Calcium Kidney Stones are Associated with Increased Risk of Carotid Atherosclerosis: The Link between Urinary Stone Risks, Carotid Intima-Media Thickness, and Oxidative Stress Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Classification of Patients by Stone Type
2.3. The Protocol of Chemical Analyses
2.4. Carotid Artery Ultrasound Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. A Comparison with Animal Studies
4.2. Carotid Atherosclerosis is Associated with Ca-Containing Kidney Stone Disease
4.3. The Link Connecting Atherosclerosis and Kidney Stone Formation
4.4. Circulating NGAL Might Derive from the Toxic Effect of Urinary Oxalate
5. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Xu, L.H.R.; Adams-Huet, B.; Poindexter, J.R.; Maalouf, N.M.; Moe, O.W.; Sakhaee, K. Temporal Changes in Kidney Stone Composition and in Risk Factors Predisposing to Stone Formation. J. Urol. 2017, 197, 1465–1471. [Google Scholar] [CrossRef] [PubMed]
- Wollin, D.A.; Kaplan, A.G.; Preminger, G.M.; Ferraro, P.M.; Nouvenne, A.; Tasca, A.; Croppi, E.; Gambaro, G.; Heilberg, I.P. Defining metabolic activity of nephrolithiasis—Appropriate evaluation and follow-up of stone formers. Asian J. Urol. 2018, 5, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.C.; Chen, Y.S.; Huang, H.S. Erythrocyte oxidative stress in patients with calcium oxalate stones correlates with stone size and renal tubular damage. Urology 2014, 83, 510.e9–510.e17. [Google Scholar] [CrossRef]
- Hsi, R.S.; Spieker, A.J.; Stoller, M.L.; Jacobs, D.R., Jr.; Reiner, A.P.; McClelland, R.L.; Kahn, A.J.; Chi, T.; Szklo, M.; Sorensen, M.D. Coronary Artery Calcium Score and Association with Recurrent Nephrolithiasis: The Multi-Ethnic Study of Atherosclerosis. J. Urol. 2016, 195, 971–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoag, J.; Halpern, J.; Goldfarb, D.S.; Eisner, B.H. Risk of chronic and end stage kidney disease in patients with nephrolithiasis. J. Urol. 2014, 192, 1440–1445. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, A.E.; Patel, C.J.; Chertow, G.M.; Leppert, J.T. Diabetic severity and risk of kidney stone disease. Eur. Urol. 2014, 65, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.R.; Stoller, M.L. Vascular theory of the formation of Randall plaques. Urolithiasis 2015, 43, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Reiner, A.P.; Kahn, A.; Eisner, B.H.; Pletcher, M.J.; Sadetsky, N.; Williams, O.D.; Polak, J.F.; Jacobs, D.R.; Stoller, M.L. Kidney stones and subclinical atherosclerosis in young adults: The CARDIA study. J. Urol. 2011, 185, 920–925. [Google Scholar] [CrossRef] [Green Version]
