Matrix Metalloproteinases in Diabetic Kidney Disease
Abstract
:1. Introduction
2. Matrix Metalloproteinases Family
3. Matrix Metalloproteinases Pathways in the Kidney
4. MMPs in Human Diabetic Kidney Disease
5. MMPs in Experimental Diabetic Nephropathy
6. Tissue Inhibitors of Metalloproteinases and Modulators in the Kidney
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vergara, A.; Jacobs-Cachá, C.; Soler, M.J. Sodium-glucose cotransporter inhibitors: beyond glycaemic control. Clin. Kidney J. 2019, 12, 322–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, J.A.; Orbe, J.; De Lizarrondo, S.M.; Calvayrac, O.; Rodriguez, C.; Martinez-Gonzalez, J.; Paramo, J.A. Metalloproteinases and atherothrombosis: MMP-10 mediates vascular remodeling promoted by inflammatory stimuli. Front. Biosci. 2008, 13, 2916–2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altemtam, N.; El Nahas, M.; Johnson, T. Urinary matrix metalloproteinase activity in diabetic kidney disease: a potential marker of disease progression. Nephron Extra 2012, 2, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.; Lapiere, C.M. Collagenolytic activity in amphibian tissues: A tissue culture assay. Proc. Natl. Acad. Sci. USA. 1962, 48, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- Tan, R.J.; Liu, Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am. J. Physiol.-Renal 2012, 302, F1351–F1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrish, A.R. Matrix Metalloproteinases in Kidney Disease: Role in Pathogenesis and Potential as a Therapeutic Target. Prog. Mol. Biol. Transl. 2017, 148, 31–65. [Google Scholar]
- Nagase, H.; Visse, R.; Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 2006, 69, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Marchant, D.J.; Bellac, C.L.; Moraes, T.J.; Wadsworth, S.J.; Dufour, A.; Butler, G.S.; Bilawchuk, L.M.; Hendry, R.G.; Robertson, A.G.; Cheung, C.T.; et al. A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity. Nat. Med. 2014, 20, 493–502. [Google Scholar] [CrossRef]
- Page-McCaw, A.; Ewald, A.J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Bio. 2007, 8, 221–233. [Google Scholar] [CrossRef]
- Rodríguez, D.; Morrison, C.J.; Overall, C.M. Matrix metalloproteinases: What do they not do? New substrates and biological roles identified by murine models and proteomics. BBA - Mol. Cell Res. 2010, 1803, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Zakiyanov, O.; Kalousová, M.; Zima, T.; Tesař, V. Matrix Metalloproteinases in Renal Diseases: A Critical Appraisal. Kidney Blood Press. Res. 2019, 44, 298–330. [Google Scholar] [CrossRef] [PubMed]
- Madzharova, E.; Kastl, P.; Sabino, F.; auf dem Keller, U. Post-Translational Modification-Dependent Activity of Matrix Metalloproteinases. Int. J. Mol. Sci. 2019, 20, 3077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanjul-Fernández, M.; Folgueras, A.R.; Cabrera, S.; López-Otín, C. Matrix metalloproteinases: Evolution, gene regulation and functional analysis in mouse models. BBA – Mol. Cell Res. 2010, 1803, 3–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, N.; Hu, M.; Khalil, R.A. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog. Mol. Biol. Transl. 2017, 147, 1–73. [Google Scholar]
- Wang, X.; Khalil, R.A. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Adv. Pharmacol. 2018, 81, 241–330. [Google Scholar]
- Gaffney, J.; Solomonov, I.; Zehorai, E.; Sagi, I. Multilevel regulation of matrix metalloproteinases in tissue homeostasis indicates their molecular specificity in vivo. Matrix Biol. 2015, 44–46, 191–199. [Google Scholar] [CrossRef]
- Arpino, V.; Brock, M.; Gill, S.E. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 2015, 44–46, 247–254. [Google Scholar] [CrossRef]
- Chen, T.K.; Knicely, D.H.; Grams, M.E. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA 2019, 322, 1294–1304. [Google Scholar] [CrossRef]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Torres, I.B.; Moreso, F.; Sarró, E.; Meseguer, A.; Serón, D. The interplay between inflammation and fibrosis in kidney transplantation. BioMed Res. Int. 2014, 2014, 750602. [Google Scholar] [CrossRef] [Green Version]
