Urinary Excretion of 6-Sulfatoxymelatonin, the Main Metabolite of Melatonin, and Mortality in Stable Outpatient Renal Transplant Recipients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data and sample collection
2.3. Urinary 6-SM Laboratory Measurements
2.4. Clinical Endpoints
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sabbatini, M.; Crispo, A.; Pisani, A.; Gallo, R.; Cianciaruso, B.; Fuiano, G.; Federico, S.; Andreucci, V.E. Sleep quality in renal transplant patients: A never investigated problem. Nephrol. Dial. Transplant. 2005, 20, 194–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novak, M.; Molnar, M.Z.; Ambrus, C.; Kovacs, A.Z.; Koczy, A.; Remport, A.; Szeifert, L.; Szentkiralyi, A.; Shapiro, C.M.; Kopp, M.S.; et al. Chronic insomnia in kidney transplant recipients. Am. J. Kidney Dis. 2006, 47, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Russcher, M.; Koch, B.; Nagtegaal, E.; van der Putten, K.; ter Wee, P.; Gaillard, C. The role of melatonin treatment in chronic kidney disease. Front. Biosci. 2012, 17, 2644–2656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maung, S.C.; El Sara, A.; Chapman, C.; Cohen, D.; Cukor, D. Sleep disorders and chronic kidney disease. World J. Nephrol. 2016, 5, 224–232. [Google Scholar] [CrossRef]
- Benz, R.L.; Pressman, M.R.; Hovick, E.T.; Peterson, D.D. Potential novel predictors of mortality in end-stage renal disease patients with sleep disorders. Am. J. Kidney Dis. 2000, 35, 1052–1060. [Google Scholar] [CrossRef]
- Zhang, H.M.; Zhang, Y. Melatonin: A well-documented antioxidant with conditional pro-oxidant actions. J. Pineal Res. 2014, 57, 131–146. [Google Scholar] [CrossRef]
- Cajochen, C.; Krauchi, K.; Wirz-Justice, A. Role of melatonin in the regulation of human circadian rhythms and sleep. J. Neuroendocrinol. 2003, 15, 432–437. [Google Scholar] [CrossRef] [Green Version]
- Claustrat, B.; Brun, J.; Chazot, G. The basic physiology and pathophysiology of melatonin. Sleep Med. Rev. 2005, 9, 11–24. [Google Scholar] [CrossRef]
- Abeysuriya, R.G.; Lockley, S.W.; Robinson, P.A.; Postnova, S. A unified model of melatonin, 6-sulfatoxymelatonin, and sleep dynamics. J. Pineal Res. 2018, 64, e12474. [Google Scholar] [CrossRef]
- Tordjman, S.; Chokron, S.; Delorme, R.; Charrier, A.; Bellissant, E.; Jaafari, N.; Fougerou, C. Melatonin: Pharmacology, Functions and Therapeutic Benefits. Curr. Neuropharmacol. 2017, 15, 434–443. [Google Scholar] [CrossRef]
- Koch, B.C.; van der Putten, K.; Van Someren, E.J.; Wielders, J.P.; Ter Wee, P.M.; Nagtegaal, J.E.; Gaillard, C.A. Impairment of endogenous melatonin rhythm is related to the degree of chronic kidney disease (CREAM study). Nephrol. Dial. Transplant. 2010, 25, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Stoschitzky, K.; Sakotnik, A.; Lercher, P.; Zweiker, R.; Maier, R.; Liebmann, P.; Lindner, W. Influence of beta-blockers on melatonin release. Eur. J. Clin. Pharmacol. 1999, 55, 111–115. [Google Scholar] [CrossRef] [PubMed]