- Alelign, T.; Petros, B. Kidney Stone Disease: An Update on Current Concepts. Adv Urol. 2018, 2018, 3068365. [Google Scholar] [CrossRef]
- Van den Oord, S.C.; Sijbrands, E.J.; ten Kate, G.L.; van Klaveren, D.; van Domburg, R.T.; van der Steen, A.F.; Schinkel, A.F. Carotid intima-media thickness for cardiovascular risk assessment: Systematic review and meta-analysis. Atherosclerosis 2013, 228, 1–11. [Google Scholar] [CrossRef]
- Naqvi, T.Z.; Lee, M.S. Carotid intima-media thickness and plaque in cardiovascular risk assessment. Jacc Cardiovasc Imaging 2014, 7, 1025–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegelbauer, K.; Schaefer, C.; Steinmetz, H.; Sitzer, M.; Lorenz, M.W. Clinical usefulness of carotid ultrasound to improve stroke risk assessment: Ten-year results from the Carotid Atherosclerosis Progression Study (CAPS). Eur. J. Prev. Cardiol. 2013, 20, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Ticinesi, A.; Milani, C.; Guerra, A.; Allegri, F.; Lauretani, F.; Nouvenne, A.; Mancabelli, L.; Lugli, G.A.; Turroni, F.; Duranti, S.; et al. Understanding the gut-kidney axis in nephrolithiasis: An analysis of the gut microbiota composition and functionality of stone formers. Gut 2018, 67, 2097–2106. [Google Scholar] [CrossRef] [PubMed]
- Lieske, J.C.; Rule, A.D.; Krambeck, A.E.; Williams, J.C.; Bergstralh, E.J.; Mehta, R.A.; Moyer, T.P. Stone composition as a function of age and sex. Clin. J. Am. Soc. Nephrol. 2014, 9, 2141–2146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiselius, H.G. A proposed method for approximate estimates of the ion-activity products of calcium oxalate and calcium phosphate in spot-urine samples or in urine samples collected during less well defined periods of time. Urolithiasis 2013, 41, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Jeng, J.S.; Sun, Y.; Lee, J.T.; Lin, R.T.; Chen, C.H.; Po, H.L.; Lin, H.J.; Liu, C.H.; Sun, M.C.; Chern, C.M.; et al. The efficacy and safety of cilostazol in ischemic stroke patients with peripheral arterial disease (SPAD): Protocol of a randomized, double-blind, placebo-controlled multicenter trial. Int. J. Stroke. 2015, 10, 123–127. [Google Scholar] [CrossRef]
- Handa, N.; Matsumoto, M.; Maeda, H.; Hougaku, H.; Ogawa, S.; Fukunaga, R.; Yoneda, S.; Kimura, K.; Kamada, T. Ultrasonic evaluation of early carotid atherosclerosis. Stroke 1990, 21, 1567–1572. [Google Scholar] [CrossRef] [Green Version]
- Schmiedl, A.; Schwille, P.O.; Bonucci, E.; Erben, R.G.; Grayczyk, A.; Sharma, V. Nephrocalcinosis and hyperlipidemia in rats fed a cholesterol- and fat-rich diet: Association with hyperoxaluria, altered kidney and bone minerals, and renal tissue phospholipid-calcium interaction. Urol. Res. 2000, 28, 404–415. [Google Scholar] [CrossRef]