- Djudjaj, S.; Boor, P. Cellular and molecular mechanisms of kidney fibrosis. Mol. Aspects Med. 2019, 65, 16–36. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, B.D. Mechanisms of Renal Fibrosis. Annu. Rev. Physiol. 2018, 80, 309–326. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Liu, S.; Zhang, S.; Cai, G.; Jiang, H.; Su, H.; Li, X.; Hong, Q.; Zhang, X.; Chen, X. Tissue inhibitor of metalloproteinase-1 promotes NIH3T3 fibroblast proliferation by activating p-Akt and cell cycle progression. Mol. Cells 2011, 31, 225–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagliano, N.; Arosio, B.; Santambrogio, D.; Balestrieri, M.R.; Padoani, G.; Tagliabue, J.; Masson, S.; Vergani, C.; Annoni, G. Age-dependent expression of fibrosis-related genes and collagen deposition in rat kidney cortex. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, B365–B372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takamiya, Y.; Fukami, K.; Yamagishi, S.; Kaida, Y.; Nakayama, Y.; Obara, N.; Iwatani, R.; Ando, R.; Koike, K.; Matsui, T.; et al. Experimental diabetic nephropathy is accelerated in matrix metalloproteinase-2 knockout mice. Nephrol. Dial. Transplant. 2013, 28, 55–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Zhou, Y.; Tan, R.; Xiong, M.; He, W.; Fang, L.; Wen, P.; Jiang, L.; Yang, J. Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy. Am. J. Physiol. Renal Physiol. 2010, 299, F973–F982. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.M.; Chung, K.W.; Jeong, H.O.; Lee, B.; Kim, D.H.; Park, J.W.; Kim, S.M.; Yu, B.P.; Chung, H.Y. MMP2-A2M interaction increases ECM accumulation in aged rat kidney and its modulation by calorie restriction. Oncotarget 2018, 9, 5588–5599. [Google Scholar] [CrossRef] [Green Version]
- Turck, J.; Pollock, A.S.; Leet, L.K.; Marti, H.P.; Lovett, D.H. Matrix metalloproteinase 2 (gelatinase A) regulates glomerular mesangial cell proliferation and differentiation. J. Biol. Chem. 1996, 271, 15074–15083. [Google Scholar] [CrossRef] [Green Version]
- Oelusarz, A.; Nichols, L.A.; Grunz-Borgmann, E.A.; Chen, G.; Akintola, A.D.; Catania, J.M.; Burghardt, R.C.; Trzeciakowski, J.P.; Parrish, A.R. Overexpression of MMP-7 Increases Collagen 1A2 in the Aging Kidney. Physiol. Rep. 2013, 1, e00090. [Google Scholar]
- Cai, G.; Zhang, X.; Hong, Q.; Shao, F.; Shang, X.; Fu, B.; Feng, Z.; Lin, H.; Wang, J.; Shi, S.; et al. Tissue inhibitor of metalloproteinase-1 exacerbated renal interstitial fibrosis through enhancing inflammation. Nephrol. Dial. Transplant. 2008, 23, 1861–1875. [Google Scholar] [CrossRef] [Green Version]
- Tan, T.K.; Zheng, G.; Hsu, T.-T.; Wang, Y.; Lee, V.W.S.; Tian, X.; Wang, Y.; Cao, Q.; Wang, Y.; Harris, D.C.H. Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells. Am. J. Pathol. 2010, 176, 1256–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, D.; Das, N.; Anowai, A.; Dufour, A. Matrix Metalloproteases as Influencers of the Cells’ Social Media. Int. J. Mol. Sci. 2019, 20, E3847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thrailkill, K.M.; Clay Bunn, R.; Fowlkes, J.L. Matrix metalloproteinases: their potential role in the pathogenesis of diabetic nephropathy. Endocrine 2009, 35, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, S.; Lovett, D.H. Gelatinase A (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am. J. Pathol. 2003, 162, 1937–1949. [Google Scholar] [CrossRef] [Green Version]
- Thrailkill, K.M.; Bunn, R.C.; Moreau, C.S.; Cockrell, G.E.; Simpson, P.M.; Coleman, H.N.; Frindik, J.P.; Kemp, S.F.; Fowlkes, J.L. Matrix metalloproteinase-2 dysregulation in type 1 diabetes. Diabetes Care 2007, 30, 2321–2326. [Google Scholar] [CrossRef] [Green Version]
- Diamant, M.; Hanemaaijer, R.; Verheijen, J.H.; Smit, J.W.A.; Radder, J.K.; Lemkes, H.H. Elevated matrix metalloproteinase-2 and -9 in urine, but not in serum, are markers of type 1 diabetic nephropathy. Diabet. Med. 2001, 18, 423–424. [Google Scholar]
- Lauhio, A.; Sorsa, T.; Srinivas, R.; Stenman, M.; Tervahartiala, T.; Stenman, U.H.; Grönhagen-Riska, C.; Honkanen, E. Urinary matrix metalloproteinase -8, -9, -14 and their regulators (TRY-1, TRY-2, TATI) in patients with diabetic nephropathy. Ann. Med. 2008, 40, 312–320. [Google Scholar] [CrossRef]
- Ebihara, I.; Nakamura, T.; Shimada, N.; Koide, H. Increased plasma metalloproteinase-9 concentrations precede development of microalbuminuria in non-insulin-dependent diabetes mellitus. Am. J. Kidney Dis. 1998, 32, 544–550. [Google Scholar] [CrossRef]
- Kim, S.S.; Shin, N.; Bae, S.S.; Lee, M.Y.; Rhee, H.; Kim, I.Y.; Seong, E.Y.; Lee, D.W.; Lee, S.B.; Kwak, I.S.; et al. Enhanced expression of two discrete isoforms of matrix metalloproteinase-2 in experimental and human diabetic nephropathy. PLoS ONE 2017, 12, e0171625. