Severe Infection in Anti-Glomerular Basement Membrane Disease: A Retrospective Multicenter French Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Clinical Data
2.3. Statistical Analyses
3. Results
3.1. Study Population
3.2. Therapeutic Management
3.3. Severe Infections
3.4. Patient Survival
4. Discussion
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jennette:, J.C.; Falk, R.J.; Bacon, P.A.; Basu, N.; Cid, M.C.; Ferrario, F.; Flores-Suarez, L.F.; Gross, W.L.; Guillevin, L.; Hagen, E.C.; et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013, 65, 1–11. [Google Scholar] [CrossRef]
- Kalluri, R.; Wilson, C.B.; Weber, M.; Gunwar, S.; Chonko, A.M.; Neilson, E.G.; Hudson, B.G. Identification of the alpha 3 chain of type IV collagen as the common autoantigen in antibasement membrane disease and Goodpasture syndrome. J. Am. Soc. Nephrol. 1995, 6, 1178–1185. [Google Scholar] [PubMed]
- Hellmark, T.; Burkhardt, H.; Wieslander, J. Goodpasture disease. Characterization of a single conformational epitope as the target of pathogenic autoantibodies. J. Biol. Chem. 1999, 274, 25862–25868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, C.O.; Pusey, C.D.; Bowman, C.; Rees, A.J.; Lockwood, C.M. Antiglomerular basement membrane antibody mediated disease in the British Isles 1980-4. Br. Med. J. Clin. Res. Ed. 1986, 292, 301–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, E.G.; Lager, D.J. Anti-glomerular basement membrane glomerulonephritis: A morphologic study of 80 cases. Am. J. Clin. Pathol. 2006, 125, 445–450. [Google Scholar] [CrossRef]
- Rutgers, A.; Slot, M.; van Paassen, P.; van Breda Vriesman, P.; Heeringa, P.; Tervaert, J.W.C. Coexistence of Anti-Glomerular Basement Membrane Antibodies and Myeloperoxidase-ANCAs in Crescentic Glomerulonephritis. Am. J. Kidney Dis. 2005, 46, 253–262. [Google Scholar] [CrossRef]
- Lindic, J.; Vizjak, A.; Ferluga, D.; Kovac, D.; Ales, A.; Kveder, R.; Ponikvar, R.; Bren, A. Clinical outcome of patients with coexistent antineutrophil cytoplasmic antibodies and antibodies against glomerular basement membrane. Ther. Apher. Dial. 2009, 13, 278–281. [Google Scholar] [CrossRef]
- McAdoo, S.P.; Tanna, A.; Hrušková, Z.; Holm, L.; Weiner, M.; Arulkumaran, N.; Kang, A.; Satrapová, V.; Levy, J.; Ohlsson, S.; et al. Patients double-seropositive for ANCA and anti-GBM antibodies have varied renal survival, frequency of relapse, and outcomes compared to single-seropositive patients. Kidney Int. 2017, 92, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Erickson, S.B.; Kurtz, S.B.; Donadio, J.V.; Holley, K.E.; Wilson, C.B.; Pineda, A.A. Use of combined plasmapheresis and immunosuppression in the treatment of Goodpasture’s syndrome. Mayo Clin. Proc. 1979, 54, 714–720. [Google Scholar]
- Johnson, J.P.; Moore, J.; Austin, H.A.; Balow, J.E.; Antonovych, T.T.; Wilson, C.B. Therapy of anti-glomerular basement membrane antibody disease: Analysis of prognostic significance of clinical, pathologic and treatment factors. Medicine 1985, 64, 219–227. [Google Scholar] [CrossRef]