- McMullan, C.J.; Schernhammer, E.S.; Rimm, E.B.; Hu, F.B.; Forman, J.P. Melatonin secretion and the incidence of type 2 diabetes. JAMA 2013, 309, 1388–1396. [Google Scholar] [CrossRef] [PubMed]
- Peschke, E.; Frese, T.; Chankiewitz, E.; Peschke, D.; Preiss, U.; Schneyer, U.; Spessert, R.; Muhlbauer, E. Diabetic Goto Kakizaki rats as well as type 2 diabetic patients show a decreased diurnal serum melatonin level and an increased pancreatic melatonin-receptor status. J. Pineal Res. 2006, 40, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Reutrakul, S.; Siwasaranond, N.; Nimitphong, H.; Saetung, S.; Chirakalwasan, N.; Chailurkit, L.O.; Srijaruskul, K.; Ongphiphadhanakul, B.; Thakkinstian, A. Associations between nocturnal urinary 6-sulfatoxymelatonin, obstructive sleep apnea severity and glycemic control in type 2 diabetes. Chronobiol. Int. 2017, 34, 382–392. [Google Scholar] [CrossRef] [Green Version]
- Van den Berg, E.; Engberink, M.F.; Brink, E.J.; van Baak, M.A.; Joosten, M.M.; Gans, R.O.; Navis, G.; Bakker, S.J. Dietary acid load and metabolic acidosis in renal transplant recipients. Clin. J. Am. Soc. Nephrol. 2012, 7, 1811–1818. [Google Scholar] [CrossRef] [Green Version]
- Van den Berg, E.; Pasch, A.; Westendorp, W.H.; Navis, G.; Brink, E.J.; Gans, R.O.; van Goor, H.; Bakker, S.J. Urinary sulfur metabolites associate with a favorable cardiovascular risk profile and survival benefit in renal transplant recipients. J. Am. Soc. Nephrol. 2014, 25, 1303–1312. [Google Scholar] [CrossRef] [Green Version]
- Inker, L.A.; Schmid, C.H.; Tighiouart, H.; Eckfeldt, J.H.; Feldman, H.I.; Greene, T.; Kusek, J.W.; Manzi, J.; Van Lente, F.; Zhang, Y.L.; et al. Estimating Glomerular Filtration Rate from Serum Creatinine and Cystatin, C. N. Engl. J. Med. 2012, 367, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Minovic, I.; van der Veen, A.; van Faassen, M.; Riphagen, I.J.; van den Berg, E.; van der Ley, C.; Gomes-Neto, A.W.; Geleijnse, J.M.; Eggersdorfer, M.; Navis, G.J.; et al. Functional vitamin B-6 status and long-term mortality in renal transplant recipients. Am. J. Clin. Nutr. 2017, 106, 1366–1374. [Google Scholar] [CrossRef] [Green Version]
- Russcher, M.; Nagtegaal, J.E.; Nurmohamed, S.A.; Koch, B.C.; van der Westerlaken, M.M.; van Someren, E.J.; Bakker, S.J.; Ter Wee, P.M.; Gaillard, C.A. The effects of kidney transplantation on sleep, melatonin, circadian rhythm and quality of life in kidney transplant recipients and living donors. Nephron 2015, 129, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Burkhalter, H.; De Geest, S.; Wirz-Justice, A.; Cajochen, C. Melatonin rhythms in renal transplant recipients with sleep-wake disturbances. Chronobiol. Int. 2016, 33, 810–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, H.A.; Raykhtsaum, G. Age-related differences in the structure of human pineal calcium deposits: Results of transmission electron microscopy and mineralographic microanalysis. J. Pineal Res. 1995, 18, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Kunz, D.; Schmitz, S.; Mahlberg, R.; Mohr, A.; Stoter, C.; Wolf, K.J.; Herrmann, W.M. A new concept for melatonin deficit: On pineal calcification and melatonin excretion. Neuropsychopharmacology 1999, 21, 765–772. [Google Scholar] [CrossRef]