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, D.; Miyazaki, M.; Jinde, K.; Koji, T.; Yagame, M.; Endoh, M.; Nomoto, Y.; Sakai, H. In situ hybridization studies of matrix metalloproteinase-3, tissue inhibitor of metalloproteinase-1 and type IV collagen in diabetic nephropathy. Kidney Int. 1997, 52, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Surendran, K.; Simon, T.C.; Liapis, H.; McGuire, J.K. Matrilysin (MMP-7) expression in renal tubular damage: Association with Wnt4. Kidney Int. 2004, 65, 2212–2222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melk, A.; Mansfield, E.S.; Hsieh, S.C.; Hernandez-Boussard, T.; Grimm, P.; Rayner, D.C.; Halloran, P.F.; Sarwal, M.M. Transcriptional analysis of the molecular basis of human kidney aging using cDNA microarray profiling. Kidney Int. 2005, 68, 2667–2679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afkarian, M.; Zelnick, L.R.; Ruzinski, J.; Kestenbaum, B.; Himmelfarb, J.; De Boer, I.H.; Mehrotra, R. Urine matrix metalloproteinase-7 and risk of kidney disease progression and mortality in type 2 diabetes. J. Diabetes Complications 2015, 29, 1024–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kefaloyianni, E.; Muthu, M.L.; Kaeppler, J.; Sun, X.; Sabbisetti, V.; Chalaris, A.; Rose-John, S.; Wong, E.; Sagi, I.; Waikar, S.S.; et al. ADAM17 substrate release in proximal tubule drives kidney fibrosis. JCI Insight 2016, 1, 87023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palau, V.; Riera, M.; Duran, X.; Valdivielso, J.M.; Betriu, A.; Fernández, E.; Pascual, J.; Soler, M.J. Circulating ADAMs are associated with renal and cardiovascular outcomes in chronic kidney disease patients. Nephrol. Dial. Transplant. 2020, 35, 130–138. [Google Scholar] [CrossRef]
- Romanic, A.M.; Burns-Kurtis, C.L.; Ao, Z.; Arleth, A.J.; Ohlstein, E.H. Upregulated expression of human membrane type-5 matrix metalloproteinase in kidneys from diabetic patients. Am. J. Physiol. Renal Physiol. 2001, 281, F309–F317. [Google Scholar] [CrossRef]
- Rysz, J.; Banach, M.; Stolarek, R.A.; Pasnik, J.; Cialkowska-Rysz, A.; Koktysz, R.; Piechota, M.; Baj, Z. Serum matrix metalloproteinases MMP-2 and MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in diabetic nephropathy. J. Nephrol. 2007, 20, 444–452. [Google Scholar]
- Kanauchi, M.; Nishioka, H.; Nakashima, Y.; Hashimoto, T.; Dohi, K. Role of tissue inhibitors of metalloproteinase in diabetic nephropathy. Nihon Jinzo Gakkai Shi. 1996, 38, 124–128. [Google Scholar]
- Gudehithlu, K.P.; Garcia-Gomez, I.; Vernik, J.; Brecklin, C.; Kraus, M.; Cimbaluk, D.J.; Hart, P.; Dunea, G.; Arruda, J.A.L.; Singh, A.K. In Diabetic Kidney Disease Urinary Exosomes Better Represent Kidney Specific Protein Alterations Than Whole Urine. Am. J. Nephrol. 2015, 42, 418–424. [Google Scholar] [CrossRef]
- McKittrick, I.B.; Bogaert, Y.; Nadeau, K.; Snell-Bergeon, J.; Hull, A.; Jiang, T.; Wang, X.; Levi, M.; Moulton, K.S. Urinary matrix metalloproteinase activities: biomarkers for plaque angiogenesis and nephropathy in diabetes. Am. J. Physiol. Renal Physiol. 2011, 301, F1326–F1333. [Google Scholar] [CrossRef] [Green Version]
- Vandenbroucke, R.E.; Libert, C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat. Rev. Drug Discov. 2014, 13, 904–927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.X.; Wang, J.J.; Lu, K.; Mott, R.; Longeras, R.; Ma, J.X. Therapeutic potential of angiostatin in diabetic nephropathy. J. Am. Soc. Nephrol. 2006, 17, 475–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.Y.; Jee, Y.H.; Han, K.H.; Kang, Y.S.; Kim, H.K.; Han, J.Y.; Kim, Y.S.; Cha, D.R. An imbalance between matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 contributes to the development of early diabetic nephropathy. Nephrol. Dial. Transplant. 2006, 21, 2406–2416. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Alavi, N.; Singh, A.K.; Leehey, D.J. Role of angiotensin II in glucose-induced inhibition of mesangial matrix degradation. Diabetes 1999, 48, 2066–2073. [Google Scholar] [CrossRef]
- Inada, A.; Nagai, K.; Arai, H.; Miyazaki, J.I.; Nomura, K.; Kanamori, H.; Toyokuni, S.; Yamada, Y.; Bonner-Weir, S.; Weir, G.C.; et al. Establishment of a diabetic mouse model with progressive diabetic nephropathy. Am. J. Pathol. 2005, 167, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Furuichi, K.; Hisada, Y.; Shimizu, M.; Okumura, T.; Kitagawa, K.; Yoshimoto, K.; Iwata, Y.; Yokoyama, H.; Kaneko, S.; Wada, T. Matrix metalloproteinase-2 (MMP-2) and membrane-type 1 MMP (MT1-MMP) affect the remodeling of glomerulosclerosis in diabetic OLETF rats. Nephrol. Dial. Transplant. 2011, 26, 3124–3131. [Google Scholar] [CrossRef] [Green Version]
- Fukami, K.; Yamagishi, S.-I.; Coughlan, M.T.; Harcourt, B.E.; Kantharidis, P.; Thallas-Bonke, V.; Okuda, S.; Cooper, M.E.; Forbes, J.M. Ramipril inhibits AGE-RAGE-induced matrix metalloproteinase-2 activation in experimental diabetic nephropathy. Diabetol. Metab. Syndr. 2014, 6, 86. [Google Scholar] [CrossRef] [Green Version]