- Levy, J.B.; Turner, A.N.; Rees, A.J.; Pusey, C.D. Long-term outcome of anti-glomerular basement membrane antibody disease treated with plasma exchange and immunosuppression. Ann. Intern. Med. 2001, 134, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Touzot, M.; Poisson, J.; Faguer, S.; Ribes, D.; Cohen, P.; Geffray, L.; Anguel, N.; François, H.; Karras, A.; Cacoub, P.; et al. Rituximab in anti-GBM disease: A retrospective study of 8 patients. J. Autoimmun. 2015, 60, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Heitz, M.; Carron, P.L.; Clavarino, G.; Jouve, T.; Pinel, N.; Guebre-Egziabher, F.; Rostaing, L. Use of rituximab as an induction therapy in anti-glomerular basement-membrane disease. BMC Nephrol. 2018, 19, 241. [Google Scholar] [CrossRef] [PubMed]
- Alchi, B.; Griffiths, M.; Sivalingam, M.; Jayne, D.; Farrington, K. Predictors of renal and patient outcomes in anti-GBM disease: Clinicopathologic analysis of a two-centre cohort. Nephrol. Dial. Transpl. 2015, 30, 814–821. [Google Scholar] [CrossRef] [Green Version]
- Van Daalen, E.E.; Jennette, J.C.; McAdoo, S.P.; Pusey, C.D.; Alba, M.A.; Poulton, C.J.; Wolterbeek, R.; Nguyen, T.Q.; Goldschmeding, R.; Alchi, B.; et al. Predicting Outcome in Patients with Anti-GBM Glomerulonephritis. Clin. J. Am. Soc. Nephrol. 2018, 13, 63–72. [Google Scholar] [CrossRef]
- Huart, A.; Josse, A.-G.; Chauveau, D.; Korach, J.-M.; Heshmati, F.; Bauvin, E.; Cointault, O.; Kamar, N.; Ribes, D.; Pourrat, J.; et al. Outcomes of patients with Goodpasture syndrome: A nationwide cohort-based study from the French Society of Hemapheresis. J. Autoimmun. 2016, 73, 24–29. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Berden, A.E.; Ferrario, F.; Hagen, E.C.; Jayne, D.R.; Jennette, J.C.; Joh, K.; Neumann, I.; Noël, L.-H.; Pusey, C.D.; Waldherr, R.; et al. Histopathologic classification of ANCA-associated glomerulonephritis. J. Am. Soc. Nephrol. 2010, 21, 1628–1636. [Google Scholar] [CrossRef] [Green Version]
- Cordier, J.-F.; Cottin, V. Alveolar hemorrhage in vasculitis: Primary and secondary. Semin. Respir. Crit. Care Med. 2011, 32, 310–321. [Google Scholar] [CrossRef] [Green Version]
- Finch, R.A.; Rutsky, E.A.; McGowan, E.; Wilson, C.B. Treatment of Goodpasture’s syndrome with immunosuppression and plasmapheresis. South. Med. J. 1979, 72, 1288–1290. [Google Scholar] [CrossRef]
- Benoit, F.L.; Rulon, D.B.; Theil, G.B.; Doolan, P.D.; Watten, R.H. Goodpasture’s Syndrome: A Clinicopathologic Entity. Am. J. Med. 1964, 37, 424–444. [Google Scholar] [CrossRef]
- Proskey, A.J.; Weatherbee, L.; Easterling, R.E.; Greene, J.A.; Weller, J.M. Goodpasture’s syndrome. A report of five cases and review of the literature. Am. J. Med. 1970, 48, 162–173. [Google Scholar] [CrossRef]
- Gu, Q.; Xie, L.; Jia, X.; Ma, R.; Liao, Y.; Cui, Z.; Zhao, M. Fever and prodromal infections in anti-glomerular basement membrane disease: Fever and infections in anti-GBM disease. Nephrology 2018, 23, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-X.; Dong, Y.; Ju, Z.-B. A clinical analysis of 32 patients with diffuse alveolar hemorrhage in diffuse connective tissue diseases. Zhonghua Nei Ke Za Zhi 2008, 47, 362–365. [Google Scholar] [PubMed]