- Favaro, V.F.; Oshiro-Monreal, F.M.; de Braganca, A.C.; Andrade, L.; Seguro, A.C.; Helou, C.M. High cholesterol feeding may induce tubular dysfunction resulting in hypomagnesemia. Kidney Blood Press Res. 2012, 35, 137–146. [Google Scholar] [CrossRef]
- Imran, K.; Zafar, M.N.; Ozair, U.; Khan, S.; Rizvi, S.A.H. Metabolic risk factors in pediatric stone formers: A report from an emerging economy. Urolithiasis 2017, 45, 379–386. [Google Scholar] [CrossRef]
- Kamanna, V.S.; Bassa, B.V.; Kirschenbaum, M.A. Atherogenic lipoproteins and human disease: Extending concepts beyond the heart to the kidney. Curr. Opin. Nephrol. Hypertens 1997, 6, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.S.; Ma, M.C.; Chen, J. Low-vitamin E diet exacerbates calcium oxalate crystal formation via enhanced oxidative stress in rat hyperoxaluric kidney. Am. J. Physiol. Renal. Physiol. 2009, 296, F34–F45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.S.; Ma, M.C. High Sodium-Induced Oxidative Stress and Poor Anticrystallization Defense Aggravate Calcium Oxalate Crystal Formation in Rat Hyperoxaluric Kidneys. PLoS ONE 2015, 10, e0134764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.R.; Joshi, S.; Wang, W.; Peck, A.B. Regulation of macromolecular modulators of urinary stone formation by reactive oxygen species: Transcriptional study in an animal model of hyperoxaluria. Am. J. Physiol. Renal. Physiol. 2014, 306, F1285–F1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashidi, B.; Hoseini, Z.; Sahebkar, A.; Mirzaei, H. Anti-Atherosclerotic Effects of Vitamins D and E in Suppression of Atherogenesis. J. Cell Physiol. 2017, 232, 2968–2976. [Google Scholar] [CrossRef]
- Galle, J.; Heermeier, K.; Wanner, C. Atherogenic lipoproteins, oxidative stress, and cell death. Kidney Int. Suppl. 1999, 71, S62–S65. [Google Scholar] [CrossRef] [Green Version]
- Nadra, I.; Boccaccini, A.R.; Philippidis, P.; Whelan, L.C.; McCarthy, G.M.; Haskard, D.O.; Landis, R.C. Effect of particle size on hydroxyapatite crystal-induced tumor necrosis factor alpha secretion by macrophages. Atherosclerosis 2008, 196, 98–105. [Google Scholar] [CrossRef]
- Ewence, A.E.; Bootman, M.; Roderick, H.L.; Skepper, J.N.; McCarthy, G.; Epple, M.; Neumann, M.; Shanahan, C.M.; Proudfoot, D. Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: A potential mechanism in atherosclerotic plaque destabilization. Circ. Res. 2008, 103, e28–e34. [Google Scholar] [CrossRef] [Green Version]
- Cybulsky, M.I.; Iiyama, K.; Li, H.; Zhu, S.; Chen, M.; Iiyama, M.; Davis, V.; Gutierrez-Ramos, J.C.; Connelly, P.W.; Milstone, D.S. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J. Clin. Investig. 2001, 107, 1255–1262. [Google Scholar] [CrossRef] [Green Version]