- McLennan, S.V.; Kelly, D.J.; Cox, A.J.; Cao, Z.; Lyons, J.G.; Yue, D.K.; Gilbert, R.E. Decreased matrix degradation in diabetic nephropathy: effects of ACE inhibition on the expression and activities of matrix metalloproteinases. Diabetologia 2002, 45, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.Y.; Kim, S.S.; Lee, H.W.; Bae, S.S.; Ha, H.K.; Jung, E.S.; Lee, M.Y.; Han, M.; Rhee, H.; Seong, E.Y.; et al. The two isoforms of matrix metalloproteinase- 2 have distinct renal spatial and temporal distributions in murine models of types 1 and 2 diabetes mellitus. BMC Nephrol. 2018, 19, 248. [Google Scholar] [CrossRef] [Green Version]
- Fornoni, A.; Striker, L.J.; Zheng, F.; Striker, G.E. Reversibility of glucose-induced changes in mesangial cell extracellular matrix depends on the genetic background. Diabetes 2002, 51, 499–505. [Google Scholar] [CrossRef] [Green Version]
- Qing-Hua, G.; Ju-Ming, L.; Chang-Yu, P.; Zhao-Hui, L.; Xiao-Man, Z.; Yi-Ming, M. The kidney expression of matrix metalloproteinase-9 in the diabetic nephropathy of Kkay mice. J. Diabetes Complications. 2008, 22, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wang, L.; Li, Y.; Liu, S.; Li, J.; Wang, H.; Huang, H. High ambient glucose levels modulates the production of MMP-9 and alpha5(IV) collagen by cultured podocytes. Cell Physiol. Biochem. 2006, 17, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos-Macedo, F.; Martins Gregorio, B.; Cardozo Paes-de-Almeida, E.; de Souza Mendonça, L.; de Souza Azevedo, R.; Fernandes-Santos, C. Kidney osteoclast factors and matrix metalloproteinase expression in a mice model of diet-induced obesity and diabetes. Pathol. Res. Pract. 2019, 215, 152517. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.M.; Ye, S.D.; Zai, Z.; Chen, Y.; Li, X.C.; Yang, G.W.; Wang, Y.X.; Chen, K. Simvastatin protects diabetic rats against kidney injury through the suppression of renal matrix metalloproteinase-9 expression. J. Endocrinol. Invest. 2010, 33, 292–296. [Google Scholar] [CrossRef]
- Zhang, Y.; George, J.; Li, Y.; Olufade, R.; Zhao, X. Matrix metalloproteinase-9 expression is enhanced in renal parietal epithelial cells of zucker diabetic Fatty rats and is induced by albumin in in vitro primary parietal cell culture. PLoS ONE 2015, 10, e0123276. [Google Scholar] [CrossRef]
- Li, S.-Y.; Huang, P.-H.; Yang, A.-H.; Tarng, D.-C.; Yang, W.-C.; Lin, C.-C.; Chen, J.-W.; Schmid-Schönbein, G.; Lin, S.-J. Matrix metalloproteinase-9 deficiency attenuates diabetic nephropathy by modulation of podocyte functions and dedifferentiation. Kidney Int. 2014, 86, 358–369. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Gao, Y.; Ma, M.; Li, M.; Zou, D.; Yang, J.; Zhu, Z.; Zhao, X. Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochem. Biophys. 2013, 67, 537–546. [Google Scholar] [CrossRef]
- McLennan, S.V.; Kelly, D.J.; Schache, M.; Waltham, M.; Dy, V.; Langham, R.G.; Yue, D.K.; Gilbert, R.E. Advanced glycation end products decrease mesangial cell MMP-7: a role in matrix accumulation in diabetic nephropathy? Kidney Int. 2007, 72, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Portik-Dobos, V.; Harris, A.K.; Song, W.; Hutchinson, J.; Johnson, M.H.; Imig, J.D.; Pollock, D.M.; Ergul, A. Endothelin antagonism prevents early EGFR transactivation but not increased matrix metalloproteinase activity in diabetes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R435–R441. [Google Scholar] [CrossRef] [Green Version]
- Boucher, E.; Mayer, G.; Londono, I.; Bendayan, M. Expression and localization of MT1-MMP and furin in the glomerular wall of short- and long-term diabetic rats. Kidney Int. 2006, 69, 1570–1577. [Google Scholar] [CrossRef] [Green Version]
- Bylander, J.E.; Ahmed, F.; Conley, S.M.; Mwiza, J.-M.; Ongeri, E.M. Meprin Metalloprotease Deficiency Associated with Higher Mortality Rates and More Severe Diabetic Kidney Injury in Mice with STZ-Induced Type 1 Diabetes. J. Diabetes Res. 2017, 2017, 9035038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora-Gutiérrez, J.; Rodríguez, J.; Férnandez-Seara, M.; Orbe, J.; Escalada, F.; Soler, M.; Slon-Roblero, M.; Riera, M.; Páramo, J.; Garcia-Fernandez, N. High levels of MMP-10 and TIMP-1 in early stage diabetic kidney disease: is there a role for renin-angiotensin system blockade? Sci. Rep. 2020, 8, 26. [Google Scholar]
- Toni, M.; Hermida, J.; Goñi, M.J.; Fernández, P.; Parks, W.C.; Toledo, E.; Montes, R.; Díez, N. Matrix metalloproteinase-10 plays an active role in microvascular complications in type 1 diabetic patients. Diabetologia 2013, 56, 2743–2752. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Takahashi, T.; Fukui, M.; Ebihara, I.; Osada, S.; Tomino, Y.; Koide, H. Enalapril attenuated increased gene expression of extracellular matrix components in diabetic rats. J. Am. Soc. Nephrol. 1995, 5, 1492–1497. [Google Scholar]
