Effects of Obesity and Asthma on Lung Function and Airway Dysanapsis in Adults and Children
Abstract
:1. Introduction
2. Effects of Obesity on Lung Function in Adults
3. Effects of Obesity on Lung Function in Children: Role of Dysanapsis
3.1. Effects of BMI on Lung Function in Children (Cross-Sectional Studies)
3.2. Effects of BMI on Lung Function in Children (Cohort Studies)
3.3. Obstructive Lung Function Pattern in Overweight/Obese Children: Role of Dysanapsis
4. Obesity and Asthma: Combined Effects on Lung Function and Airway Dysanapsis
Dysanapsis and Asthma Morbidity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FEV1 | forced expiratory volume at the first second |
FVC | forced vital capacity |
TLC | total lung capacity |
ERV | expiratory reserve volume |
BMI | body mass index |
FRC | Functional residual capacity |
FEF25–75 | Mean Forced Expiratory Flow between 25% and 75% of FVC |
IL | interleukin |
FEF50 | forced expiratory flow at 50% of FVC |
TNFα | tumor necrosis factor alpha |
IgE | immunoglobulin E |
References
- Croisant, S. Epidemiology of asthma: Prevalence and burden of disease. Adv. Exp. Med. Biol. 2014, 795, 17–29. [Google Scholar]
- Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics 2015, 33, 673–689. [Google Scholar] [CrossRef]
- Von Ruesten, A.; Steffen, A.; Floegel, A.; Van Der, A.D.L.; Masala, G.; Tjønneland, A.; Halkjaer, J.; Palli, D.; Wareham, N.J.; Loos, R.J.F.; et al. Trend in obesity prevalence in European adult cohort populations during follow-up since 1996 and their predictions to 2015. PLoS ONE 2011, 6, e27455. [Google Scholar] [CrossRef]
- Scott, H.A.; Gibson, P.G.; Garg, M.L.; Wood, L.G. Airway inflammation is augmented by obesity and fatty acids in asthma. Eur. Respir. J. 2011, 38, 594–602. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, T.J.T.; Cowan, J.O.; Young, S.; Goulding, A.; Grant, A.M.; Williamson, A.; Brassett, K.; Herbison, G.P.; Taylor, D.R. The association between obesity and asthma: Interactions between systemic and airway inflammation. Am. J. Respir. Crit. Care Med. 2008, 178, 469–475. [Google Scholar] [CrossRef]
- Gold, D.R.; Damokosh, A.I.; Dockery, D.W.; Berkey, C.S. Body-mass index as a predictor of incident asthma in a prospective cohort of children. Pediatr. Pulmonol. 2003, 36, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Mannino, D.M.; Mott, J.; Ferdinands, J.M.; Camargo, C.A.; Friedman, M.; Greves, H.M.; Redd, S.C. Boys with high body masses have an increased risk of developing asthma: Findings from the National Longitudinal Survey of Youth (NLSY). Int. J. Obes. 2006, 30, 6–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamun, A.A.; Lawlor, D.A.; Alati, R.; O’Callaghan, M.J.; Williams, G.M.; Najman, J.M. Increasing body mass index from age 5 to 14 years predicts asthma among adolescents: Evidence from a birth cohort study. Int. J. Obes. 2007, 31, 578–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinmayr, G.; Forastiere, F.; Buchele, G.; Jaensch, A.; Strachan, D.P.; Nagel, G.; The ISAAC Phase Two Study Group. Overweight/obesity and respiratory and allergic disease in children: International study of asthma and allergies in childhood (ISAAC) phase two. PLoS ONE 2014, 9, e113996. [Google Scholar] [CrossRef]
