Dunlop, M.G.; East, J.E.; Ilyas, M.; Kaur, A.; Lalloo, F.; Latchford, A.; et al. Guidelines for the management of hereditary colorectal cancer from the British Society of Gastroenterology (BSG)/Association of Coloproctology of Great Britain and Ireland (ACPGBI)/United Kingdom Cancer Genetics Group (UKCGG). Gut 2020, 69, 411–444. [Google Scholar] [CrossRef]
- Dienstmann, R.; Vermeulen, L.; Guinney, J.; Kopetz, S.; Tejpar, S.; Tabernero, J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat. Rev. Cancer 2017, 17, 79–92. [Google Scholar] [CrossRef]
- Stein, A.; Moehler, M.; Trojan, J.; Goekkurt, E.; Vogel, A. Immuno-oncology in GI tumours: Clinical evidence and emerging trials of PD-1/PD-L1 antagonists. Crit. Rev. Oncol. Hematol. 2018, 130, 13–26. [Google Scholar] [CrossRef]
- Cherny, N.I.; Dafni, U.; Bogaerts, J.; Latino, N.J.; Pentheroudakis, G.; Douillard, J.Y.; Tabernero, J.; Zielinski, C.; Piccart, M.J.; de Vries, E.G.E. ESMO-Magnitude of Clinical Benefit Scale version 1.1. Ann. Oncol. 2017, 28, 2340–2366. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, L.; Marabelle, A.; Kim, T.W.; Geva, R.; Van Cutsem, E.; André, T.; Ascierto, P.A.; Maio, M.; Delord, J.-P.; Gottfried, M.; et al. Efficacy of Pembrolizumab in Phase II Keynote-164 and Keynote-158 Studies of Microsatellite Instability High Cancers. Ann. Oncol 2017, 28 (Suppl. 5), v122–v141. [Google Scholar] [CrossRef]
- Le, D.T.; Kim, T.W.; Van Cutsem, E.; Geva, R.; Jäger, D.; Hara, H.; Burge, M.; O’Neil, B.; Kavan, P.; Yoshino, T.; et al. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability–High/Mismatch Repair–Deficient Metastatic Colorectal Cancer: KEYNOTE-164. J. Clin. Oncol. 2020, 38, 11–19. [Google Scholar] [CrossRef]
- Andre, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.J.A.; Smith, D.M.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab versus chemotherapy for microsatellite instability-high/mismatch repair deficient metastatic colorectal cancer: The phase 3 KEYNOTE-177 Study. J. Clin. Oncol. 2020, 38, LBA4. [Google Scholar] [CrossRef]
- Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.-J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A.; et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet. Oncol. 2017, 18, 1182–1191. [Google Scholar] [CrossRef]
- Overman, M.J.; Lonardi, S.; Wong, K.Y.M.; Lenz, H.-J.; Gelsomino, F.; Aglietta, M.; Morse, M.A.; Van Cutsem, E.; McDermott, R.; Hill, A.; et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair–Deficient/Microsatellite Instability–High Metastatic Colorectal Cancer. J. Clin. Oncol. 2018, 36, 773–779. [Google Scholar] [CrossRef]
- Chalabi, M.; Fanchi, L.F.; Dijkstra, K.K.; Van den Berg, J.G.; Aalbers, A.G.; Sikorska, K.; Lopez-Yurda, M.; Grootscholten, C.; Beets, G.L.; Snaebjornsson, P.; et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 2020, 26. [Google Scholar] [CrossRef]
- Grothey, A.; Van Cutsem, E.; Sobrero, A.; Siena, S.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouché, O.; Mineur, L.; Barone, C.; et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013, 381, 303–312. [Google Scholar] [CrossRef]
- Ebert, P.J.R.; Cheung, J.; Yang, Y.; McNamara, E.; Hong, R.; Moskalenko, M.; Gould, S.E.; Maecker, H.; Irving, B.A.; Kim, J.M.; et al. MAP Kinase Inhibition Promotes T Cell and Anti-tumor Activity in Combination with PD-L1 Checkpoint Blockade. Immunity 2016, 44, 609–621. [Google Scholar] [CrossRef] [Green Version]
- Eng, C.; Kim, T.W.; Bendell, J.; Argilés, G.; Tebbutt, N.C.; Di Bartolomeo, M.; Falcone, A.; Fakih, M.; Kozloff, M.; Segal, N.H.; et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): A multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2019, 20, 849–861. [Google Scholar] [CrossRef]