- Nakamura, T.; Fukui, M.; Ebihara, I.; Osada, S.; Tomino, Y.; Koide, H. Abnormal gene expression of matrix metalloproteinases and their inhibitor in glomeruli from diabetic rats. Ren. Physiol. Biochem. 1994, 17, 316–325. [Google Scholar] [CrossRef]
- Cheng, X.; Gao, W.; Dang, Y.; Liu, X.; Li, Y.; Peng, X.; Ye, X. Both ERK/MAPK and TGF-Beta/Smad signaling pathways play a role in the kidney fibrosis of diabetic mice accelerated by blood glucose fluctuation. J. Diabetes Res. 2013, 2013, 463740. [Google Scholar] [CrossRef] [Green Version]
- Abdel Aziz, M.A.; Badary, D.M.; Hussein, M.R.A. Renal damage following Alloxan-induced diabetes is associated with generation of reactive oxygen species, alterations of p53, TGF-β1, and extracellular matrix metalloproteinases in rats. Cell Biol. Int. 2017, 41, 525–533. [Google Scholar] [CrossRef]
- Aoyama, T.; Yamamoto, S.; Kanematsu, A.; Ogawa, O.; Tabata, Y. Local delivery of matrix metalloproteinase gene prevents the onset of renal sclerosis in streptozotocin-induced diabetic mice. Tissue Eng. 2003, 9, 1289–1299. [Google Scholar] [CrossRef]
- Reckelhoff, J.F.; Tygart, V.L.; Racusen, L.C.; Dzielak, D.J. Glomerular metalloprotease activity in streptozotocin- treated rats and in spontaneously diabetic rats (BB/DP). Life Sci. 1994, 55, 941–950. [Google Scholar] [CrossRef]
- Phillips, A.; Steadman, R.; Morrisey, K.; Martin, J.; Eynstone, L.; Williams, J.D. Exposure of human renal proximal tubular cells to glucose leads to accumulation of type IV collagen and fibronectin by decreased degradation. Kidney Int. 1997, 52, 973–984. [Google Scholar] [CrossRef] [Green Version]
- Schrijvers, B.F.; De Vriese, A.S.; Flyvbjerg, A. From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocr. Rev. 2004, 25, 971–1010. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, L.; Schaefer, R.M.; Ling, H.; Teschner, M.; Heidland, A. Renal proteinases and kidney hypertrophy in experimental diabetes. Diabetologia 1994, 37, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Lupia, E.; Elliot, S.J.; Lenz, O.; Zheng, F.; Hattori, M.; Striker, G.E.; Striker, L.J. IGF-1 decreases collagen degradation in diabetic NOD mesangial cells: implications for diabetic nephropathy. Diabetes 1999, 48, 1638–1644. [Google Scholar] [CrossRef] [PubMed]
- Marti, H.P.; Lee, L.; Kashgarian, M.; Lovett, D.H. Transforming growth factor-beta 1 stimulates glomerular mesangial cell synthesis of the 72-kd type IV collagenase. Am. J. Pathol. 1994, 144, 82–94. [Google Scholar]
- Yao, J.; Morioka, T.; Li, B.; Oite, T. Endothelin is a potent inhibitor of matrix metalloproteinase-2 secretion and activation in rat mesangial cells. Am. J. Physiol. Renal Physiol. 2001, 280, F628–F635. [Google Scholar] [CrossRef] [Green Version]
- Veron, D.; Bertuccio, C.A.; Marlier, A.; Reidy, K.; Garcia, A.M.; Jimenez, J.; Velazquez, H.; Kashgarian, M.; Moeckel, G.W.; Tufro, A. Podocyte vascular endothelial growth factor (Vegf₁₆₄) overexpression causes severe nodular glomerulosclerosis in a mouse model of type 1 diabetes. Diabetologia 2011, 54, 1227–1241. [Google Scholar] [CrossRef] [Green Version]
- Kundu, S.; Pushpakumar, S.; Sen, U. MMP-9- and NMDA receptor-mediated mechanism of diabetic renovascular remodeling and kidney dysfunction: hydrogen sulfide is a key modulator. Nitric Oxide 2015, 46, 172–185. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.-H.; Li, H.-H.; Sung, J.-M.; Chen, W.-Y.; Hou, Y.-C.; Weng, Y.-H.; Lai, W.-T.; Wu, C.-H.; Chang, M.-S. Interleukin-20 targets podocytes and is upregulated in experimental murine diabetic nephropathy. Exp. Mol. Med. 2017, 49, e310. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhao, L.; Xing, Y.; Lin, B. Down-regulation of microRNA-21 reduces inflammation and podocyte apoptosis in diabetic nephropathy by relieving the repression of TIMP3 expression. Biomed. Pharmacother. 2018, 108, 7–14. [Google Scholar] [CrossRef]
- Lenz, O.; Elliot, S.J.; Stetler-Stevenson, W.G. Matrix metalloproteinases in renal development and disease. J. Am. Soc. Nephrol. 2000, 11, 574–581. [Google Scholar]
- Lee, M.P.S.; Sweeney, G. Insulin increases gelatinase activity in rat glomerular mesangial cells via ERK- and PI-3 kinase-dependent signalling. Diabetes Obes. Metab. 2006, 8, 281–288. [Google Scholar] [CrossRef]
- Yao, X.; Ye, S.; Chen, Y.; Zai, Z.; Li, X.; Wang, Y.; Chen, K. Rosiglitazone protects diabetic rats against kidney injury through the suppression of renal matrix metalloproteinase-9 expression. Diabetes Obes. Metab. 2009, 11, 519–522. [Google Scholar] [PubMed]
- Dong, F.; Li, H.; Cai, W.; Tao, J.; Li, Q.; Ruan, Y.; Zheng, F.; Zhang, Z. Effects of pioglitazone on expressions of matrix metalloproteinases 2 and 9 in kidneys of diabetic rats. Chin. Med. J. 2004, 117, 1040–1044. [Google Scholar] [PubMed]