- Nakano, C.; Hamano, T.; Fujii, N.; Matsui, I.; Tomida, K.; Mikami, S.; Inoue, K.; Obi, Y.; Okada, N.; Tsubakihara, Y.; et al. Combined use of vitamin D status and FGF23 for risk stratification of renal outcome. Clin. J. Am. Soc. Nephrol. 2012, 7, 810–819. [Google Scholar] [CrossRef]
- Bellasi, A.; Raggi, P.; Rossi, R.; Rochira, V.; Stentarelli, C.; Zona, S.; Lattanzi, A.; Carli, F.; Mussini, C.; Guaraldi, G. Intact parathyroid hormone levels are associated with increased carotid intima media thickness in HIV infected patients. Atherosclerosis 2014, 237, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.N.; Hoofnagle, A.N.; Curhan, G.C. Calcium and phosphorus regulatory hormones and risk of incident symptomatic kidney stones. Clin. J. Am. Soc. Nephrol. 2015, 10, 667–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashani, K.; Cheungpasitporn, W.; Ronco, C. Biomarkers of acute kidney injury: The pathway from discovery to clinical adoption. Clin. Chem. Lab. Med. 2017, 55, 1074–1089. [Google Scholar] [CrossRef] [PubMed]
- Eilenberg, W.; Stojkovic, S.; Kaider, A.; Piechota-Polanczyk, A.; Nanobachvili, J.; Domenig, C.M.; Wojta, J.; Huk, I.; Demyanets, S.; Neumayer, C. Neutrophil Gelatinase Associated Lipocalin (NGAL) for Identification of Unstable Plaques in Patients with Asymptomatic Carotid Stenosis. Eur. J. Vasc. Endovasc. Surg. 2019, 57, 768–777. [Google Scholar] [CrossRef]
- Zacchia, M.; Preisig, P. Low urinary citrate: An overview. J. Nephrol. 2010, 23, S49–S56. [Google Scholar] [PubMed]
- Den Ruijter, H.M.; Peters, S.A.; Anderson, T.J.; Britton, A.R.; Dekker, J.M.; Eijkemans, M.J.; Engstrom, G.; Evans, G.W.; de Graaf, J.; Grobbee, D.E.; et al. Common carotid intima-media thickness measurements in cardiovascular risk prediction: A meta-analysis. JAMA 2012, 308, 796–803. [Google Scholar] [CrossRef]
- Lorenz, M.W.; Polak, J.F.; Kavousi, M.; Mathiesen, E.B.; Volzke, H.; Tuomainen, T.P.; Sander, D.; Plichart, M.; Catapano, A.L.; Robertson, C.M.; et al. Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): A meta-analysis of individual participant data. Lancet 2012, 379, 2053–2062. [Google Scholar] [CrossRef] [Green Version]
Variables | Control (C) | Kidney Stone | |||
---|---|---|---|---|---|
Ca-Containing Stone | Other Stone Types # | ||||
(n = 33) | (n = 94) | p Value (vs. C) | (n = 20) | p Value (vs. C) | |
Age | 49.8± 12.9 | 52.4 ± 12.8 | 0.158 | 58.6 ± 13.0 | 0.021 * |
BMI (Kg/m2) | 24.9 ± 3.5 | 26.4 ± 4.4 | 0.065 | 26.9 ± 4.6 | 0.034 * |
% Male | 63.6 | 70.2 | 0.488 | 30.0 | 0.019 * |
Comorbidity | |||||