- Blaine, J.; Chonchol, M.; Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 1257–1272. [Google Scholar] [CrossRef]
- Messa, P.; Cafforio, C.; Alfieri, C. Calcium and phosphate changes after renal transplantation. J. Nephrol. 2010, 23 (Suppl. 16), S175. [Google Scholar]
- Vipattawat, K.; Kitiyakara, C.; Phakdeekitcharoen, B.; Kantachuvesiri, S.; Sumethkul, V.; Jirasiritham, S.; Stitchantrakul, W.; Disthabanchong, S. Vascular calcification in long-term kidney transplantation. Nephrology 2014, 19, 251–256. [Google Scholar] [CrossRef]
- Monteleone, P.; Forziati, D.; Orazzo, C.; Maj, M. Preliminary observations on the suppression of nocturnal plasma melatonin levels by short-term administration of diazepam in humans. J. Pineal Res. 1989, 6, 253–258. [Google Scholar] [CrossRef]
- Jay, C.L.; Dean, P.G.; Helmick, R.A.; Stegall, M.D. Reassessing Preemptive Kidney Transplantation in the United States: Are We Making Progress? Transplantation 2016, 100, 1120–1127. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.L.; Delmonico, F.L. Living-donor kidney transplantation: A review of the current practices for the live donor. J. Am. Soc. Nephrol. 2005, 16, 2098–2110. [Google Scholar] [CrossRef] [Green Version]
- Burkhalter, H.; Brunner, D.P.; Wirz-Justice, A.; Cajochen, C.; Weaver, T.E.; Steiger, J.; Fehr, T.; Venzin, R.M.; De Geest, S. Self-reported sleep disturbances in renal transplant recipients. BMC Nephrol. 2013, 14, 220. [Google Scholar] [CrossRef] [Green Version]
- Liaveri, P.G.; Dikeos, D.; Ilias, I.; Lygkoni, E.P.; Boletis, I.N.; Skalioti, C.; Paparrigopoulos, T. Quality of sleep in renal transplant recipients and patients on hemodialysis. J. Psychosom. Res. 2017, 93, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Molnar, M.Z.; Novak, M.; Mucsi, I. Sleep disorders and quality of life in renal transplant recipients. Int. Urol. Nephrol. 2009, 41, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Diaz, A.G.; Pazarin-Villasenor, L.; Yanowsky-Escatell, F.G.; Andrade-Sierra, J. Oxidative Stress in Diabetic Nephropathy with Early Chronic Kidney Disease. J. Diabetes Res. 2016, 2016, 7047238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitocco, D.; Tesauro, M.; Alessandro, R.; Ghirlanda, G.; Cardillo, C. Oxidative stress in diabetes: Implications for vascular and other complications. Int. J. Mol. Sci. 2013, 14, 21525–21550. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, H.; Kitada, H.; Kaku, K.; Kurihara, K.; Kawanami, S.; Tsuchimoto, A.; Masutani, K.; Nakamura, U.; Tanaka, M. Outcome of renal transplantation in patients with type 2 diabetic nephropathy: A single-center experience. Transplant. Proc. 2015, 47, 608–611. [Google Scholar] [CrossRef]