- Mankhey, R.W.; Wells, C.C.; Bhatti, F.; Maric, C. 17β-Estradiol supplementation reduces tubulointerstitial fibrosis by increasing MMP activity in the diabetic kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R769–R777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, J.M.; Zhang, J.; North, P.; Lacy, S.; Yakes, M.; Dahly-Vernon, A.; Roman, R.J. Evaluation of metalloprotease inhibitors on hypertension and diabetic nephropathy. Am. J. Physiol. Renal Physiol. 2011, 300, F983–F998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klessens, C.Q.F.; Zandbergen, M.; Wolterbeek, R.; Bruijn, J.A.; Rabelink, T.J.; Bajema, I.M.; IJpelaar, D.H.T. Macrophages in diabetic nephropathy in patients with type 2 diabetes. Nephrol. Dial. Transplant. 2016, 32, 1322–1329. [Google Scholar] [CrossRef] [PubMed]
- Reel, B.; Sala-Newby, G.B.; Huang, W.-C.; Newby, A.C. Diverse patterns of cyclooxygenase-independent metalloproteinase gene regulation in human monocytes. Br. J. Pharmacol. 2011, 163, 1679–1690. [Google Scholar] [CrossRef] [Green Version]
- Parks, W.C.; Wilson, C.L.; López-Boado, Y.S. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol. 2004, 4, 617–629. [Google Scholar] [CrossRef]
- Morrison, C.J.; Butler, G.S.; Rodríguez, D.; Overall, C.M. Matrix metalloproteinase proteomics: substrates, targets, and therapy. Curr. Opin. Cell Biol. 2009, 21, 645–653. [Google Scholar] [CrossRef]
- Carome, M.A.; Striker, L.J.; Peten, E.P.; Moore, J.; Yang, C.W.; Stetler-Stevenson, W.G.; Striker, G.E. Human glomeruli express TIMP-1 mRNA and TIMP-2 protein and mRNA. Am. J. Physiol. 1993, 264, F923–F929. [Google Scholar]
- Kim, H.; Oda, T.; López-Guisa, J.; Wing, D.; Edwards, D.R.; Soloway, P.D.; Eddy, A.A. TIMP-1 deficiency does not attenuate interstitial fibrosis in obstructive nephropathy. J. Am. Soc. Nephrol. 2001, 12, 736–748. [Google Scholar] [PubMed]
- Wang, Z.; Famulski, K.; Lee, J.; Das, S.K.; Wang, X.; Halloran, P.; Oudit, G.Y.; Kassiri, Z. TIMP2 and TIMP3 have divergent roles in early renal tubulointerstitial injury. Kidney Int. 2014, 85, 82–93. [Google Scholar]
- Basu, R.; Lee, J.; Wang, Z.; Patel, V.B.; Fan, D.; Das, S.K.; Liu, G.C.; John, R.; Scholey, J.W.; Oudit, G.Y.; et al. Loss of TIMP3 selectively exacerbates diabetic nephropathy. Am. J. Physiol. Renal Physiol. 2012, 303, F1341–F1352. [Google Scholar] [CrossRef] [PubMed]
- Kassiri, Z.; Oudit, G.Y.; Kandalam, V.; Awad, A.; Wang, X.; Ziou, X.; Maeda, N.; Herzenberg, A.M.; Scholey, J.W. Loss of TIMP3 Enhances Interstitial Nephritis and Fibrosis. J. Am. Soc. Nephrol. 2009, 20, 1223–1235. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Wang, Y.; Li, Q.; Tian, Y.; Liu, M.; Yu, Y. Effects of benazepril on renal function and kidney expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in diabetic rats. Chin. Med. J. 2006, 119, 814–821. [Google Scholar] [CrossRef]
- Cruzado, J.M.; Lloberas, N.; Torras, J.; Riera, M.; Fillat, C.; Herrero-Fresneda, I.; Aran, J.M.; Alperovich, G.; Vidal, A.; Grinyo, J.M. Regression of Advanced Diabetic Nephropathy by Hepatocyte Growth Factor Gene Therapy in Rats. Diabetes 2004, 53, 1119–1127. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.H.; Liu, J.S.; Ning, W.B.; Yuan, Q.J.; Zhang, F.F.; Peng, Z.Z.; Lu, M.M.; Luo, R.N.; Fu, X.; Hu, G.Y.; et al. Fluorofenidone Attenuates Diabetic Nephropathy and Kidney Fibrosis in db/db Mice. Pharmacology 2011, 88, 88–99. [Google Scholar] [CrossRef]
- Jie, L.; Pengcheng, Q.; Qiaoyan, H.; Linlin, B.; Meng, Z.; Fang, W.; Min, J.; Li, Y.; Ya, Z.; Qian, Y.; et al. Dencichine ameliorates kidney injury in induced type II diabetic nephropathy via the TGF-β/Smad signalling pathway. Eur. J. Pharmacol. 2017, 812, 196–205. [Google Scholar] [CrossRef]
- Zhang, L.; He, S.; Yang, F.; Yu, H.; Xie, W.; Dai, Q.; Zhang, D.; Liu, X.; Zhou, S.; Zhang, K. Hyperoside ameliorates glomerulosclerosis in diabetic nephropathy by downregulating miR-21. Can. J. Physiol. Pharmacol. 2016, 94, 1249–1256. [Google Scholar] [CrossRef]
- Zou, C.; Liu, X.; Liu, R.; Wang, M.; Sui, M.; Mu, S.; Li, L.; Ji, L.; Xie, R. Effect of the oral iron chelator deferiprone in diabetic nephropathy rats. J. Diabetes 2017, 9, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Ni, W.-J.; Ding, H.-H.; Zhou, H.; Qiu, Y.-Y.; Tang, L.-Q. Renoprotective effects of berberine through regulation of the MMPs/TIMPs system in streptozocin-induced diabetic nephropathy in rats. Eur. J. Pharmacol. 2015, 764, 448–456. [Google Scholar] [CrossRef] [PubMed]
Group | MMP | Other Names | Molecular Weight | Substrates | Renal Location |
---|---|---|---|---|---|