- Zhang, Z.; Lai, H.J.; Roberg, K.A.; Gangnon, R.E.; Evans, M.D.; Anderson, E.L.; Pappas, T.E.; DaSilva, D.F.; Tisler, C.J.; Salazar, L.P.; et al. Early childhood weight status in relation to asthma development in high-risk children. J. Allergy Clin. Immunol. 2010, 126, 1157–1162. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.-C.; Lin, Y.-S.; Caffrey, J.L.; Lin, M.-H.; Hsu, H.-T.; Myers, L.; Chen, P.-C.; Lin, R.S. Higher body mass index may induce asthma among adolescents with pre-asthmatic symptoms: A prospective cohort study. BMC Public Health 2011, 11, 542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumas, O.; Varraso, R.; Gillman, M.W.; Field, A.E.; Camargo, C.A., Jr. Longitudinal study of maternal body mass index, gestational weight gain, and offspring asthma. Allergy 2016, 71, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
- Forno, E.; Young, O.M.; Kumar, R.; Simhan, H.; Celedon, J.C. Maternal obesity in pregnancy, gestational weight gain, and risk of childhood asthma. Pediatrics 2014, 134, e535–e546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beuther, D.A.; Sutherland, E.R. Overweight, obesity, and incident asthma: A meta-analysis of prospective epidemiologic studies. Am. J. Respir. Crit. Care Med. 2007, 175, 661–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Dales, R.; Jiang, Y. The association between obesity and asthma is stronger in nonallergic than allergic adults. Chest 2006, 130, 890–895. [Google Scholar] [CrossRef] [Green Version]
- Ronmark, E.; Andersson, C.; Nystrom, L.; Forsberg, B.; Jarvholm, B.; Lundback, B. Obesity increases the risk of incident asthma among adults. Eur. Respir. J. 2005, 25, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Arismendi, E.; Rivas, E.; Vidal, J.; Barreiro, E.; Torralba, Y.; Burgos, F.; Torralba, Y.; Rincón, F.B.; Rodríguez-Roisin, R. Airway Hyperresponsiveness to Mannitol in Obesity Before and After Bariatric Surgery. Obes Surg. 2015, 25, 1666–1671. [Google Scholar] [CrossRef] [Green Version]
- Canoy, D.; Luben, R.; Welch, A.; Bingham, S.; Wareham, N.; Day, N.; Khaw, K.-T. Abdominal obesity and respiratory function in men and women in the EPIC-Norfolk Study, United Kingdom. Am. J. Epidemiol. 2004, 159, 1140–1149. [Google Scholar] [CrossRef] [Green Version]
- Zerah, F.; Harf, A.; Perlemuter, L.; Lorino, H.; Lorino, A.M.; Atlan, G. Effects of obesity on respiratory resistance. Chest 1993, 103, 1470–1476. [Google Scholar] [CrossRef] [Green Version]
- Carey, I.M.; Cook, D.G.; Strachan, D.P. The effects of adiposity and weight change on forced expiratory volume decline in a longitudinal study of adults. Int. J. Obes. Relat. Metab. Disord. 1999, 23, 979–985. [Google Scholar] [CrossRef] [Green Version]
- Thyagarajan, B.; Jacobs, D.R.; Apostol, G.G.; Smith, L.J.; Jensen, R.L.; Crapo, R.O.; Barr, R.G.; Lewis, C.E.; Williams, O.D. Longitudinal association of body mass index with lung function: The CARDIA study. Respir. Res. 2008, 9, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.L.; Nzekwu, M.M. The effects of body mass index on lung volumes. Chest 2006, 130, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Steele, R.M.; Finucane, F.M.; Griffin, S.J.; Wareham, N.J.; Ekelund, U. Obesity is associated with altered lung function independently of physical activity and fitness. Obesity 2009, 17, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Abramson, M.; Kaushik, S.; Benke, G.P.; Borg, B.M.; Smith, C.; Dharmage, S.C.; Thompson, B.R. Symptoms and lung function decline in a middle-aged cohort of males and females in Australia. Int. J. Chronic Obs. Pulmon Dis. 2016, 11, 1097–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saliman, J.A.; Benditt, J.O.; Flum, D.R.; Oelschlager, B.K.; Dellinger, E.P.; Goss, C.H. Pulmonary function in the morbidly obese. Surg. Obes. Relat. Dis. 2008, 4, 632–639, discussion 9. [Google Scholar] [CrossRef] [Green Version]