- Hikichi, T.; Tateda, N.; Miura, T. Alteration of melatonin secretion in patients with type 2 diabetes and proliferative diabetic retinopathy. Clin. Ophthalmol. 2011, 5, 655–660. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Cao, H.; Lu, Q.Y.; Wang, N.; Zhao, S.Z.; Xu, X.; Zheng, Z. Urinary 6-sulfatoxymelatonin level in diabetic retinopathy patients with type 2 diabetes. Int. J. Clin. Exp. Pathol. 2014, 7, 4317–4322. [Google Scholar]
- Gumustekin, M.; Tekmen, I.; Guneli, E.; Tugyan, K.; Topcu, A.; Ergonen, A.T.; Ozdemir, M.H.; Uysal, N.; Bediz, C.S. Short-term melatonin treatment improved diabetic nephropathy but did not affect hemorheological changes in diabetic rats. Die Pharm. 2007, 62, 693–698. [Google Scholar]
- Neale, J.; Smith, A.C. Cardiovascular risk factors following renal transplant. World J. Transplant. 2015, 5, 183–195. [Google Scholar] [CrossRef]
- Girotti, L.; Lago, M.; Ianovsky, O.; Carbajales, J.; Elizari, M.V.; Brusco, L.I.; Cardinali, D.P. Low urinary 6-sulphatoxymelatonin levels in patients with coronary artery disease. J. Pineal Res. 2000, 29, 138–142. [Google Scholar] [CrossRef]
- Favero, G.; Franceschetti, L.; Buffoli, B.; Moghadasian, M.H.; Reiter, R.J.; Rodella, L.F.; Rezzani, R. Melatonin: Protection against age-related cardiac pathology. Ageing Res. Rev. 2017, 35, 336–349. [Google Scholar] [CrossRef] [PubMed]
- Ersahin, M.; Sehirli, O.; Toklu, H.Z.; Suleymanoglu, S.; Emekli-Alturfan, E.; Yarat, A.; Tatlidede, E.; Yegen, B.C.; Sener, G. Melatonin improves cardiovascular function and ameliorates renal, cardiac and cerebral damage in rats with renovascular hypertension. J. Pineal Res. 2009, 47, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Nickkholgh, A.; Yi, X.; Bruns, H.; Gross, M.L.; Hoffmann, K.; Mohr, E.; Zorn, M.; Buchler, M.W.; Schemmer, P. Melatonin protects kidney grafts from ischemia/reperfusion injury through inhibition of NF-kB and apoptosis after experimental kidney transplantation. J. Pineal Res. 2009, 46, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Eisenga, M.F.; Kieneker, L.M.; Soedamah-Muthu, S.S.; van den Berg, E.; Deetman, P.E.; Navis, G.J.; Gans, R.O.; Gaillard, C.A.; Bakker, S.J.; Joosten, M.M. Urinary potassium excretion, renal ammoniagenesis, and risk of graft failure and mortality in renal transplant recipients. Am. J. Clin. Nutr. 2016, 104, 1703–1711. [Google Scholar] [CrossRef]
- Mirick, D.K.; Davis, S. Melatonin as a biomarker of circadian dysregulation. Cancer Epidemiol. Biomark. Prev. 2008, 17, 3306–3313. [Google Scholar] [CrossRef] [Green Version]
- Claustrat, B.; Leston, J. Melatonin: Physiological effects in humans. Neurochirurgie 2015, 61, 77–84. [Google Scholar] [CrossRef]
- Papantoniou, K.; Pozo, O.J.; Espinosa, A.; Marcos, J.; Castano-Vinyals, G.; Basagana, X.; Ribas, F.C.; Mirabent, J.; Martin, J.; Carenys, G.; et al. Circadian variation of melatonin, light exposure, and diurnal preference in day and night shift workers of both sexes. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1176–1186. [Google Scholar] [CrossRef] [Green Version]
Standardized ß | |||||
---|---|---|---|---|---|
Healthy Controls n = 285 | RTR n = 701 | Model 1 | Model 2 | Model 3 | |
6-SM (nmol/24 h) | 24.9 (11.6–41.2)1 | 13.2 (3.5–31.2) | −0.244 *** | −0.276 *** | −0.062 ** |