- Grothey, A.; Tabernero, J.; Arnold, D.; De Gramont, A.; Ducreux, M.P.; O’Dwyer, P.J.; Van Cutsem, E.; Bosanac, I.; Srock, S.; Mancao, C.; et al. Fluoropyrimidine (FP) + bevacizumab (BEV) + atezolizumab vs FP/BEV in BRAFwt metastatic colorectal cancer (mCRC): Findings from Cohort 2 of MODUL—A multicentre, randomized trial of biomarker-driven maintenance treatment following first-line induction therapy. Ann. Oncol. 2018, 29, viii714–viii715. [Google Scholar] [CrossRef]
- Tauber, M.; Cohen, R.; Laly, P.; Josselin, L.; André, T.; Mekinian, A. Severe necrotizing myositis associated with long term anti-neoplastic efficacy following nivolumab plus ipilimumab combination therapy. Clin. Rheumatol. 2018. [Google Scholar] [CrossRef] [PubMed]
Reference | Checkpoint Inhibitor | Design & Cohorts (Treating Arms) | Dosing | Median Follow-Up | Primary (1) and Secondary Endpoints (2) | ORR | PFS | OS | Most Important Adverse Effects (DRAE) | Quality of Life Indicators | Quality of Trial Design | ESMO-MCBS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Le DT, NEJM, 2015 NCT01876511 | Pembrolizumab (Phase II) | All treatment refractory progressive metastatic cancers (ECOG PS 0–1). Cohort 1: 11 MMRd mCRC Cohort 2: 21 MMRd mCRC Cohort 3: 9 MMRd not CRC CRCs with ≥2 previous chemotherapy regimens All ECOG 0–1. | Pembro 10 mg/kg Q2W | Cohort 1: 36 w Cohort 2: 20 w Cohort 3: 21 w | Immune related ORR (1) Immune related PFS (1) | 40% in MMRd mCRC vs. 0% in MMRp mCRC (95% CI: 12–74) CR: 0% PR: 40% SD: 50% DCR: 90% 71% in MMRd non-mCRC | 78% in MMRd mCRC vs. 11% in MMRp mCRC (at 20 weeks). In MMRd mCRC the median PFS was not reached; in MMRp 2.2 mts. (HR 0.10, p < 0.001) | In MMRd mCRC median OS was not reached; in MMRp 5.0 mts. (HR = 0.22, p = 0.05) | 41% had grade 3 or 4 AE. Most frequent: anemia, lymphopenia, asymptomatic pancreatitis, elevated liver enzymes, hyponatremia, hypoalbuminemia, bowel obstruction. One case of pneumonitis (2%). | Not reported | 3/5 (high) | 2/3 (strong) |
Le DT, Science, 2017 NCT01876511 | Pembrolizumab (Phase II) | 86 patients with 12 different tumor types (40 CRCs), all treatment refractory progressive and metastatic MMRd (ECOG PS 0–1). 81% had received ≥2 previous treatments. 48% confirmed to have Lynch syndrome. Radiographic assessment at 12 w, then every 8 w the first year and then every 12 w. | Pembro 10 mg/kg iv Q2W | 12.5 months | Immune related ORR (1) Immune related PFS (1) | 52% for mCRC (95% CI: 36–68) and 54% for other cancers (39–69). For mCRC: · CR: 12% · PR: 40% · SD: 30% · DCR: 82%. No difference between Lynch and non-Lynch. | Median PFS was not reached for mCRC (estimates at 1 yr. = 64%; at 2 yrs. = 53%). | Median OS was not reached (estimates at 1 yr. = 76%; at 2 yrs. = 64%). | 20% grade 3 or 4 AE. Most frequent: asymptomatic pancreatitis, diarrhea/colitis, anemia, fatigue, arthritis/arthralgia. 21% hypo-thyroidism treated with supplement therapy. | Not reported | 2/5 (low) | 2/3 (strong) |
Díaz L, ESMO 2017 Conference, Ann Oncol, NCT02460198 “Keynote 164” trial “Keynote 158” trial | Pembrolizumab (Phase II) | KN164 cohort: 61 patients with MSI-H mCRC and ≥2 prior therapies KN158 cohort: 77 patients with MSI-H non-CRC and ≥1 prior therapies Response was assessed every 9 w. | Pembro 200 mg Q3W | ORR (1) | ORR for mCRC: 27.9% (95 CI%: 17.1%–40.8%) · ORR for non-CRC: 37.7% (95% CI 26.9%–49.4%) | 43% (at 6 mts) for mCRC 45% (at 6 mts) for non-CRC | 87% (at 6 mts) for mCRC 73% (at 6 mts) for non-CRC Median OS was not reached. | 7% (mCRC) and 9% (non-CRC) had serious drug related AE. | Not reported | 2/5 (low) | 2/3 (strong) | |