- Lin, Y.; Zheng, W.; Tian, X.; Zhang, X.; Zhang, F.; Dong, Y. Antineutrophil cytoplasmic antibody-associated vasculitis complicated with diffuse alveolar hemorrhage: A study of 12 cases. J. Clin. Rheumatol. 2009, 15, 341–344. [Google Scholar] [CrossRef]
- Martinez-Martinez, M.U.; Sturbaum, A.K.; Alcocer-Varela, J.; Merayo-Chalico, J.; Gómez-Martin, D.; de Gómez-Bañuelos, J.E.; Saavedra, M.Á.; Enciso-Peláez, S.; Faugier-Fuentes, E.; Maldonado-Velázquez, R.; et al. Factors Associated with Mortality and Infections in Patients with Systemic Lupus Erythematosus with Diffuse Alveolar Hemorrhage. J. Rheumatol. 2014, 41, 1656–1661. [Google Scholar] [CrossRef]
- Perez, G.O.; Bjornsson, S.; Ross, A.H.; Aamato, J.; Rothfield, N. A mini-epidemic of Goodpasture’s syndrome clinical and immunological studies. Nephron 1974, 13, 161–173. [Google Scholar] [CrossRef]
- Williams, P.S.; Davenport, A.; McDicken, I.; Ashby, D.; Goldsmith, H.J.; Bone, J.M. Increased incidence of anti-glomerular basement membrane antibody (anti-GBM) nephritis in the Mersey Region, September 1984-October 1985. Q. J. Med. 1988, 68, 727–733. [Google Scholar]
- Arends, J.; Wu, J.; Borillo, J.; Troung, L.; Zhou, C.; Vigneswaran, N.; Lou, Y.-H. T cell epitope mimicry in antiglomerular basement membrane disease. J. Immunol. 2006, 176, 1252–1258. [Google Scholar] [CrossRef] [Green Version]
- McGregor, J.G.; Negrete-Lopez, R.; Poulton, C.J.; Kidd, J.M.; Katsanos, S.L.; Goetz, L.; Hu, Y.; Nachman, P.H.; Falk, R.J.; Hogan, S.L. Adverse events and infectious burden, microbes and temporal outline from immunosuppressive therapy in antineutrophil cytoplasmic antibody-associated vasculitis with native renal function. Nephrol. Dial. Transpl. 2015, 30, i171–i181. [Google Scholar] [CrossRef] [Green Version]
- Dixon, W.G.; Abrahamowicz, M.; Beauchamp, M.-E.; Ray, D.W.; Bernatsky, S.; Suissa, S.; Sylvestre, M.-P. Immediate and delayed impact of oral glucocorticoid therapy on risk of serious infection in older patients with rheumatoid arthritis: A nested case-control analysis. Ann. Rheum. Dis. 2012, 71, 1128–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGregor, J.G.; Hogan, S.L.; Hu, Y.; Jennette, C.E.; Falk, R.J.; Nachman, P.H. Glucocorticoids and relapse and infection rates in anti-neutrophil cytoplasmic antibody disease. Clin. J. Am. Soc. Nephrol. 2012, 7, 240–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssef, J.; Novosad, S.A.; Winthrop, K.L. Infection Risk and Safety of Corticosteroid Use. Rheum. Dis. Clin. N. Am. 2016, 42, 157–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group. KDIGO Clinical Practice Guideline for Glomerulonephritis. Kidney Int. Suppl. 2012, 2, 139–274. [Google Scholar]
- Titeca-Beauport, D.; Francois, A.; Lobbedez, T.; Guerrot, D.; Launay, D.; Vrigneaud, L.; Daroux, M.; Lebas, C.; Bienvenu, B.; Hachulla, E.; et al. Early predictors of one-year mortality in patients over 65 presenting with ANCA-associated renal vasculitis: A retrospective, multicentre study. BMC Nephrol. 2018, 19, 317. [Google Scholar] [CrossRef]
- Kronbichler, A.; Kerschbaum, J.; Gopaluni, S.; Tieu, J.; Alberici, F.; Jones, R.B.; Smith, R.M.; Jayne, D.R.W. Trimethoprim-sulfamethoxazole prophylaxis prevents severe/life-threatening infections following rituximab in antineutrophil cytoplasm antibody-associated vasculitis. Ann. Rheum. Dis. 2018, 77, 1440–1447. [Google Scholar] [CrossRef] [Green Version]