% Elevated fasting blood sugar | 24.2 | 34.0 | 0.301 | 50.0 | 0.059 |
% Increased BP | 24.2 | 32.9 | 0.353 | 50.0 | 0.235 |
% Large Abd. Circ. | 9.1 | 23.4 | 0.077 | 25.0 | 0.124 |
% High TG level | 18.2 | 35.1 | 0.071 | 30.0 | 0.330 |
% Reduced HDL-C | 42.4 | 58.5 | 0.113 | 50.0 | 0.602 |
24-h urinalysis | |||||
pH | 6.0 ± 0.7 | 6.0 ± 0.7 | 0.542 | 6.2 ± 0.7 | 0.188 |
Volume (L) | 2.1 ± 0.7 | 2.2 ± 0.7 | 0.316 | 2.3 ± 0.7 | 0.472 |
Calcium (mg/day) | 191.6 ± 83.3 | 224.1 ± 144.7 | 0.509 | 147.4 ± 100.2 | 0.089 |
P (mg/day) | 713.9 ± 225.5 | 745.9 ± 433.1 | 0.843 | 673.0 ± 246.9 | 0.373 |
Uric acid (mg/day) | 666.7 ± 186.3 | 668.0 ± 289.2 | 0.873 | 550.7 ± 206.3 | 0.019 * |
Mg (mg/day) | 97.3 ± 31.4 | 106.7 ± 88.9 | 0.952 | 80.5 ± 38.7 | 0.015 * |
Oxalate (mg/day) | 27.7 ± 11.8 | 65.5 ± 83.2 | 0.006 * | 52.16 ± 37.9 | 0.021 * |
Citrate (mg/day) | 373.8 ± 58.9 | 250.3 ± 124.6 | <0.001 * | 233.0 ± 131.9 | <0.001 * |
AP(CaOx)index | 1.6 ± 2.1 | 2.4 ± 3.8 | 0.348 | 2.3 ± 3.7 | 0.882 |
AP(CaP)index | 4.9 ± 5.2 | 30.1 ± 63.4 | 0.358 | 38.8 ± 66.8 | 0.301 |
OPN (μg/day) | 24.9 ± 15.3 | 18.0 ± 13.9 | 0.024 * | 12.4 ± 12.6 | 0.006 * |
THP (μg/day) | 18.6 ± 30.0 | 23.5 ± 36.9 | 0.473 | 36.7 ± 52.6 | 0.123 |
Variables | Control | CaOx ≥ 50% Group | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
TC (mg/dL) | HDL (mg/dL) | LDL (mg/dL) | ||||||||
<200 | ≥200 | p Value | ≦40 | >40 | p Value | <130 | ≥130 | p Value | ||
No. Pts | 33 | 46 | 20 | 22 | 44 | 20 | 46 | |||
Overall | † | 159.3 ± 22.9 * | 231.3 ± 28.7 *,# | <0.001 | 32.6 ± 4.9 *,# | 56.2 ± 14.5 | <0.001 | 78.4 ± 13.6 *,# | 141.2 ± 34.2 | <0.001 |
Age | 49.8 ± 13.0 | 54.9 ± 9.1 | 49.1 ± 15.7 | 0.171 | 53.4 ± 11.4 | 53.0 ± 12.0 | 0.445 | 56.0 ± 7.8 | 51.9 ± 12.9 | 0.203 |
BMI (kg/m2) | 24.9 ± 3.5 | 26.8 ± 4.5 | 26.5 ± 4.5 | 0.097 | 27.3 ± 4.3 | 26.4 ± 4.6 | 0.066 | 27.0 ± 3.8 | 26.6 ± 4.8 | 0.057 |
Abd. Circ. (cm) | 87.8 ± 10.8 | 92.5 ± 11.6 | 92.3 ± 8.8 | 0.377 | 95.9 ± 8.2 * | 92.9 ± 10.5 * | 0.003 | 95.0 ± 9.0 * | 93.5 ± 10.3 * | 0.004 |
24-h urine chemistry | ||||||||||
pH | 6.0 ± 0.8 | 5.9 ± 0.5 | 6.2 ± 0.8 | 0.532 | 6.0 ± 0.5 | 6.0 ± 0.7 | 0.95 | 6.0 ± 0.6 | 6.0 ± 0.6 | 0.901 |
Volume (L) | 2.1 ± 0.7 | 2.5 ± 0.6 *,# | 2.0 ± 0.7 | 0.009 | 2.5 ± 0.7 | 2.2 ± 0.7 | 0.16 | 2.4 ± 0.7 | 2.3 ± 0.7 | 0.365 |
Ca (mg) | 191.6 ± 83.4 | 223.2 ± 129.9 | 222.0 ± 167.8 | 0.631 | 225 ± 145 | 221.8 ± 140.8 | 0.71 | 221.3 ± 91 | 223.6 ± 159.0 | 0.587 |
P (mg) | 713.9 ± 225.5 | 777.7 ± 519.2 | 814.0 ± 316.6 | 0.46 | 824.9 ± 718 | 789.6 ± 292.3 | 0.148 | 873.7 ± 714.7 | 751.7 ± 323.9 | 0.926 |
Uric acid (mg) | 666.7 ± 186.3 | 668.5 ± 251.3 | 675.7 ± 372.4 | 0.683 | 580.3 ± 301 | 715.8 ± 277.5 | 0.096 | 642.5 ± 279 | 682.9 ± 297.2 | 0.559 |