Overman MJ, Lancet Oncology, 2017 NCT02060188 Part of the “Checkmate 142” study | Nivolumab (Phase II) | Multicenter, open label, no control group, non-randomized, 74 patients with MMRd metastatic or recurrent CRC (ECOG PS 0–1). 85% had received ≥2 lines of previous ttm. Follow-up for 3 yrs. Treatment until disease progression, death, unacceptable toxic effects or withdrawal from study. | Nivol 3 mg/kg Q2W | 12 months | IA-ORR (1) BICR-ORR (2) | IA-ORR: 31.1% (20.8–42.9) CR: 0% PR: 31.1% SD: 37.8% BICR-ORR: 32.4% (95% CI: 22.0–44.3) CR: 2.7% PR: 29.7% SD: 33.8% | 50.4% (at 1 yr.) 95% CI: 38–61 Median PFS was not reached. | 73.4% (at 1 yr) 95% CI: 62–82 Median OS was not reached. | Drug-related AE: 48.6% grade 1 or 2 AE. 17.6% grade 3 AE. 2.7% grade 4 AE. 1.4% grade 5 AE. 8% lipase elevation and 3% amylase elevation = the only grade 3/4 AE. Only 6% discontinued due to AE. | At week 13, meaningful improvements in functioning, symptoms and QoL, with some maintained through week 37 or beyond. (Assessing tools: EORTC QLQ-C30 and EQ-5D) | 2/5 (low) | 2/3 (strong) |
Overmann MJ, J Clin Oncol, 2018 NCT02060188 Part of the “Checkmate 142 study” | Nivolumab + Ipilimumab (Phase II) | Multicenter, open label, no control group, non-randomized, 119 patients with MMRd metastatic or recurrent CRC (ECOG PS 0–1). 76% had received two or three lines of previous treatment. Treatment until disease progression, discontinuation, death, withdrawal of consent or study end. | Nivol 3 mg/kg plus Ipi 1 mg/kg Q3W (four doses) followed by nivol 3 mg/kg Q2W | 13.4 months | IA-ORR (1) BICR-ORR (2) | IA-ORR: 54.6% (45.2–63.8) CR: 3.4% PR: 51.3% SD: 31% BICR-ORR 49%(95% CI: 39.5–58.1) CR: 4.0% PR: 45% SD: 33% | · 71% (at 1 yr.) (95% CI: 61.4–78.7) · Median PFS was not reached. | 85% (at 1 yr.) (95% CI: 77.0–90.2) Median OS was not reached. | Drug-related AE: · 32% grade 3 or 4 (all manageable): elevated transaminases, lipase, anemia and colitis. Discontinuation for any grad: 13%. AEs with potential immunologic etiology: 29% (skin), 25% (endocrine), 23% (GI), 19% (hepatic), and 5% (pulmonary, renal). | At week 13, meaningful improvements in functioning, symptoms and QoL. (Assessing tools: EORTC QLQ-C30 and EQ-5D) | 2/5 (low) | 2/3 (strong) |
Eng C, Lancet Oncol, 2019 NCT0278879 | Atezolizumab ± Cobimetinib (Phase III) | Cohort 1: 183 Atezolizumab + Cobimetinib Cohort 2: 90 Atezolizumab (alone) Cohort 3: 90 Regorafenib (SOC) Unresectable, locally advanced or mCRC with at least 1 prior treatment. ECOG PS 0–1 | Ate 840 mg iv Q2W + Cob 60 mg po QD day 1–21 or Ate 1200 mg iv Q3W or Rego 160 mg po QD day 1–21 | 7.3 months | OS (1) PFS, ORR, DoR (2) | No CR in any of the cohorts | Median PFS: Cohort 1: 1.91 Cohort 2: 1.94 Cohort 3: 2.0 HR (1 vs. 3): 1.25 (95% CI 0.9–1.7) HR (2 vs. 3): 1.39 (95% CI 1.0–1.9) | Median OS: Cohort 1: 8.9 Cohort 2: 7.1 Cohort 3: 8.5 HR (1 vs. 3) 1.00 (95% CI 0.7–1.4) HR (2 vs. 3): 1.19 (95%CI 0.8–1.7) | 100% had AEs. Grade 3–4 AE in cohort 1, 61%; cohort 2, 31%; cohort 3, 58%. Most frequent AE in cohort 1: diarrhea (11%), anemia (6%), elevated CK (7%), fatigue (4%). Serious AE in cohort 1, 40%; cohort 2, 17%; cohort 3, 23%. | Not reported | 3/5 (high) | 0/3 (low) |