- Arismendi, E.; Rivas, E.; Agustí, A.; Ríos, J.; Barreiro, E.; Vidal, J.; Rodriguez-Roisin, R. The systemic inflammome of severe obesity before and after bariatric surgery. PLoS ONE 2014, 9, e107859. [Google Scholar] [CrossRef]
- Peters, U.; Suratt, B.T.; Bates, J.H.T.; Dixon, A.E. Beyond BMI: Obesity and Lung Disease. Chest 2018, 153, 702–709. [Google Scholar] [CrossRef]
- Al-Alwan, A.; Bates, J.H.T.; Chapman, D.G.; Kaminsky, D.A.; DeSarno, M.J.; Irvin, C.G.; Dixon, A.E. The nonallergic asthma of obesity. A matter of distal lung compliance. Am. J. Respir. Crit. Care Med. 2014, 189, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
- Salome, C.M.; King, G.G.; Berend, N. Physiology of obesity and effects on lung function. J. Appl. Physiol. 2010, 108, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Boulet, L.P.; Franssen, E. Influence of obesity on response to fluticasone with or without salmeterol in moderate asthma. Respir. Med. 2007, 101, 2240–2247. [Google Scholar] [CrossRef] [Green Version]
- Scott, H.A.; Gibson, P.G.; Garg, M.L.; Pretto, J.J.; Morgan, P.J.; Callister, R.; Wood, L.G. Dietary restriction and exercise improve airway inflammation and clinical outcomes in overweight and obese asthma: A randomized trial. Clin. Exp. Allergy 2013, 43, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, E.R.; Goleva, E.; Strand, M.; Beuther, D.A.; Leung, D.Y. Body mass and glucocorticoid response in asthma. Am. J. Respir. Crit. Care Med. 2008, 178, 682–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Huisstede, A.; Rudolphus, A.; Cabezas, M.C.; Biter, L.U.; Van De Geijn, G.-J.; Taube, C.; Hiemstra, P.S.; Braunstahl, G.-J.; Van Schadewijk, A. Effect of bariatric surgery on asthma control, lung function and bronchial and systemic inflammation in morbidly obese subjects with asthma. Thorax 2015, 70, 659–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekkers, M.B.; Wijga, A.H.; Gehring, U.; Koppelman, G.H.; De Jongste, J.C.; Smit, H.A.; Brunekreef, B. BMI, waist circumference at 8 and 12 years of age and FVC and FEV1 at 12 years of age; the PIAMA birth cohort study. BMC Pulm. Med. 2015, 15, 39. [Google Scholar] [CrossRef] [Green Version]
- Ekström, S.; Hallberg, J.; Kull, I.; Protudjer, J.L.P.; Thunqvist, P.; Bottai, M.; Gustafsson, P.M.; Bergström, A.; Melén, E. Body mass index status and peripheral airway obstruction in school-age children: A population-based cohort study. Thorax 2018, 73, 538–545. [Google Scholar] [CrossRef] [Green Version]
- Forno, E.; Han, Y.Y.; Mullen, J.; Celedon, J.C. Overweight, Obesity, and Lung Function in Children and Adults-A Meta-analysis. J. Allergy Clin. Immunol. Pract. 2018, 6, 570–581.e10. [Google Scholar] [CrossRef]
- Forno, E.; Weiner, D.J.; Mullen, J.; Sawicki, G.; Kurland, G.; Han, Y.Y.; Cloutier, M.M.; Canino, G.; Weiss, S.T.; Litonjua, A.A.; et al. Obesity and Airway Dysanapsis in Children with and without Asthma. Am. J. Respir. Crit. Care Med. 2017, 195, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Den Dekker, H.T.; Der Voort, A.M.S.-V.; De Jongste, J.C.; Anessi-Maesano, I.; Arshad, S.H.; Barros, H.; Beardsmore, C.S.; Bisgaard, H.; Phar, S.C.; Craig, L.; et al. Early growth characteristics and the risk of reduced lung function and asthma: A meta-analysis of 25,000 children. J. Allergy Clin. Immunol. 2016, 137, 1026–1035. [Google Scholar] [CrossRef] [Green Version]
- Green, M.; Mead, J.; Turner, J.M. Variability of maximum expiratory flow-volume curves. J. Appl. Physiol. 1974, 37, 67–74. [Google Scholar] [CrossRef]
- Mead, J. Dysanapsis in normal lungs assessed by the relationship between maximal flow, static recoil, and vital capacity. Am. Rev. Respir. Dis. 1980, 121, 339–342. [Google Scholar]