Collagenases | MMP-1 | Interstitial collagenase | 54 kDa. Cleaved in different isoforms that range from 22 to 27 kDa. | Type I, II, III, VII and X collagens. | Rats: glomeruli |
MMP-13 | Collagenase 3 | 54 kDa. | Type I, II, III, IV, X and XIV collagens and fibronectin. | Rats: glomeruli. | |
Gelatinases | MMP-2 | Gelatinase A | Range from 65 to 72 kDa. Different isoforms. | Type IV, V, VII and X collagens, type I gelatin and elastin. | Rats/Mice: glomeruli, and proximal and distal tubules. Monkey: proximal and distal tubules. Human: tubules (in pathological conditions). |
MMP-9 | Gelatinase B | 92 kDa. | Type IV and V collagens and type I and V gelatins. | Rats/Mice: glomeruli and tubular cells. Monkey: proximal and distal tubules. | |
Stromelysins | MMP-3 | Stromelysin-1 | 54 kDa. | Type III, IV, IX and X collagens, type I, III, IV and V gelatins, proteoglycans, fibronectic and laminin. | Rats: glomeruli. Monkey: proximal and distal tubules. Human: glomeruli and tubules. |
MMP-10 | Stromelysin-2 | 62 kDa | Type III, IV and V collagens, gelatin and elastin. Enhances tissue plasminogen activator. | Mice: glomeruli and juxtaglomerular apparatus. | |
Matrilysins | MMP-7 | Matrilysin | 30 kDa. | Type I, III, IV and V gelatins, proteoglycans, fibronectin, laminin, E-cadherin and entactin. | Rats: glomeruli. Human: distal tubules and collecting duct (in pathological conditions). |
Membrane-type MMPs | MMP-14 | MT1-MMP | Range from 40 to 80 kDa. There are membrane and soluble forms. | Progelatinase A (pro-MMP-2) and MMP-15. | Rats/mice: glomeruli. |
MMP-24 | MT5-MMP | 64 kDa. | N-cadherin (CDH2), progelatinase A (pro-MMP-2), proteoglycans and fibronectin. | Human: proximal and distal tubules, collecting duct and loop of Henle. | |
Other MMPs | ADAM17 | TACE | 93 kDa. | pro-TNF-α, pro-HER ligands and other proligand substrates. | Human: proximal and distal tubules (in pathological conditions). |
MEP1B | Meprin A subunit beta | 80 kDa. | Type I and III procollagens, FGF-19, VEGF-A, IL-1β, IL-18, ADAM10, E-cadherin and others | Mice: proximal tubule and juxtamedullary region. | |
Tissue inhibitors of MMPs | TIMP-1 | None | 23 kDa. | Inhibits MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-13 and MMP-16. | Rats/mice: glomeruli. Human: glomeruli and tubules. |
TIMP-2 | None | 24 KDa. | Inhibits MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-13, MMP-14, MMP-15, MMP-16 and MMP-19 | Not clearly defined. | |
TIMP-3 | None | 24 KDa. | Inhibits MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, MMP-13, MMP-14 and MMP-15. | Not clearly defined. |
MMP | In Vivo/in Vitro | Species (Model)/Cell Type | Condition Studied | Age/Exposure Time | Outcome | Ref |
---|---|---|---|---|---|---|
MMP-2 | In vivo In vitro | BN rats (STZ)/Cortex & medulla Podocytes * | Gene expr. Enz. activity | 6 wks | [52] | |
MMP-2 | In vivo | C57BL/6J (STZ)/Renal cortex | Gene & Protein expression Enz. activity KO-Mmp2 | 16 wks | compensatory KO-Mmp2 = renal injury | [25] |
MMP-2 | In vivo/ In vitro | S-D rats (STZ)/Glomeruli & Tubules | Protein expr. | 2 days 4 wks | | [53] |
MMP-2 | In vitro | S-D rats (HG) Mesangial cells | Enz. activity & Protein expr. | 5 days | [54] | |
MMP-2 | In vivo | ICER Iγ mice/Glomeruli | Protein expr. | 40 wks | [55] | |
MMP-2 MT1-MMP | In vivo/ In vitro | OLETF Rats/Glomeruli | Gene & Protein expr. Enz. activitiy | 40–50 wks | [56] | |
MMP-2 | In vivo/ In vitro | S-D rats (STZ)/Proximal tubular c. | Gene expr. Enz. activity | 32 wks | Induced by AGE & Ang-II Attenuated by Ramipril | [57] |
MMP-2 MMP-9 | In vivo | S-D rats (STZ) | Gene expr. Enz. activity | 24 wks | Mmp-2, Mmp-9 MMP-2 activity Attenuated by perindropil | [58] |
MMP-2 | In vivo | C57/BL6 (STZ) db/db mice/Cortex & medulla | Gene & Protein expr. | 4–24 wks | NTT-MMP-2 FL-MMP-2 | [59] |
MMP-2 | In vitro | B6 & ROP mice/Mesangial cells (HG) | Gene expr. Enz. activity | 5–10 wks | B6 mice: Hyperglycemia Normoglycemia ROP mice: Hyperglycemia Normoglycemia | [60] |
MMP-9 | In vivo | Kkay mice/Glomeruli | Gene & Protein expr. | 16 wks | [61] | |
MMP-2 MMP-9 | In vitro | Podocytes * (HG) | Gene expr.Enz. activity | 2–3 days 5–10 days | MMP-9, Ø MMP-2 MMP-9, Ø MMP-2 | [62] |
MMP-2 MMP-9 | In vivo | C57BL/6 mice (High-fat high sucrose diet) | Protein expr. | 21 wks | Ø, Minimal Interstitial lesions None glomerular lesions | [63] |
MMP-2 MMP-9 | In vivo | C57BL6J & S-D (STZ)/Urine & Glomeruli | Urinary Enz. Activity Protein Expr. | 16 wks | [59] | |
MMP-9 | In vivo | Wistar rats (STZ) | Urinary levels Gene expr. | 8 wks | Positive correlation with albuminuria | [64] |