Le DT, J Clin Oncol, 2020 NCT02460198 “Keynote 164” update | Pembrolizumab (Phase II) | Cohort 1: 61 MMRd CRC ≥2 lines of treatment Cohort 2: 63 MMRd CRC ≥1 lines of treatment Unresectable, locally advanced or metastatic CRC. ECOG PS 0–1 | Pembro 200 mg iv Q3W | Cohort 1: 31.3 mts Cohort 2: 24.2 mts | ORR (1) PFS, OS, DoR, safety, tolerability (2) | Cohort 1: 33% (95% CI: 21–46) CR: 3.3% PR: 29.5% SD: 18.0% DCR: 50.8% Cohort 2: 33% (95%CI: 22–46) CR: 7.9% PR: 25.4% SD: 24% DCR: 57.1% | Cohort 1: median 2.3 mts (95% CI 2.1–8.1) 34% at 1 yr. 31% at 2 yrs. Cohort 2: median 4.1 mts (95% CI 2.1–18.9) 41% at 1 yr. 37% at 2 yrs. | Cohort 1: median 31.4 mts (95% CI 21.4 mts-NR) 72% at 1 yr. 55% at 2 yrs. Cohort 2: median NR (95% CI 19.2-NR) 76% at 1 yr. 63% at 2 yrs. | Drug-related AE: Cohort 1: grade 3–4: 3% fatigue, 2% asthenia Cohort 2: grade 3–4: None Immune-mediated AE Cohort 1: 21% (7% grade 3–4); pancreatitis, hepatitis, pneumonitis, skin toxicity. Cohort 2: 37% (3% grade 3–4); colitis, pneumonitis. 2% in each cohort led to discontinuation (pneumonitis in both cohorts) No grade 5 AE in both cohorts. | Not reported | 2/5 (low) | 2/3 (strong) |
Chalabi M, Nature Medicine, 2020 NCT03026140 | (Nivolumab + Ipilimumab) ± Celecoxib (Phase II) | Cohort 1: 20 MMRd CRC Cohort 2: 15 MMRp CRC Resectable early stage (I, II or III). All ECOG 0–1. | Nivol 3 mg/kg D1 + D15 + Ipilimumab 1 mg/kg D1 ± Celecoxib 200 mg QD from D1 until surgery | 9.0 months | Safety & feasibility (1) | Cohort 1: 100% (95% CI 86–100) CR: 60% (12/20) MPR: 95% (19/20) Cohort 2: 27% (95% CI 8–55) CR: 13.3% (2/15) MPR: 20% (3/15) PR: 6.7% (1/15) | Not reached | Not reached | All patients could undergo surgery. 13% grade 3–4 drug related AE. 2 patients grade 3 rash (resolved with corticosteroid therapy). One patient had grade 3 colitis (resolved 3 d after infliximab SD). Three patients grade 3 asymptomatic laboratory test. Eight patients grade 3 surgery related AE-> 4/8 were anastomotic leakages ->1/4 had complete response and showed signs of colitis (probably drug-related). | Not reported | 2/5 (low) | NA |
Andre T, JCO, 2020 NCT02563002 | Pembrolizumab (Phase III) | Open label, randomized. First line treatment of MMRd mCRC Cohort 1: 153 Pembrolizumab Cohort 2: 154 Standard Chemotherapy (mFOLFOX6 or FOLFIRI Q2 W ± bevacizumab or Cetuximab). ECOG PS 0–1. | 200 mg Pembro Q3W for up to 2 years | Cohort 1: 28.4 mts Cohort 2: 27.2 mts | PFS, OS (1) ORR, safety (2) | Cohort 1: 43.8% Cohort 2: 33.1% | Median PFS: Cohort 1: 16.5 mts Cohort 2: 8.2 mts HR: 0.60; (95% CI 0.45–0.80), p = 0.0002 12 mts PFS rate: 55.3 vs. 37.3% 24 mts PFS rate: 48.3 vs. 18.6% | Not reached | Drug related AE grade 3–5 Cohort 1: 22% Cohort 2: 66% (One pt. in cohort 2 (chemo) died because of DRAE.) | Not reported | 3/5 (high) | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, G.; Benítez-Ribas, D.; Sánchez, A.; Balaguer, F. Current Treatments of Metastatic Colorectal Cancer with Immune Checkpoint Inhibitors—2020 Update. J. Clin. Med. 2020, 9, 3520. https://doi.org/10.3390/jcm9113520
Jung G, Benítez-Ribas D, Sánchez A, Balaguer F. Current Treatments of Metastatic Colorectal Cancer with Immune Checkpoint Inhibitors—2020 Update. Journal of Clinical Medicine. 2020; 9(11):3520. https://doi.org/10.3390/jcm9113520
Chicago/Turabian StyleJung, Gerhard, Daniel Benítez-Ribas, Ariadna Sánchez, and Francesc Balaguer. 2020. "Current Treatments of Metastatic Colorectal Cancer with Immune Checkpoint Inhibitors—2020 Update" Journal of Clinical Medicine 9, no. 11: 3520. https://doi.org/10.3390/jcm9113520
APA StyleJung, G., Benítez-Ribas, D., Sánchez, A., & Balaguer, F. (2020). Current Treatments of Metastatic Colorectal Cancer with Immune Checkpoint Inhibitors—2020 Update. Journal of Clinical Medicine, 9(11), 3520. https://doi.org/10.3390/jcm9113520