Mg (mg) | 97.3 ± 31.4 | 101.2 ± 41.3 | 103.3 ± 70.3 | 0.648 | 99.5 ± 49.9 | 103.0 ± 52.4 | 0.943 | 103.2 ± 44.3 | 101.3 ± 54.4 | 0.823 |
Oxalate (mg) | 27.7 ± 11.8 | 81.4 ± 92.4 * | 51.4 ± 62.9 | 0.001 | 77.7 ± 115 | 70.9 ± 73.3 * | <0.001 | 73.9 ± 90.8 * | 73.2 ± 90.8 * | 0.003 |
Citrate (mg) | 373.8 ± 58.9 | 272.5 ± 129.2 * | 230.5 ± 114.5 * | <0.001 | 282.8 ± 133.6 * | 245.0 ± 119.7 * | <0.001 | 223.5 ± 123.4 * | 271.9 ± 124.7 * | <0.001 |
AP(CaOx) index | 1.6 ± 2.1 | 2.5 ± 2.6 | 2.3 ± 3.3 | 0.216 | 1.9 ± 1.9 | 2.7 ± 3.2 | 0.134 | 2.2 ± 1.7 | 2.5 ± 3.2 | 0.248 |
AP(CaP) index | 4.9 ± 5.2 | 16.3 ± 47.0 | 53.6 ± 98.8 | 0.163 | 14.3 ± 39.6 | 36.6 ± 81.6 | 0.706 | 29.9 ± 70.9 | 28.0 ± 70.3 | 0.659 |
OPN (μg) | 24.9 ± 15.3 | 19.8 ± 14.7 | 20.2 ± 14.8 | 0.258 | 16.4 ± 15.5 * | 22.0 ± 13.8 | 0.046 | 14.9 ± 10.2 | 21.8 ± 15.6 | 0.089 |
THP(μg) | 18.6 ± 30.0 | 29.3 ± 42.9 | 12.9 ± 18.9 | 0.428 | 23.8 ± 37.3 | 27.3 ± 41.7 | 0.685 | 34.7 ± 52.7 | 22.7 ± 34.0 | 0.684 |
Carotid artery ultrasonographic parameters | ||||||||||
IMT (mm) | 0.57 ± 0.10 | 0.64 ± 0.17 | 0.66 ± 0.18 | 0.071 | 0.67 ± 0.12 * | 0.64 ± 0.16 | 0.046 | 0.67 ± 0.11 * | 0.65 ± 0.16 * | 0.016 |
Carotid score | 1.6 ± 0.8 | 2.3 ± 1.2 * | 2.4 ± 1.1 * | 0.009 | 2.6 ± 1.2 * | 2.3 ± 1.1 * | 0.002 | 2.6 ± 1.1 * | 2.3 ± 1.1 * | 0.003 |
Stenosis % | 13.3 ± 14.6 | 19.8 ± 17.2 | 19.3 ± 17.0 | 0.197 | 21.1 ± 16.6 | 19.0 ± 17.3 | 0.188 | 23.3 ± 18.1 | 18.6 ± 16.5 | 0.138 |
Renal function | ||||||||||
24-h Ccr (mL/min) | 113.9 ± 33.5 | 105.6 ± 50.7 | 110.5 ± 73.8 | 0.212 | 103 ± 55.3 | 109.3 ± 60.7 | 0.211 | 106.2 ± 57.7 | 107.6 ± 59.6 | 0.213 |
Variables | Control | CaP Group | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
TC (mg/dL) | HDL (mg/dL) | LDL (mg/dL) | ||||||||
<200 | ≥200 | p Value | ≦40 | >40 | p Value | <130 | ≥130 | p Value | ||
No. Pts | 33 | 62 | 29 | 28 | 63 | 27 | 64 | |||
Overall | † | 159.2 ± 24.2 * | 226.3 ± 25.5 * | <0.001 | 33.5 ± 5.3 * | 56.3 ± 13.8 | <0.001 | 80.2 ± 14.0 * | 139.6 ± 30.2 * | <0.001 |
Age | 49.8 ± 13.0 | 54.2 ± 13.2 | 51.4 ± 14.8 | 0.385 | 52.9 ± 14.3 | 53.0 ± 13.1 | 0.519 | 54.2 ± 14.1 | 52.4 ± 13.2 | 0.323 |
BMI (kg/m2) | 24.9 ± 3.5 | 26.5 ± 4.7 | 26.3 ± 4.1 | 0.157 | 27.0 ± 4.1 | 26.2 ± 4.7 | 0.081 | 26.6 ± 5.0 | 26.5 ± 4.3 | 0.006 |
Abd. Circ. (cm) | 87.8 ± 10.8 | 94.0 ± 10.6 * | 95.7 ± 8.1 * | 0.006 | 95.9 ± 8.2 * | 92.9 ± 10.5 * | 0.008 | 92.7 ± 12.2 | 92.4 ± 10.3 *,# | <0.001 |
24-h Urine chemistry | ||||||||||
pH | 6.0 ± 0.8 | 6.1 ± 0.7 | 6.2 ± 0.8 | 0.364 | 6.2 ± 0.5 | 6.1 ± 0.8 | 0.420 | 6.2 ± 0.8 | 6.1 ± 0.7 | 0.626 |
Volume (L) | 2.1 ± 0.7 | 2.3 ± 0.7 | 2.1 ± 0.8 | 0.134 | 2.4 ± 0.8 | 2.2 ± 0.6 | 0.386 | 2.2 ± 0.7 | 2.3 ± 0.7 | 0.501 |