6-SM (nmol/L) | 9.9 (4.5–17.9) | 5.2 (1.5–12.7) | −0.152 *** | −0.180 *** | −0.071 ** |
Urine volume (L) | 2.5 (2.0–3.0) | 2.4 (1.9–2.8) | −0.069 * | −0.064 * | 0.000 |
Undetectable 6-SM levels, n% | 3 (1) | 81 (12) | 0.169 *** | 0.178 *** | 0.024 |
Age, years | 53.3 ± 10.82 | 53.0 ± 12.7 | −0.019 | ||
Male sex, n% | 135 (47) | 399 (57) | −0.089** | ||
eGFR, mL/min per 1.73 m2 | 90.9 ± 14.1 | 45.0 ± 18.7 | −0.749 *** | −0.758 *** | |
Total cholesterol, nmol/L | 5.4 ± 1.1 | 5.1 ± 1.1 | −0.106 ** | −0.095 ** | −0.064 ** |
Waist-circumference, cm | 91.1 ± 10.1 | 98.6 ± 14.7 | 0.216 *** | 0.220 *** | 0.066 ** |
hsCRP, mg/L | 1.1 (0.6–2.3) | 1.6 (0.7–4.6) | 0.113 *** | 0.133 *** | −0.002 |
Serum glucose, mmol/L | 5.4 ± 0.6 | 5.7 ± 1.8 | 0.060 | 0.056 | 0.046 * |
HbA1c, % | 5.6 ± 0.3 | 6.0 ± 0.8 | 0.245 *** | 0.258 *** | 0.135 *** |
PTH, pmol/L | 3.3 (2.6–4.2) | 8.9 (5.9–14.7) | 0.552 *** | 0.553 *** | 0.192 *** |
Beta-blocker use, n% | 13 (5) | 448 (64) | 0.506 *** | 0.509 *** | 0.217 *** |
Characteristics | Overall n = 665 | Tertile 1 n = 221 | Tertile 2 n = 222 | Tertile 3 n = 222 | p-Value |
---|---|---|---|---|---|
6-SM (nmol/24 h) * | 14.3 (4.4–31.6) | <7.0 | 7.0–23.7 | >23.7 | <0.001 |
Demographics | |||||
Age, years | 52.8 ± 12.9 | 58.9 ± 9.9 | 52.4 ± 12.0 | 47.0 ± 13.7 | <0.001 |
Male sex (n%) | 376 (57) | 119 (54) | 143 (64) | 114 (51) | 0.96 |
6-SM (nmol/L) | 5.9 (1.8–13.1) | 0.97 (0.2–1.8) | 5.9 (4.0–8.3) | 18.3 (12.2–27.9) | <0.001 |
Urine volume (L) | 2.4 (1.9–2.8) | 2.4 (1.9–2.8) | 2.4 (1.9–2.8) | 2.4 (1.9–2.8) | 0.97 |
Undetectable 6-SM levels (n%) | 59 (9) | 59 (27) | 0 (0) | 0 (0) | <0.001 |
Current smoker (n%) | 81 (12) | 24 (11) | 35 (16) | 22 (10) | 0.95 |
BMI (kg/m2) | 26.6 ± 4.7 | 27.0 ± 4.6 | 26.3 ± 4.4 | 26.5 ± 5.0 | 0.09 |
Alcohol intake (g/d) | 3.0 (0.04–11.5) | 2.02 (0.03–13.2) | 3.49 (0.05–12.1) | 3.08 (0.05–9.9) | 0.55 |
Waist circumference (cm) | 98.3 ± 14.4 | 99.6 ± 14.4 | 99.5 ± 14.1 | 95.8 ± 14.3 | 0.004 |
Body surface area (m2) | 1.94 ± 0.22 | 1.91 ± 0.21 | 1.96 ± 0.22 | 19.4 ± 0.22 | 0.47 |
Systolic BP (mmHG) | 135.3 ± 17.3 | 136.8 ± 17.5 | 134.9 ± 18.3 | 134.2 ± 16.0 | 0.16 |
Diastolic BP (mmHG) | 82.3 ± 10.9 | 81.8 ± 10.0 | 83.1 ± 12.0 | 82.3 ± 10.8 | 0.39 |
History of CVD (n%) | 84 (13) | 30 (14) | 29 (13) | 25 (11) | 0.44 |
Renal transplantation | |||||
Transplant vintage (years) | 5.5 (2.0–12.1) | 6.9 (3.2–14.0) | 5.4 (1.5–12.3) | 4.9 (1.4–10.4) | 0.005 |
Living donor (n%) | 228 (34) | 45 (20) | 82 (37) | 101 (45) | <0.001 |
Acute rejection (n%) | 172 (26) | 63 (29) | 67 (30) | 42 (19) | 0.002 |
Cold ischemia time (hours) | 14.5 (2.6–21.0) | 16.2 (8.2–22.5) | 12.4 (2.6–20.9) | 10.7 (2.4–19.6) | <0.001 |
Primary renal disease (n%) | |||||
Primary glomerular disease | 197 (30) | 61 (28) | 75 (34) | 61 (27) | 0.52 |
Glomerulonephritis | 52 (8) | 20 (9) | 12 (5) | 20 (9) | 0.55 |
Tubulointerstitial disease | 84 (13) | 22 (10) | 24 (11) | 38 (17) | 0.10 |
Polycystic renal disease | 145 (22) | 48 (22) | 55 (25) | 42 (19) | 0.56 |
