Pulmonary Vein Enlargement as an Independent Predictor for New-Onset Atrial Fibrillation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Protocol
2.2. Imaging Acquisition and Analysis
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. New-onset Atrial Fibrillation and PV Enlargement
3.3. Clinical and Echocardiographic Determinants of PV Enlargement
3.4. Relationships between LAVI, PVVI and E/Em
3.5. PVVI, LAVI and the Risk of New-Onset Atrial Fibrillation
4. Discussion
4.1. Enlarged Pulmonary Vein as a Primary Substrate for Atrial Fibrillation
4.2. Pulmonary Vein: a Plausible Crosslink between LV Diastolic Dysfunction and AF
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chugh, S.S.; Havmoeller, R.; Narayanan, K.; Singh, D.; Rienstra, M.; Benjamin, E.J.; Gillum, R.F.; Kim, Y.H.; McAnulty, J.H., Jr.; Zheng, Z.J.; et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation 2014, 129, 837–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamin, E.J.; Levy, D.; Vaziri, S.M.; D’Agostino, R.B.; Belanger, A.J.; Wolf, P.A. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA 1994, 271, 840–844. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, S.M.; Larson, M.G.; Benjamin, E.J.; Levy, D. Echocardiographic predictors of nonrheumatic atrial fibrillation. The Framingham Heart Study. Circulation 1994, 89, 724–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haissaguerre, M.; Jais, P.; Shah, D.C.; Takahashi, A.; Hocini, M.; Quiniou, G.; Garrigue, S.; Le Mouroux, A.; Le Metayer, P.; Clementy, J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 1998, 339, 659–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.A.; Hsieh, M.H.; Tai, C.T.; Tsai, C.F.; Prakash, V.S.; Yu, W.C.; Hsu, T.L.; Ding, Y.A.; Chang, M.S. Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation. Circulation 1999, 100, 1879–1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haissaguerre, M.; Sanders, P.; Hocini, M.; Jais, P.; Clementy, J. Pulmonary veins in the substrate for atrial fibrillation: the “venous wave” hypothesis. J. Am. Coll. Cardiol. 2004, 43, 2290–2292. [Google Scholar] [CrossRef]
- Tsao, H.M.; Yu, W.C.; Cheng, H.C.; Wu, M.H.; Tai, C.T.; Lin, W.S.; Ding, Y.A.; Chang, M.S.; Chen, S.A. Pulmonary vein dilation in patients with atrial fibrillation: detection by magnetic resonance imaging. J. Cardiovasc. Electrophysiol. 2001, 12, 809–813. [Google Scholar] [CrossRef]
- Schwartzman, D.; Lacomis, J.; Wigginton, W.G. Characterization of left atrium and distal pulmonary vein morphology using multidimensional computed tomography. J. Am. Coll. Cardiol. 2003, 41, 1349–1357. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, W.F.; Ryan, T. Evaluation of left ventricular diastolic function. In Feigenbaum’s Echocardiography, 7th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010; pp. 159–183. [Google Scholar]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart. J. Cardiovasc. Imaging. 2015, 16, 233–270. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1321–1360. [Google Scholar]