Ca (mg) | 191.6 ± 83.4 | 230.3 ± 129.5 | 227.9 ± 181.7 | 0.397 | 230.1 ± 173.1 | 229.3 ± 135.5 | 0.625 | 217.7 ± 112.4 | 234.5 ± 160.0 | 0.627 |
P (mg) | 713.9 ± 225.5 | 762.7 ± 474.0 | 718.5 ± 374.3 | 0.871 | 811.2 ± 661.4 | 742.2 ± 311.2 | 0.383 | 781.9 ± 652.1 | 734.6 ± 323.0 | 0.693 |
Uric acid (mg) | 666.7 ± 186.3 | 690.9 ± 268.6 | 636.2 ± 333.7 | 0.222 | 641.9 ± 331.2 | 687.6 ± 271.7 | 0.561 | 656.6 ± 294.3 | 680.7 ± 290.4 | 0.673 |
Mg (mg) | 97.3 ± 31.4 | 109.6 ± 101.6 | 101.7 ± 62.6 | 0.852 | 122.0 ± 146.9 | 100.4 ± 48.9 | 0.969 | 122.4 ± 148.4 | 100.6 ± 50.2 | 0.972 |
Oxalate (mg) | 27.7 ± 11.8 | 87.2 ± 100.8 * | 45.1 ± 54.0 | <0.001 | 85.6 ± 110.1 * | 66.8 ± 79.2 * | 0.008 | 84.4 ± 94.8 * | 67.6 ± 87.3 * | 0.003 |
Citrate (mg) | 373.8 ± 58.9 | 267.6 ± 130.4 * | 225.8 ± 95.1 * | <0.001 | 260.0 ± 136.7 * | 249.9 ± 113.8 * | <0.001 | 222.6 ± 129.8 * | 265.1 ± 115.2 * | <0.001 |
AP(CaOx) index | 1.6 ± 2.1 | 3.1 ± 4.7 | 1.9 ± 2.8 | 0.123 | 2.5 ± 3.5 | 2.7 ± 4.4 | 0.357 | 3.3 ± 5.7 | 2.4 ± 3.4 | 0.251 |
AP(CaP) index | 4.9 ± 5.2 | 409.2 ± 84.7 * | 764.9 ± 135.1 * | <0.001 | 505.8 ± 114.1 * | 604.9 ± 161.8 * | <0.001 | 762.6 ± 194.4 * | 504.0 ± 120.8 * | <0.001 |
OPN (μg) | 24.9 ± 15.3 | 18.5 ± 19.7 | 17.5 ± 14.6 | 0.077 | 15.9 ± 15.0* | 19.1 ± 13.5 | 0.034 | 14.6 ± 10.6 * | 19.2 ± 15.0 | 0.041 |
THP(μg) | 18.6 ± 30.0 | 23.1 ± 36.7 | 23.5 ± 36.6 | 0.709 | 21.9 ± 35.3 | 23.8 ± 37.2 | 0.702 | 24.7 ± 41.7 | 22.2 ± 34.3 | 0.709 |
Carotid artery ultrasonographic parameters | ||||||||||
IMT (mm) | 0.57 ± 0.10 | 0.65 ± 0.14 * | 0.67 ± 0.14 * | 0.026 | 0.67 ± 0.16 * | 0.65 ± 0.15 * | 0.012 | 0.67 ± 0.15 * | 0.65 ± 0.15 * | 0.014 |
Carotid score | 1.6 ± 0.8 | 2.4 ± 1.1 * | 2.3 ± 1.1 * | 0.004 | 2.5 ± 1.1 * | 2.3 ± 1.1 * | 0.002 | 2.5 ± 1.0 * | 2.3 ± 1.2 * | 0.003 |
Stenosis % | 13.3 ± 14.6 | 20.6 ± 16.3 | 17.2 ± 18.1 | 0.150 | 21.3 ± 17.0 | 18.8 ± 16.9 | 0.172 | 22.7 ± 14.5 | 18.2 ± 17.8 | 0.146 |
Renal function | ||||||||||
24-h Ccr (mL/min) | 113.9 ± 33.5 | 110.6 ± 57.8 | 102.8 ± 66.5 | 0.130 | 111.0 ± 59.5 | 106.7 ± 61.5 | 0.168 | 113.9 ± 66.9 | 105.5 ± 58.1 | 0.193 |
Groups | CaOx ≥ 50% | CaP | ||||
---|---|---|---|---|---|---|
OR | 95%CI | p Value | OR | 95%CI | p Value | |
TC ≥ 200 vs. Control | ||||||
Urine Citrate | 0.970 | 0.951–0.990 | 0.003 | 0.970 | 0.953–0.987 | 0.001 |
Abd. Circ. | 1.085 | 0.976–1.206 | 0.131 | 1.045 | 0.963–1.135 | 0.294 |
Urine Protein | 0.999 | 0.994–1.004 | 0.758 | 1.001 | 0.997–1.005 | 0.617 |
Carotid score | 15.291 | 1.778–131.492 | 0.013 | 2.964 | 1.100–7.983 | 0.032 |
HDL ≦ 40 vs. Control | ||||||
Urine Citrate | 0.992 | 0.982–1.002 | 0.127 | 0.987 | 0.976–0.998 | 0.022 |