- Harper, L.; Cockwell, P.; Adu, D.; Savage, C.O. Neutrophil priming and apoptosis in anti-neutrophil cytoplasmic autoantibody-associated vasculitis. Kidney Int. 2001, 59, 1729–1738. [Google Scholar] [CrossRef] [Green Version]
- McCall, A.S.; Bhave, G.; Pedchenko, V.; Hess, J.; Free, M.; Little, D.J.; Baker, T.P.; Pendergraft, W.F.; Falk, R.J.; Olson, S.W.; et al. Inhibitory Anti-Peroxidasin Antibodies in Pulmonary-Renal Syndromes. J. Am. Soc. Nephrol. 2018, 29, 2619–2625. [Google Scholar] [CrossRef] [Green Version]
- McAdoo, S.P.; Pusey, C.D. Peroxidasin-a Novel Autoantigen in Anti-GBM Disease? J. Am. Soc. Nephrol. 2018, 29, 2605–2607. [Google Scholar] [CrossRef]
- Shi, R.; Cao, Z.; Li, H.; Graw, J.; Zhang, G.; Thannickal, V.J.; Cheng, G. Peroxidasin contributes to lung host defense by direct binding and killing of gram-negative bacteria. PLoS Pathog. 2018, 14, e1007026. [Google Scholar] [CrossRef] [Green Version]
- Subra, J.F.; Michelet, C.; Laporte, J.; Carrere, F.; Reboul, P.; Cartier, F.; Saint-André, J.P.; Chevailler, A. The presence of cytoplasmic antineutrophil cytoplasmic antibodies (C-ANCA) in the course of subacute bacterial endocarditis with glomerular involvement, coincidence or association? Clin. Nephrol. 1998, 49, 15–18. [Google Scholar] [PubMed]
- Tiliakos, A.M.; Tiliakos, N.A. Dual ANCA positivity in subacute bacterial endocarditis. J. Clin. Rheumatol. 2008, 14, 38–40. [Google Scholar] [CrossRef] [PubMed]
- Mahr, A.; Batteux, F.; Tubiana, S.; Goulvestre, C.; Wolff, M.; Papo, T.; Vrtovsnik, F.; Klein, I.; Iung, B.; Duval, X.; et al. Brief report: Prevalence of antineutrophil cytoplasmic antibodies in infective endocarditis. Arthritis Rheumatol. 2014, 66, 1672–1677. [Google Scholar] [CrossRef] [PubMed]
- Kamar, F.B.; Hawkins, T.L.-A. Antineutrophil Cytoplasmic Antibody Induction due to Infection: A Patient with Infective Endocarditis and Chronic Hepatitis C. Can. J. Infect Dis. Med. Microbiol. 2016, 2016, 3585860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choo, R.; Anantham, D. Role of bronchoalveolar lavage in the management of immunocompromised patients with pulmonary infiltrates. Ann. Transl. Med. 2019, 7, 49. [Google Scholar] [CrossRef]
Total (n = 201) | Pulmonary Involvement (n = 74) | Isolated Glomerulonephritis (n = 127) | p-Value | |
---|---|---|---|---|
Age | 53 [30–71] | 43 [23–63] | 59 [39–75] | 0.001 |
Male | 114 (57) | 44 (60) | 70 (55) | 0.55 |
Comorbidities | ||||
Diabetes mellitus | 14 (7) | 3 (4) | 11 (9) | 0.22 |
Chronic arterial hypertension | 71 (35) | 22 (30) | 49 (39) | 0.21 |
Dyslipidemia | 41(20) | 7 (10) | 34 (27) | 0.003 |
Tobacco use | 85 (42) | 45 (61) | 40 (32) | <0.001 |
Cardiovascular diseases | 15 (7) | 5 (7) | 10 (8) | 0.66 |
Cancer | 22 (11) | 7 (10) | 15 (12) | 0.61 |
Charlson Comorbidity Index | 0 [0–1] | 0 [0–0] | 0 [0–1] | 0.006 |
Performance Status | 1 [1–2] | 1 [1–2] | 1 [1–2] | 0.07 |
Antibodies | ||||
Anti-GBM | 178 (89) | 69 (93) | 109 (86) | 0.11 |
ANCA | 54 (26) | 18 (23) | 36 (28) | 0.53 |