- Ravens, U. Mechano-electric feedback and arrhythmias. Prog Biophys Mol Biol 2003, 82, 255–266. [Google Scholar] [CrossRef]
- Ravelli, F. Mechano-electric feedback and atrial arrhythmias. In Mechanosensitivity in Cells and Tissues; Academia Publishing House Ltd.: Academia, Moscow, 2005. [Google Scholar]
- Chang, S.L.; Chen, Y.C.; Chen, Y.J.; Wangcharoen, W.; Lee, S.H.; Lin, C.I.; Chen, S.A. Mechanoelectrical feedback regulates the arrhythmogenic activity of pulmonary veins. Heart 2007, 93, 82–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamaguchi, S.; Hikita, K.; Tanaka, Y.; Tsuneoka, Y.; Namekata, I.; Tanaka, H. Enhancement of automaticity by mechanical stretch of the isolated guinea pig pulmonary vein myocardium. Biol. Pharm. Bull. 2016, 39, 1216–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seol, C.A.; Kim, W.T.; Ha, J.M.; Choe, H.; Jang, Y.J.; Youm, J.B.; Earm, Y.E.; Leem, C.H. Stretch-activated currents in cardiomyocytes isolated from rabbit pulmonary veins. Prog. Biophys. Mol. Biol. 2008, 97, 217–231. [Google Scholar] [CrossRef]
- Kalifa, J.; Jalife, J.; Zaitsev, A.V.; Bagwe, S.; Warren, M.; Moreno, J.; Berenfeld, O.; Nattel, S. Intra-atrial pressure increases rate and organization of waves emanating from the superior pulmonary veins during atrial fibrillation. Circulation 2003, 108, 668–671. [Google Scholar] [CrossRef] [Green Version]
- Walters, T.E.; Lee, G.; Spence, S.; Larobina, M.; Atkinson, V.; Antippa, P.; Goldblatt, J.; O’Keefe, M.; Sanders, P.; Kistler, P.M.; et al. Acute atrial stretch results in conduction slowing and complex signals at the pulmonary vein to left atrial junction: insights into the mechanism of pulmonary vein arrhythmogenesis. Circ. Arrhythm Electrophysiol. 2014, 7, 1189–1197. [Google Scholar] [CrossRef]
- Maruyama, T.; Kishikawa, T.; Ito, H.; Kaji, Y.; Sasaki, Y.; Ishihara, Y. Augmentation of pulmonary vein backflow velocity during left atrial contraction: a novel phenomenon responsible for progression of atrial fibrillation in hypertensive patients. Cardiology 2008, 109, 33–40. [Google Scholar] [CrossRef]
- Hauser, T.H.; Essebag, V.; Baldessin, F.; McClennen, S.; Yeon, S.B.; Manning, W.J.; Josephson, M.E. Prognostic value of pulmonary vein size in prediction of atrial fibrillation recurrence after pulmonary vein isolation: a cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2015, 17, 49. [Google Scholar] [CrossRef] [Green Version]
- Tsang, T.S.; Gersh, B.J.; Appleton, C.P.; Tajik, A.J.; Barnes, M.E.; Bailey, K.R.; Oh, J.K.; Leibson, C.; Montgomery, S.C.; Seward, J.B. Left ventricular diastolic dysfunction as a predictor of the first diagnosed nonvalvular atrial fibrillation in 840 elderly men and women. J. Am. Coll. Cardiol. 2002, 40, 1636–1644. [Google Scholar] [CrossRef] [Green Version]
- Tsang, T.S.; Barnes, M.E.; Gersh, B.J.; Bailey, K.R.; Seward, J.B. Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am. J. Cardiol. 2002, 90, 1284–1289. [Google Scholar] [CrossRef]