Dysplasia and hypoplasia | 28 (4) | 9 (4) | 7 (3) | 12 (5) | 0.56 |
Renovascular disease | 40 (6) | 12 (5) | 14 (6) | 14 (6) | 0.84 |
Other or unknown cause | 118 (18) | 48 (22) | 35 (16) | 35 (16) | 0.12 |
Laboratory measurements | |||||
eGFR (mL/min per 1.73 m2) | 45.4 ± 18.8 | 41.3 ± 19.5 | 46.8 ± 17.8 | 46.8 ± 18.3 | <0.001 |
Serum albumin (g/L) | 43.1 ± 3.0 | 42.7± 2.9 | 43.0 ± 3.0 | 43.5 ± 2.9 | 0.001 |
Proteinuria (n%) | 136 (20) | 50 (23) | 45 (20) | 41 (18) | 0.07 |
NT-pro BNP (ng/L) | 243 (103–594) | 434 (182–1120) | 113 (105–432) | 143 (67–363) | 0.04 |
Total cholesterol (mmol/L) | 5.1 ± 1.1 | 5.3 ± 1.2 | 5.0 ± 1.1 | 5.1 ± 1.0 | 0.05 |
LDL cholesterol (mmol/L) | 3.0 ± 0.93 | 3.1 ± 1.0 | 2.9 ± 0.94 | 3.0 ± 0.86 | 0.10 |
HDL cholesterol (mmol/L) | 1.3 (1.1–1.6) | 1.3 (1.1–1.6) | 1.3 (1.0–1.6) | 1.3 (1.1–1.7) | 0.37 |
hsCRP (mg/L) | 1.6 (0.7–4.6) | 2.1 (0.8–5.1) | 1.5 (0.6–4.5) | 1.5 (0.7–4.5) | 0.009 |
Serum calcium (mmol/L) | 2.4 ± 0.15 | 2.4 ± 0.15 | 2.4 ± 0.15 | 2.4 ± 0.15 | 0.49 |
PTH (pmol/L) | 8.9 (5.8–14.6) | 9.5 (6.3–16.5) | 8.9 (5.6–15.3) | 8.5 (5.5–13.7) | 0.29 |
Medication | |||||
Antihypertensiva | |||||
Beta-blockers (n%) | 422 (63) | 183 (83) | 140 (63) | 99 (45) | <0.001 |
Calcium antagonists (n%) | 159 (24) | 61 (28) | 53 (24) | 45 (20) | 0.08 |
ACE inhibitors (n%) | 218 (33) | 66 (30) | 80 (36) | 72 (32) | 0.51 |
Immunosuppressive therapy | |||||
Prednisolone (n%) | 658 (99) | 218 (99) | 218 (98) | 222 (100) | 0.14 |
Calcineurin inhibitor (n%) | 370 (56) | 120 (54) | 125 (56) | 125 (56) | 0.90 |
Proliferation inhibitors (n%) | 555 (83) | 177 (80) | 189 (85) | 189 (85) | 0.49 |
mTOR inhibitors (n%) | 24 (4) | 10 (5) | 6 (3) | 8 (4) | 0.66 |
Proton pump inhibitors (n%) | 323 (49) | 125 (57) | 105 (47) | 93 (42) | 0.02 |
Diabetes parameters | |||||
Serum glucose (mmol/L) | 5.2 (4.8–6.0) | 5.3 (4.8–6.0) | 5.3 (4.8–6.1) | 5.1 (4.7–5.8) | 0.03 |
HbA1c (%) | 5.9 ± 0.8 | 6.0 ± 0.8 | 5.9 ± 0.8 | 5.8 ± 0.7 | 0.02 |
Current diabetes (n%) | 146 (22) | 62 (28) | 47 (21) | 37 (17) | 0.02 |
Pre-transplant diabetes (n%) | 13 (2) | 4 (2) | 2 (1) | 7 (3) | 0.35 |
Antidiabetica (n%) | 87 (13) | 40 (18) | 31 (14) | 16 (7) | 0.002 |
Urinary 6-Sulfatoxymelatonin Excretion | ||||
---|---|---|---|---|
Univariable | Multivariable | |||
Standardized ß | p-Value | Standardized ß | p-Value | |
Demographics | ||||
Age (years) | −0.351 | <0.001 | −0.282 | <0.001 |
Sex | −0.002 | 0.96 | ||
Waist circumference (cm) | −0.115 | 0.004 | ||
SBP (mmHG) | –0.055 | 0.16 | ||
Renal transplantation | ||||
Transplant vintage (years) | −0.110 | 0.005 | ||
Living donor | 0.224 | <0.001 | 0.130 | <0.001 |
Acute rejection | −0.118 | 0.002 | −0.082 | 0.02 |
Cold ischemia time, hours | −0.182 | <0.001 | ||
Primary renal disease | ||||
Tubulointerstitial disease | 0.065 | 0.10 | ||
Other or unknown cause | –0.060 | 0.12 | ||
Laboratory measurements | ||||
eGFR (mL/min per 1.73 m2) | 0.153 | <0.001 | ||
Serum albumin (g/L) | 0.130 | 0.001 | ||
Proteinuria (n%) | −0.070 | 0.07 | ||
NT-pro BNP (ng/L) | −0.081 | 0.04 | ||