-MPO | 37 (68) | 12 (67) | 25 (69) | 0.95 |
-PR3 | 12 (22) | 4 (22) | 8 (22) | 0.92 |
Kidney Involvement | ||||
Oligoanuria | 128 (64) | 46 (62) | 82 (65) | 0.73 |
Peak SCr (µmol/L) | 655 [362–1044] | 573 [276–908] | 700 [450–1058] | 0.06 |
Peak SCr ≥ 500 µmol/L | 134 (67) | 44 (60) | 90 (71) | 0.10 |
Proteinuria ≥ 1.5 (g/j) | 148 (73) | 59 (80) | 89 (70) | 0.14 |
Needed dialysis at initial presentation | 149 (74) | 53 (72) | 96 (76) | 0.54 |
Kidney biopsy findings | 179 (89) | 59 (80) | 120 (95) | 0.001 |
-Focal | 16 (9) | 8 (13) | 8 (7) | 0.13 |
-Cellular | 116 (64) | 34 (58) | 82 (68) | 0.18 |
-Fibrous | 34 (19) | 10 (17) | 24 (20) | 0.62 |
-Mixed | 13 (7) | 7 (12) | 6 (5) | 0.09 |
Inflammatory Markers | ||||
Serum albumin (g/L) | 26.2 [23.0–30.0] | 25.6 [22.0–30.0] | 26.7 [23.3–32.0] | 0.19 |
Leukocytes (cells/mm3) | 11.0 [8.1–13.3] | 11.7 [8.3–14.1] | 10.5 [7.9–12.9] | 0.18 |
Hemoglobin (g/dL) | 8.6 [7.5–9.9] | 7.7 [7.0–9.0] | 9.0 [8.0–10.4] | <0.001 |
C-reactive protein (mg/L) | 102 [33–170] | 101 [40–160] | 103 [32–182] | 0.87 |
Total (n = 201) | Severe Infection (n = 116) | No Severe Infections (n = 85) | p-Value | |
---|---|---|---|---|
Age | 53 [30–71] | 57.5 [40–73] | 45 [22–64] | 0.001 |
Male | 114 (57) | 71 (61) | 43 (51) | 0.13 |
Comorbidities | ||||
Diabetes mellitus | 14 (7) | 12 (10) | 2 (2) | 0.03 |
Chronic arterial hypertension | 71 (35) | 50 (43) | 21 (25) | 0.007 |
Charlson Comorbidity Index | 1 [0–4] | 2 [1–4] | 1 [0–2] | 0.001 |
Performance Status | 1 [1–2] | 2 [1–2] | 1 [1–2] | 0.08 |
Antibodies | ||||
Anti-GBM | 178 (89) | 102 (88) | 76 (89) | 0.74 |
ANCA | 54 (27) | 40 (34) | 14 (16) | 0.004 |
-MPO | 38 (70) | 28 (70) | 10 (71) | 0.92 |
-PR3 | 13 (24) | 10 (25) | 3 (21) | 0.79 |
Kidney Involvement | ||||
Oligoanuria | 128 (64) | 78 (67) | 50 (59) | 0.22 |
Peak SCr (µmol/L) | 655 [362–1044] | 663 [400–1077] | 651 [313–1000] | 0.63 |
Peak SCr ≥500 µmol/L | 134 (66) | 80 (69) | 54 (64) | 0.42 |
Needed dialysis at initial presentation | 149 (74) | 89 (77) | 60 (71) | 0.33 |
Lung Involvement | ||||
Alveolar hemorrhage | 74 (37) | 42 (36) | 32 (38) | 0.83 |
Hypoxemic respiratory failure | 37 (18) | 29 (25) | 8 (9) | 0.005 |
Inflammatory Markers | ||||
Serum albumin (g/L) | 26.2 [23.0–30.0] | 26.1 [22.9–30.0] | 26.7 [22.9–30.8] | 0.64 |
Leukocytes (cells/mm3) | 11.0 [8.1–13.3] | 11.0 [7.9–13.4] | 10.7 [8.4–12.5] | 0.89 |
Hemoglobin (g/dL) | 8.6 [7.5–9.9] | 8.5 [7.4–10.1] | 8.6 [7.6–9.7] | 0.86 |
C-reactive protein (mg/L) | 102 [33–170] | 110 [45–183] | 84 [25–140] | 0.047 |
Therapeutic management * | ||||
Methylprednisolone pulses | 189 (97) | 107 (97) | 82 (98) | 0.88 |
CST Daily 6-month dose (mg) # | 10 [5–15] | 10 [10–15] | 10 [9–20] | 0.58 |
Plasma exchange | 149 (77) | 87 (79) | 62 (74) | 0.39 |
Number of sessions | 12 [7–15] | 12 [7–14] | 12 [8–15] | 0.73 |
Cyclophosphamide | 157 (81) | 91 (83) | 66 (79) | 0.47 |
Cumulative 6-month dose (mg/kg) | 63 [35–101] | 62 [38–97] | 67 [28–103] | 0.29 |
Co-trimoxazole prophylaxis | 138 (71) | 79 (72) | 59 (70) | 0.84 |
Univariate Analysis | Multivariable Analysis | |||
---|---|---|---|---|
Variable | HR [95% CI] | p-Value | HR [95% CI] | p-Value |