- Nedios, S.; Koutalas, E.; Sommer, P.; Arya, A.; Rolf, S.; Husser, D.; Bollmann, A.; Hindricks, G.; Breithardt, O.A. Asymmetrical left atrial remodelling in atrial fibrillation: relation with diastolic dysfunction and long-term ablation outcomes. Europace. 2017, 19, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Banks, J.; Booth, F.V.; MacKay, E.H.; Rajagopalan, B.; Lee, G.D. The physcial properties of human pulmonary arteries and veins. Clin. Sci. Mol. Med. 1978, 55, 477–484. [Google Scholar] [PubMed] [Green Version]
- Donal, E.; Lip, G.Y.; Galderisi, M.; Goette, A.; Shah, D.; Marwan, M.; Lederlin, M.; Mondillo, S.; Edvardsen, T.; Sitges, M.; et al. EACVI/EHRA Expert Consensus Document on the role of multi-modality imaging for the evaluation of patients with atrial fibrillation. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 355–383. [Google Scholar] [CrossRef] [PubMed]
- Bittner, A.; Monnig, G.; Vagt, A.J.; Zellerhoff, S.; Wasmer, K.; Kobe, J.; Pott, C.; Milberg, P.; Sauerland, C.; Wessling, J.; et al. Pulmonary vein variants predispose to atrial fibrillation: a case-control study using multislice contrast-enhanced computed tomography. Europace 2011, 13, 1394–1400. [Google Scholar] [CrossRef] [PubMed]
- Gottdiener, J.S.; Livengood, S.V.; Meyer, P.S.; Chase, G.A. Should echocardiography be performed to assess effects of antihypertensive therapy? Test-retest reliability of echocardiography for measurement of left ventricular mass and function. J. Am. Coll. Cardiol. 1995, 25, 424–430. [Google Scholar] [CrossRef] [Green Version]
Variables | Total (n = 1105) | AF (n = 29) | No AF (n = 1076) | p Value |
---|---|---|---|---|
Age (year) | 58.2 ± 13.4 | 61.2 ± 13.6 | 54.6 ± 13.2 | 0.008 |
Male (%) | 579 (52.4) | 12 (41.4) | 567 (52.7) | 0.261 |
Body mass index (kg/m2) | 24.9 ± 3.5 | 24.9 ± 3.6 | 24.9 ± 3.6 | 0.893 |
Systolic blood pressure (mmHg) | 127.5 ± 17.6 | 122.8 ± 16.6 | 127.7 ± 17.5 | 0.153 |
Diastolic blood pressure (mmHg) | 76.6 ± 12.1 | 76.8 ± 12.0 | 71.3 ± 12.8 | 0.021 |
Pulse pressure (mmHg) | 50.9 ± 11.7 | 50.9 ± 11.6 | 51.4 ± 16.0 | 0.807 |
Hypertension, n (%) | 465 (42.1) | 13 (44.8) | 452 (42.0) | 0.849 |
Diabetes, n (%) | 175 (15.8) | 5 (17.2) | 170 (15.8) | 0.797 |
Dyslipidemia, n (%) | 148 (13.4) | 5 (17.2) | 143 (13.3) | 0.577 |
Coronary artery disease, n (%) | 229 (20.7) | 6 (20.7) | 223 (20.7) | 1.000 |
Cerebrovascular accident, n (%) | 41 (3.7) | 0 (0.0) | 41 (100.0) | 0.622 |
Heart failure, n (%) | 23 (2.1) | 1 (3.4) | 22 (2.0) | 0.461 |
eGFR (mL/min/1.73m2) | 93.5 ± 25.5 | 91.9 ± 25.6 | 93.5 ± 27.5 | 0.742 |
β-blocker use (%) | 42 (3.8) | 1 (3.4) | 41 (3.8) | 1.000 |
Calcium channel blocker use (%) | 126 (11.4) | 4 (13.8) | 122 (11.3) | 0.564 |
ACEi/ARB use (%) | 312 (28.2) | 6 (20.1) | 306 (28.4) | 0.411 |
Statin use (%) | 122 (11.0) | 3 (10.3) | 119 (11.1) | 1.000 |
LV ejection fraction (%) | 62.0 ± 6.6 | 63.8 ± 6.8 | 62.0 ± 6.6 | 0.152 |
LV end-diastolic dimension (mm) | 47.1 ± 4.9 | 47.1 ± 4.9 | 45.4 ± 6.7 | 0.173 |