- Turner, J.M.; Mead, J.; Wohl, M.E. Elasticity of human lungs in relation to age. J. Appl. Physiol. 1968, 25, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.R.; Rosenkranz, S.K.; Harms, C.A. Dysanapsis ratio as a predictor for expiratory flow limitation. Respir. Physiol. Neurobiol. 2014, 198, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Tager, I.B.; Weiss, S.T.; Munoz, A.; Welty, C.; Speizer, F.E. Determinants of response to eucapneic hyperventilation with cold air in a population-based study. Am. Rev. Respir. Dis. 1986, 134, 502–508. [Google Scholar] [PubMed]
- Martin, T.R.; Castile, R.G.; Fredberg, J.J.; Wohl, M.E.; Mead, J. Airway size is related to sex but not lung size in normal adults. J. Appl. Physiol. 1987, 63, 2042–2047. [Google Scholar] [CrossRef]
- Brooks, L.J.; Byard, P.J.; Helms, R.C.; Fouke, J.M.; Strohl, K.P. Relationship between lung volume and tracheal area as assessed by acoustic reflection. J. Appl. Physiol. 1988, 64, 1050–1054. [Google Scholar] [CrossRef]
- Sheel, A.W.; Dominelli, P.B.; Molgat-Seon, Y. Revisiting dysanapsis: Sex-based differences in airways and the mechanics of breathing during exercise. Exp. Physiol. 2016, 101, 213–218. [Google Scholar] [CrossRef]
- Dominelli, P.B.; Molgat-Seon, Y.; Bingham, D.; Swartz, P.M.; Road, J.D.; Foster, G.E.; Sheel, A.W. Dysanapsis and the resistive work of breathing during exercise in healthy men and women. J. Appl. Physiol. 2015, 119, 1105–1113. [Google Scholar] [CrossRef]
- Huang, K.; Rabold, R.; Abston, E.; Schofield, B.; Misra, V.; Galdzicka, E.; Lee, H.; Biswal, S.; Mitzner, W.; Tankersley, C.G. Effects of leptin deficiency on postnatal lung development in mice. J. Appl. Physiol. 2008, 105, 249–259. [Google Scholar] [CrossRef]
- Kirwin, S.M.; Bhandari, V.; DiMatteo, D.; Barone, C.; Johnson, L.; Paul, S.; Spitzer, A.R.; Chander, A.; Hassink, S.G.; Funanage, V.L. Leptin enhances lung maturity in the fetal rat. Pediatr. Res. 2006, 60, 200–204. [Google Scholar] [CrossRef] [Green Version]
- Hansel, N.N.; Gao, L.; Rafaels, N.M.; Mathias, R.A.; Neptune, E.R.; Tankersley, C.; Grant, A.V.; Connett, J.; Beaty, T.H.; Wise, R.A.; et al. Leptin receptor polymorphisms and lung function decline in COPD. Eur. Respir. J. 2009, 34, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Van den Borst, B.; Souren, N.Y.; Loos, R.J.; Paulussen, A.D.; Derom, C.; Schols, A.M.; Zeegers, M.P.A. Genetics of maximally attained lung function: A role for leptin? Respir. Med. 2012, 106, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torday, J.S.; Sun, H.; Wang, L.; Torres, E.; Sunday, M.E.; Rubin, L.P. Leptin mediates the parathyroid hormone-related protein paracrine stimulation of fetal lung maturation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002, 282, L405–L410. [Google Scholar] [CrossRef] [PubMed]
- Konarski, M.; Klos, R.; Nitsch-Osuch, A.; Korzeniewski, K.; Prokop, E. Lung function in divers. Adv. Exp. Med. Biol. 2013, 788, 221–227. [Google Scholar] [PubMed]
- Zosky, G.R.; Berry, L.J.; Elliot, J.G.; James, A.L.; Gorman, S.; Hart, P.H. Vitamin D deficiency causes deficits in lung function and alters lung structure. Am. J. Respir. Crit. Care Med. 2011, 183, 1336–1343. [Google Scholar] [CrossRef] [PubMed]
- Llapur, C.J.; Martínez, M.R.; Grassino, P.T.; Stok, A.; Altieri, H.H.; Bonilla, F.; Caram, M.M.; Krowchuk, N.M.; Kirby, M.; Coxson, H.O.; et al. Chronic Hypoxia Accentuates Dysanaptic Lung Growth. Am. J. Respir. Crit. Care Med. 2016, 194, 327–332. [Google Scholar] [CrossRef]