Age * | 1.14 [1.04–1.24] | 0.004 | 1.10 [1.00–1.21] | 0.047 |
Diabetes mellitus | 1.68 [0.92–3.10] | 0.09 | ||
Charlson Comorbidity Index | 1.17 [1.01–1.35] | 0.032 | ||
Performance Status | 1.41 [1.08–1.85] | 0.013 | ||
SCr > 500 µmol/L | 1.24 [0.84–1.85] | 0.28 | ||
Dialysis | 1.31 [0.85–2.03] | 0.23 | ||
Alveolar hemorrhage | 1.00 [0.69–1.46] | 0.99 | ||
ANCA | 1.88 [1.21–2.92] | 0.001 | 1.62 [1.07–2.44] | 0.02 |
Serum albumin | 0.99 [0.96–1.02] | 0.63 | ||
Hemoglobin | 1.06 [0.97–1.15] | 0.19 | ||
Standard therapy | 0.94 [0.64–1.39] | 0.77 | ||
Number of PLEX sessions | 1.00 [0.98–1.02] | 0.99 | ||
Methylprednisolone pulses | 0.83 [0.39–1.78] | 0.63 | ||
Cumulative CYC dose at M1 | 0.85 [0.55–1.33] | 0.48 | ||
Co-trimoxazole prophylaxis | 0.88 [0.58–1.32] | 0.53 |
Univariate Analysis | Age-Adjusted * | |||
---|---|---|---|---|
Variable | HR [95% CI] | p-Value | HR [95% CI] | p-Value |
Age | 1.05 [1.03–1.08] | <0.001 | – | ≤0.004 |
Female | 1.23 [0.56–2.69] | 0.60 | ||
≥2 CVD risk factors | 5.78 [2.55–13.11] | <0.001 | 3.49 [1.51–8.05] | 0.003 |
Charlson Comorbidity Index | 1.73 [1.41–2.13] | <0.001 | 1.39 [1.08–1.80] | 0.01 |
Performance Status | 2.11 [1.21–3.73] | 0.009 | ||
SCr >500 µmol/L | 2.02 [0.75–5.40] | 0.16 | ||
Dialysis | 4.23 [0.99–17.93] | 0.05 | ||
Alveolar hemorrhage | 0.89 [0.94–2.14] | 0.89 | ||
ANCA positivity | 1.01 [0.42–2.43] | 0.97 | ||
Serum albumin | 0.95 [0.89–1.02] | 0.20 | ||
Hemoglobin | 1.06 [0.98–1.14] | 0.10 | ||
Standard therapy | 0.83 [0.36–1.89] | 0.96 | ||
Co-trimoxazole prophylaxis | 0.78 [0.35–1.78] | 0.56 | ||
Severe infection at 3 months | 3.60 [1.45–9.08] | 0.006 | 3.13 [1.24–7.88] | 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caillard, P.; Vigneau, C.; Halimi, J.-M.; Hazzan, M.; Thervet, E.; Heitz, M.; Juillard, L.; Audard, V.; Rabant, M.; Hertig, A.; et al. Severe Infection in Anti-Glomerular Basement Membrane Disease: A Retrospective Multicenter French Study. J. Clin. Med. 2020, 9, 698. https://doi.org/10.3390/jcm9030698
Caillard P, Vigneau C, Halimi J-M, Hazzan M, Thervet E, Heitz M, Juillard L, Audard V, Rabant M, Hertig A, et al. Severe Infection in Anti-Glomerular Basement Membrane Disease: A Retrospective Multicenter French Study. Journal of Clinical Medicine. 2020; 9(3):698. https://doi.org/10.3390/jcm9030698
Chicago/Turabian StyleCaillard, Pauline, Cécile Vigneau, Jean-Michel Halimi, Marc Hazzan, Eric Thervet, Morgane Heitz, Laurent Juillard, Vincent Audard, Marion Rabant, Alexandre Hertig, and et al. 2020. "Severe Infection in Anti-Glomerular Basement Membrane Disease: A Retrospective Multicenter French Study" Journal of Clinical Medicine 9, no. 3: 698. https://doi.org/10.3390/jcm9030698
APA StyleCaillard, P., Vigneau, C., Halimi, J. -M., Hazzan, M., Thervet, E., Heitz, M., Juillard, L., Audard, V., Rabant, M., Hertig, A., Subra, J. -F., Vuiblet, V., Guerrot, D., Tamain, M., Essig, M., Lobbedez, T., Quemeneur, T., Rebibou, J. -M., Ganea, A., ... Titeca-Beauport, D. (2020). Severe Infection in Anti-Glomerular Basement Membrane Disease: A Retrospective Multicenter French Study. Journal of Clinical Medicine, 9(3), 698. https://doi.org/10.3390/jcm9030698