MMP-9 | In vivo In vitro | Zucker diabetic fatty rats/Glomeruli S-D rats/Podocytes (HG) | Protein expr. Enz. activity Urinary activity Protein expr. Enz. activity | 20–28 wks 24–48 h | Correlated with podocituria and albuminuria | [65] |
MMP-9 | In vivo In vitro | FVB mice (STZ)/glomeruliPodocytes* (#) | Protein expr. Enz. activity KO-Mmp9 MMP-9 overexpression | 24 wks 14 days | Co-stained wih nephrin KO-Mmp9 = Fewer renal lesion Podocyte dedifferentiation Interrupt cells junction integrity Stimulate GBM synthesis | [66] |
MMP-9 | In vivo | Kkay/glomeruli & tubular cells | Gene & Protein expr. | 8–20 wks | Negatively correlatedwith miR-21 | [67] |
MMP-7 | In vivo | S-D rats (STZ)/Glomeruli | Gene expr. Enz. activity | 32 wks | exacerbated by aminoguanidine+ | [68] |
MMP-2 MMP-9 MT1-MMP | In vivo | Goto-Kakizaki rats /cortex & medulla | Protein expr. Enz. activity | 18 wks | preceding glomerular lesions | [69] |
MT1-MMP | In vivo | S-D rats (STZ)/Glomeruli | Protein expr. Inmunogold | 4–48 wks | [70] | |
Meprin | In vivo | C57BL/6 (STZ) | Gene & Proteinexpr. KO-Meprin | 12 wks 18 wks | KO-Meprin = renal injury | [71] |
MMP-10 | In vivo | (db/db)/podocytes & juxtaglomerular | Gene expr. | 8–16 wks | , attenuated by telmisartan | [72] |
MMP-10 | In vivo | C57BL/6 (STZ) | KO-Mmp10 | 17 wks | KO-Mmp10 = Fewer renal lesion | [73] |
MMP-3 MMP-1 | In vivo | S-D rats (STZ)/glomeruli | Gene expr. | 4–24 wks | , Prevented by Insulin | [74,75] |
MMP-1 | In vivo | Kunming mice (alloxan) (BGF) | Gene & Protein expression | 8 wks | [76] | |
MMP-1 | In vivo | Albino rats (alloxan)/circulating levels | Serum levels | 14–42 days | [77] | |
MMP-1 | In vivo | C57BL/6 (STZ)/renal cortex | Mmp1 DNA | 28 days | Prevented diabetic renal fibrosis | [78] |
I. | Insulin [89], RAS inhibition [74,81,90], oral antidiabetics [91,92] and diverse pharmacological drugs [63,93,94,95] may have an effect on MMPs expression/activity. Murine models based on STZ or Alloxan-induced diabetes imitate a hypoinsulinemic state (T1D), while those which T2D (db/db, Kkay, OLETF) are characterized by hyperinsulinism. Moreover, the RAS inhibition is commonly used in diabetic patients with early DKD. Renin-angiotensin activation could be influenced according to the murine model employed in the study (hypertension, obesity, salt-intake). |
II. | Macrophages infiltration could precede the appearance of DN signs [96]. But also, during diabetes exists a greater predisposition to urinary tract infections, which may also stimulate macrophage migration and could be unnoticed if screening analysis or meticulous histological inspection is not performed. The presence of macrophages due to renal infection may modify the MMPs outcomes of the study. |
III. | MMPs expression/activity may vary depending on the type of the renal cell evaluated (i.e., proximal/distal tubule, mesangial, podocyte cells) [6]. Also, different conditions and time of evolution of disease [57] are presented according to in vitro or in vivo models. Moreover, it has been reported that murine strains may also show certain discrepancies in MMPs outcomes according to the genetic background [59]. |
IV. | Some MMPs share a great homogeneity, therefore certain molecular techniques may interfere in the results due to different sensitivities of the assay systems employed [97,98]. For example, MMP-3 shares 82% homology with MMP-10 at the protein level, which may result in the recognition of both proteins. |
V. | Clinical studies, as consequence of limitations for in vivo renal histological analysis, usually analyse the urinary activity/levels rather than renal expression. However these conclusions could present a wide variety of pathogenic meanings (i.e., enhanced intrarenal production vs increased tubular shedding of the protein). |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Fernandez, N.; Jacobs-Cachá, C.; Mora-Gutiérrez, J.M.; Vergara, A.; Orbe, J.; Soler, M.J. Matrix Metalloproteinases in Diabetic Kidney Disease. J. Clin. Med. 2020, 9, 472. https://doi.org/10.3390/jcm9020472
Garcia-Fernandez N, Jacobs-Cachá C, Mora-Gutiérrez JM, Vergara A, Orbe J, Soler MJ. Matrix Metalloproteinases in Diabetic Kidney Disease. Journal of Clinical Medicine. 2020; 9(2):472. https://doi.org/10.3390/jcm9020472
Chicago/Turabian StyleGarcia-Fernandez, Nuria, Conxita Jacobs-Cachá, José María Mora-Gutiérrez, Ander Vergara, Josune Orbe, and María José Soler. 2020. "Matrix Metalloproteinases in Diabetic Kidney Disease" Journal of Clinical Medicine 9, no. 2: 472. https://doi.org/10.3390/jcm9020472
APA StyleGarcia-Fernandez, N., Jacobs-Cachá, C., Mora-Gutiérrez, J. M., Vergara, A., Orbe, J., & Soler, M. J. (2020). Matrix Metalloproteinases in Diabetic Kidney Disease. Journal of Clinical Medicine, 9(2), 472. https://doi.org/10.3390/jcm9020472