- Strunk, R.C.; Weiss, S.T.; Yates, K.P.; Tonascia, J.; Zeiger, R.S.; Szefler, S.J. Mild to moderate asthma affects lung growth in children and adolescents. J. Allergy Clin. Immunol. 2006, 118, 1040–1047. [Google Scholar] [CrossRef]
- Weiss, S.T.; Tosteson, T.D.; Segal, M.R.; Tager, I.B.; Redline, S.; Speizer, F.E. Effects of asthma on pulmonary function in children. A longitudinal population-based study. Am. Rev. Respir. Dis. 1992, 145, 58–64. [Google Scholar] [CrossRef]
- Jones, M.H.; Roncada, C.; Fernandes, M.T.C.; Heinzmann-Filho, J.P.; Icaza, E.E.S.; Mattiello, R.; Pitrez, P.M.C.; Pinto, L.A.; Stein, R.T. Asthma and Obesity in Children Are Independently Associated with Airway Dysanapsis. Front. Pediatr. 2017, 5, 270. [Google Scholar] [CrossRef] [Green Version]
- Forno, E.; Han, Y.Y.; Muzumdar, R.H.; Celedon, J.C. Insulin resistance, metabolic syndrome, and lung function in US adolescents with and without asthma. J. Allergy Clin. Immunol. 2015, 136, 304–311.e8. [Google Scholar] [CrossRef] [Green Version]
- Litonjua, A.A.; Sparrow, D.; Weiss, S.T. The FEF25-75/FVC ratio is associated with methacholine airway responsiveness. The normative aging study. Am. J. Respir. Crit. Care Med. 1999, 159 Pt 1, 1574–1579. [Google Scholar] [CrossRef]
- Isabel, U.; Capelastegui, A.; Quintana, J.; Muniozguren, N.; Payo, F.; Moratalla, J.M.; Maldonado, J.; Basagana, X.; Anto, J.; Sunyer, J.; et al. Association between the forced midexpiratory flow/forced vital capacity ratio and bronchial hyperresponsiveness. Arch. Bronconeumol. 2004, 40, 397–402. [Google Scholar]
- Parker, A.L.; Abu-Hijleh, M.; McCool, F.D. Ratio between forced expiratory flow between 25% and 75% of vital capacity and FVC is a determinant of airway reactivity and sensitivity to methacholine. Chest 2003, 124, 63–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luna-Pech, J.A.; Torres-Mendoza, B.M.; Luna-Pech, J.A.; Garcia-Cobas, C.Y.; Navarrete-Navarro, S.; Elizalde-Lozano, A.M. Normocaloric diet improves asthma-related quality of life in obese pubertal adolescents. Int. Arch. Allergy Immunol. 2014, 163, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, J.C.; Hoogstrate, M.; Duiverman, E.J.; Thio, B.J. Effects of dietary induced weight loss on exercise-induced bronchoconstriction in overweight and obese children. Pediatr. Pulmonol. 2014, 49, 1155–1161. [Google Scholar] [CrossRef]
- Willeboordse, M.; Van De Kant, K.D.G.; Tan, F.E.S.; Mulkens, S.; Schellings, J.; Crijns, Y.; Van Der Ploeg, L.; Van Schayck, C.P.; Dompeling, E. A Multifactorial Weight Reduction Programme for Children with Overweight and Asthma: A Randomized Controlled Trial. PLoS ONE 2016, 11, e0157158. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arismendi, E.; Bantulà, M.; Perpiñá, M.; Picado, C. Effects of Obesity and Asthma on Lung Function and Airway Dysanapsis in Adults and Children. J. Clin. Med. 2020, 9, 3762. https://doi.org/10.3390/jcm9113762
Arismendi E, Bantulà M, Perpiñá M, Picado C. Effects of Obesity and Asthma on Lung Function and Airway Dysanapsis in Adults and Children. Journal of Clinical Medicine. 2020; 9(11):3762. https://doi.org/10.3390/jcm9113762
Chicago/Turabian StyleArismendi, Ebymar, Marina Bantulà, Miguel Perpiñá, and César Picado. 2020. "Effects of Obesity and Asthma on Lung Function and Airway Dysanapsis in Adults and Children" Journal of Clinical Medicine 9, no. 11: 3762. https://doi.org/10.3390/jcm9113762
APA StyleArismendi, E., Bantulà, M., Perpiñá, M., & Picado, C. (2020). Effects of Obesity and Asthma on Lung Function and Airway Dysanapsis in Adults and Children. Journal of Clinical Medicine, 9(11), 3762. https://doi.org/10.3390/jcm9113762