Early mitral flow velocity (E, cm/s) | 64.8 ± 17.3 | 65.6 ± 17.6 | 64.8 ± 17.3 | 0.811 |
Early mitral annular tissue velocity (Em, cm/s) | 7.0 ± 2.4 | 6.2 ± 2.5 | 7.1 ± 2.4 | 0.049 |
E/Em | 10.0 ± 3.9 | 12.4 ± 6.0 | 10.0 ± 3.8 | 0.042 |
Estimated right atrial pressure (mmHg) | 5.1 ± 1.0 | 5.2 ± 1.0 | 5.1 ± 1.0 | 0.737 |
Pulmonary arterial pressure (mmHg) | 26.0 ± 5.6 | 26.0 ± 5.6 | 26.0 ± 5.4 | 0.989 |
LV mass index (g/m2) | 87.2 ± 21.6 | 98.0 ± 35.7 | 86.9 ± 21.0 | 0.105 |
LAD (mm) on echo | 35.7 ± 4.5 | 37.9 ± 6.6 | 35.6 ± 4.4 | 0.078 |
LA volume index (LAVI, ml/m2) on echo | 26.9 ± 7.0 | 33.4 ± 13.1 | 26.7 ± 6.7 | 0.010 |
PV volume index (PVVI, ml/m2) on CT | 22.2 ± 4.7 | 25.3 ± 5.1 | 22.1 ± 7.5 | <0.001 |
B | Standard Error | β | t | p Value | |
---|---|---|---|---|---|
Male | 0.760 | 0.318 | 0.081 | 2.389 | 0.017 |
LVEDD | 0.102 | 0.033 | 0.104 | 3.054 | 0.002 |
E/Em | 0.127 | 0.041 | 0.106 | 3.130 | 0.002 |
LAVI | 0.122 | 0.023 | 0.182 | 5.308 | <0.001 |
Variable | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age | 1.040 (1.010, 1.071) | 0.009 | 1.033 (1.008, 1.058) | 0.189 |
Sex (male) | 1.578 (0.746, 3.336) | 0.229 | 1.140 (0.695, 1.665) | 0.732 |
BMI | 1.007 (0.907, 1.119) | 0.893 | 0.968 (0.908, 1.040) | 0.688 |
Systolic BP | 0.983 (0.960, 1.006) | 0.152 | 0.975 (0.952, 0.992) | 0.149 |
Pulse pressure | 1.004 (0.972, 1.037) | 0.807 | 1.021 (0.998, 1.056) | 0.361 |
Hypertension | 0.122 (0.534, 2.355) | 0.761 | 0.117 (0.555, 1.581) | 0.898 |
Diabetes mellitus | 1.110 (0.418, 2.950) | 1.211 | 1.211 (0.706, 1.826) | 0.674 |
CAD | 0.998 (0.401, 2.480) | 0.996 | 0.613 (0.086, 1.180) | 0.403 |
LV mass index | 1.016 (1.004, 1.028) | 0.008 | 1.012 (1.002, 1.020) | 0.256 |
Em | 0.838 (0.701, 1.001) | 0.051 | 1.145 (0.989, 1.315) | 0.386 |
E/Em | 1.105 (1.037, 1.178) | 0.002 | 1.046 (0.967, 1.113) | 0.590 |
PA pressure | 1.000 (0.932, 1.074) | 0.989 | 1.021 (0.895, 0.983) | 0.152 |
LAVI on echo >32 | 3.721 (3.330, 4.112) | 0.001 | 2.754 (2.098, 3.196) | 0.076 |
PVVI on CT >21.8 | 5.949 (5.410, 6.488) | 0.001 | 5.401 (4.931, 6.193) | 0.007 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Kim, Y.-H.; Lee, S.-H.; Kim, J.-S. Pulmonary Vein Enlargement as an Independent Predictor for New-Onset Atrial Fibrillation. J. Clin. Med. 2020, 9, 401. https://doi.org/10.3390/jcm9020401
Kim S, Kim Y-H, Lee S-H, Kim J-S. Pulmonary Vein Enlargement as an Independent Predictor for New-Onset Atrial Fibrillation. Journal of Clinical Medicine. 2020; 9(2):401. https://doi.org/10.3390/jcm9020401
Chicago/Turabian StyleKim, Sunwon, Yong-Hyun Kim, Seung-Hwa Lee, and Jin-Seok Kim. 2020. "Pulmonary Vein Enlargement as an Independent Predictor for New-Onset Atrial Fibrillation" Journal of Clinical Medicine 9, no. 2: 401. https://doi.org/10.3390/jcm9020401
APA StyleKim, S., Kim, Y. -H., Lee, S. -H., & Kim, J. -S. (2020). Pulmonary Vein Enlargement as an Independent Predictor for New-Onset Atrial Fibrillation. Journal of Clinical Medicine, 9(2), 401. https://doi.org/10.3390/jcm9020401