Total cholesterol (nmol/L) | −0.077 | 0.05 | ||
hsCRP (mg/L) | –0.102 | 0.009 | ||
Medication | ||||
Beta-blockers | −0.324 | <0.001 | −0.264 | <0.001 |
Prednisolone (mg/d) | 0.057 | 0.14 | ||
Proton-pump inhibitors | –0.094 | 0.02 | ||
Diabetes parameters | ||||
Serum glucose (mmol/L) | −0.087 | 0.03 | ||
HbA1c (%) | −0.093 | 0.02 | ||
Current diabetes | −0.089 | 0.02 | ||
Antidiabetica | –0.118 | 0.002 |
Tertile 1 | Tertile 2 | Tertile 3 | Overall | ||||
---|---|---|---|---|---|---|---|
HR (95% CI) | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
All-cause mortality a | |||||||
Model 1 c | 1.0 (Ref) | 0.59 (0.39–0.90) | 0.01 | 0.27 (0.16–0.46) | <0.001 | 0.45 (0.34–0.59) | <0.001 |
Model 2 d | 1.0 (Ref) | 0.81 (0.53–1.24) | 0.34 | 0.45 (0.26–0.78) | 0.004 | 0.60 (0.45–0.80) | 0.001 |
Model 3 e | 1.0 (Ref) | 0.76 (0.50–1.12) | 0.20 | 0.44 (0.25–0.76) | 0.003 | 0.60 (0.45–0.79) | <0.001 |
Model 4 f | 1.0 (Ref) | 0.73 (0.48–1.12) | 0.15 | 0.42 (0.24–0.73) | 0.002 | 0.58 (0.44–0.77) | <0.001 |
Model 5 g | 1.0 (Ref) | 0.80 (0.51–1.26) | 0.34 | 0.43 (0.24–0.77) | 0.004 | 0.60 (0.44–0.81) | 0.001 |
Cardiovascular mortality b | |||||||
Model 1 c | 1.0 (Ref) | 0.61 (0.30–1.21) | 0.16 | 0.21 (0.08–0.57) | 0.002 | 0.42 (0.27–0.67) | <0.001 |
Model 2 d | 1.0 (Ref) | 0.78 (0.38–1.58) | 0.48 | 0.33 (0.12–0.90) | 0.03 | 0.52 (0.32–0.86) | 0.01 |
Model 3 e | 1.0 (Ref) | 0.69 (0.34–1.41) | 0.31 | 0.32 (0.12–0.88) | 0.03 | 0.52 (0.32–0.86) | 0.01 |
Model 4 f | 1.0 (Ref) | 0.63 (0.31–1.29) | 0.20 | 0.28 (0.10–0.76) | 0.01 | 0.48 (0.29–0.78) | 0.003 |
Model 5 g | 1.0 (Ref) | 0.70 (0.33–1.51) | 0.37 | 0.27 (0.09–0.78) | 0.01 | 0.49 (0.29–0.84) | 0.009 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Veen, A.; Minović, I.; van Faassen, M.; Gomes-Neto, A.W.; Berger, S.P.; Bakker, S.J.L.; Kema, I.P. Urinary Excretion of 6-Sulfatoxymelatonin, the Main Metabolite of Melatonin, and Mortality in Stable Outpatient Renal Transplant Recipients. J. Clin. Med. 2020, 9, 525. https://doi.org/10.3390/jcm9020525
van der Veen A, Minović I, van Faassen M, Gomes-Neto AW, Berger SP, Bakker SJL, Kema IP. Urinary Excretion of 6-Sulfatoxymelatonin, the Main Metabolite of Melatonin, and Mortality in Stable Outpatient Renal Transplant Recipients. Journal of Clinical Medicine. 2020; 9(2):525. https://doi.org/10.3390/jcm9020525
Chicago/Turabian Stylevan der Veen, Anna, Isidor Minović, Martijn van Faassen, Antόnio W. Gomes-Neto, Stefan P. Berger, Stephan J. L. Bakker, and Ido P. Kema. 2020. "Urinary Excretion of 6-Sulfatoxymelatonin, the Main Metabolite of Melatonin, and Mortality in Stable Outpatient Renal Transplant Recipients" Journal of Clinical Medicine 9, no. 2: 525. https://doi.org/10.3390/jcm9020525
APA Stylevan der Veen, A., Minović, I., van Faassen, M., Gomes-Neto, A. W., Berger, S. P., Bakker, S. J. L., & Kema, I. P. (2020). Urinary Excretion of 6-Sulfatoxymelatonin, the Main Metabolite of Melatonin, and Mortality in Stable Outpatient Renal Transplant Recipients. Journal of Clinical Medicine, 9(2), 525. https://doi.org/10.3390/jcm9020525