Urine OPN | 0.995 | 0.936–1.058 | 0.874 | 1.023 | 0.950–1.102 | 0.543 |
Urine Protein | 1.004 | 0.999–1.008 | 0.097 | 1.003 | 0.999–1.007 | 0.105 |
Carotid score | 1.941 | 0.761–4.947 | 0.165 | 3.885 | 1.297–11.632 | 0.015 |
LDL ≥ 100 vs. Control | ||||||
Urine Citrate | 0.857 | 0.759–0.969 | 0.014 | 0.914 | 0.871–0.958 | 0.000 |
Urine Oxalate | 1.043 | 0.990–1.099 | 0.115 | 1.030 | 1.005–1.057 | 0.020 |
Urine Protein | 1.001 | 0.997–1.005 | 0.570 | 1.004 | 0.999–1.008 | 0.113 |
Carotid score | 4.786 | 1.327–17.258 | 0.017 | 3.582 | 1.435–8.943 | 0.006 |
Groups | CaOx ≥ 50% | CaP | ||||
---|---|---|---|---|---|---|
OR | 95%CI | p Value | OR | 95%CI | p Value | |
TC ≥ 200 vs. Control | ||||||
8-OHdG | 1.622 | 1.015–2.592 | 0.043 | 1.614 | 1.096–2.375 | 0.015 |
VCAM1 | 1.230 | 0.977–1.547 | 0.078 | 1.181 | 0.999–1.398 | 0.052 |
IL-6 | 47.49 | 0.147–52.456 | 0.190 | 4.896 | 0.088–270.84 | 0.438 |
HDL ≦ 40 vs. Control | ||||||
8-OHdG | 1.275 | 0.863–1.886 | 0.223 | 1.623 | 1.021–2.581 | 0.041 |
VCAM1 | 1.144 | 0.956–1.369 | 0.142 | 1.273 | 1.037–1.562 | 0.021 |
IL-6 | 0.969 | 0.012–177.07 | 0.989 | 0.205 | 0.004–41.17 | 0.689 |
LDL ≥ 100 vs. Control | ||||||
8-OHdG | 1.670 | 1.152–2.422 | 0.007 | 1.694 | 1.206–2.378 | 0.002 |
VCAM1 | 1.149 | 0.978–1.351 | 0.092 | 1.164 | 1.012–1.338 | 0.033 |
NGAL | 1.003 | 1.000–1.006 | 0.047 | 1.002 | 1.000–1.004 | 0.097 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.S.; Liao, P.C.; Liu, C.J. Calcium Kidney Stones are Associated with Increased Risk of Carotid Atherosclerosis: The Link between Urinary Stone Risks, Carotid Intima-Media Thickness, and Oxidative Stress Markers. J. Clin. Med. 2020, 9, 729. https://doi.org/10.3390/jcm9030729
Huang HS, Liao PC, Liu CJ. Calcium Kidney Stones are Associated with Increased Risk of Carotid Atherosclerosis: The Link between Urinary Stone Risks, Carotid Intima-Media Thickness, and Oxidative Stress Markers. Journal of Clinical Medicine. 2020; 9(3):729. https://doi.org/10.3390/jcm9030729
Chicago/Turabian StyleHuang, Ho Shiang, Pao Chi Liao, and Chan Jung Liu. 2020. "Calcium Kidney Stones are Associated with Increased Risk of Carotid Atherosclerosis: The Link between Urinary Stone Risks, Carotid Intima-Media Thickness, and Oxidative Stress Markers" Journal of Clinical Medicine 9, no. 3: 729. https://doi.org/10.3390/jcm9030729
APA StyleHuang, H. S., Liao, P. C., & Liu, C. J. (2020). Calcium Kidney Stones are Associated with Increased Risk of Carotid Atherosclerosis: The Link between Urinary Stone Risks, Carotid Intima-Media Thickness, and Oxidative Stress Markers. Journal of Clinical Medicine, 9(3), 729. https://doi.org/10.3390/jcm9030729