Effects of Virtual Reality-Based Rehabilitation on Burned Hands: A Prospective, Randomized, Single-Blind Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schneider, J.C.; Holavanahalli, R.; Helm, P.; O’Neil, C.; Goldstein, R.; Kowalske, K. Contractures in burn injury part II: Investigating joints of the hand. J. Burn Care Res. 2008, 29, 606–613. [Google Scholar] [CrossRef]
- Richard, R.L.; Lester, M.E.; Miller, S.F.; Bailey, J.K.; Hedman, T.L.; Dewey, W.S.; Greer, M.; Renz, E.M.; Wolf, S.E.; Blackbourne, L.H. Identification of cutaneous functional units related to burn scar contracture development. J. Burn Care Res. 2009, 30, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Nuchtern, J.G.; Engrav, L.H.; Nakamura, D.Y.; Dutcher, K.A.; Heimbach, D.M.; Vedder, N.B. Treatment of fourth-degree hand burns. J. Burn Care Rehabil. 1995, 16, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.L.; Dewey, W.S.; Richard, R.L. Rehabilitation of the burned hand. Hand Clin. 2009, 25, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Richard, R.; Baryza, M.J.; Carr, J.A.; Dewey, W.S.; Dougherty, M.E.; Forbes-Duchart, L.; Franzen, B.J.; Healey, T.; Lester, M.E.; Li, S.K.; et al. Burn rehabilitation and research: Proceedings of a consensus summit. J. Burn Care Res. 2009, 30, 543–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorkin, M.; Cholok, D.; Levi, B. Scar Management of the Burned Hand. Hand Clin. 2017, 33, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Serghiou, M.A.; Niszczak, J.; Parry, I.; Richard, R. Clinical practice recommendations for positioning of the burn patient. Burns 2016, 42, 267–275. [Google Scholar] [CrossRef]
- Richard, R.L.; Miller, S.F.; Finley, R.K., Jr.; Jones, L.M. Comparison of the effect of passive exercise v static wrapping on finger range of motion in the burned hand. J. Burn Care Rehabil. 1987, 8, 576–578. [Google Scholar] [CrossRef]
- Tanigawa, M.C.; O’Donnell, O.K.; Graham, P.L. The burned hand: A physical therapy protocol. Phys. Ther. 1974, 54, 953–958. [Google Scholar] [CrossRef]
- Fufa, D.T.; Chuang, S.S.; Yang, J.Y. Postburn contractures of the hand. J. Hand Surg. Am. 2014, 39, 1869–1876. [Google Scholar] [CrossRef]
- Schouten, H.J.; Nieuwenhuis, M.K.; van Zuijlen, P.P. A review on static splinting therapy to prevent burn scar contracture: Do clinical and experimental data warrant its clinical application? Burns 2012, 38, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Mun, J.H.; Lee, J.Y.; Jeon, J.H.; Jung, Y.J.; Seo, C.H.; Jang, K.U. Effects of modified dynamic metacarpophalangeal joint flexion orthoses after hand burn. Ann. Rehabil. Med. 2011, 35, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Burgar, C.G.; Lum, P.S.; Shor, P.C.; Machiel Van der Loos, H.F. Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience. J. Rehabil. Res Dev. 2000, 37, 663–673. [Google Scholar] [PubMed]
- Placidi, G. A smart virtual glove for the hand telerehabilitation. Comput. Biol. Med. 2007, 37, 1100–1107. [Google Scholar] [CrossRef]
- Shin, J.H.; Kim, M.Y.; Lee, J.Y.; Jeon, Y.J.; Kim, S.; Lee, S.; Seo, B.; Choi, Y. Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: A single-blinded, randomized controlled trial. J. Neuroeng. Rehabil. 2016, 13, 17. [Google Scholar] [CrossRef] [Green Version]
- Thielbar, K.O.; Lord, T.J.; Fischer, H.C.; Lazzaro, E.C.; Barth, K.C.; Stoykov, M.E.; Triandafilou, K.M.; Kamper, D.G. Training finger individuation with a mechatronic-virtual reality system leads to improved fine motor control post-stroke. J. Neuroeng. Rehabil. 2014, 11, 171. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, Y.S.; Hoffman, H.G.; Blough, D.K.; Patterson, D.R.; Jensen, M.P.; Soltani, M.; Carrougher, G.J.; Nakamura, D.; Sharar, S.R. A randomized, controlled trial of immersive virtual reality analgesia, during physical therapy for pediatric burns. Burns 2011, 37, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Kipping, B.; Rodger, S.; Miller, K.; Kimble, R.M. Virtual reality for acute pain reduction in adolescents undergoing burn wound care: A prospective randomized controlled trial. Burns 2012, 38, 650–657. [Google Scholar] [CrossRef]
- Cowan, A.C.; Stegink-Jansen, C.W. Rehabilitation of hand burn injuries: Current updates. Injury 2013, 44, 391–396. [Google Scholar] [CrossRef]
- Schoneveld, K.; Wittink, H.; Takken, T. Clinimetric evaluation of measurement tools used in hand therapy to assess activity and participation. J. Hand Ther. 2009, 22, 221–235. [Google Scholar] [CrossRef]
- Ayaz, M.; Karami, M.Y.; Deilami, I.; Moradzadeh, Z. Effects of Early Versus Delayed Excision and Grafting on Restoring the Functionality of Deep Burn-Injured Hands: A Double-Blind, Randomized Parallel Clinical Trial. J. Burn Care Res. 2019, 40, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Nerz, C.; Schwickert, L.; Becker, C.; Studier-Fischer, S.; Mussig, J.A.; Augat, P. Effectiveness of robot-assisted training added to conventional rehabilitation in patients with humeral fracture early after surgical treatment: Protocol of a randomised, controlled, multicentre trial. Trials 2017, 18, 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kornhaber, R.; Rickard, G.; McLean, L.; Wiechula, R.; Lopez, V.; Cleary, M. Burn care and rehabilitation in Australia: Health professionals’ perspectives. Disabil. Rehabil. 2019, 41, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Schwickert, L.; Klenk, J.; Stahler, A.; Becker, C.; Lindemann, U. Robotic-assisted rehabilitation of proximal humerus fractures in virtual environments: A pilot study. Z. Für Gerontol. Und Geriatr. 2011, 44, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Carrougher, G.J.; Hoffman, H.G.; Nakamura, D.; Lezotte, D.; Soltani, M.; Leahy, L.; Engrav, L.H.; Patterson, D.R. The effect of virtual reality on pain and range of motion in adults with burn injuries. J. Burn Care Res. 2009, 30, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.C.; Ozsecen, M.Y.; Muraoka, N.K.; Mancinelli, C.; Della Croce, U.; Ryan, C.M.; Bonato, P. Feasibility of an Exoskeleton-Based Interactive Video Game System for Upper Extremity Burn Contractures. PM & R 2016, 8, 445–452. [Google Scholar]
- Park, W.Y.; Jung, S.J.; Joo, S.Y.; Jang, K.U.; Seo, C.H.; Jun, A.Y. Effects of a Modified Hand Compression Bandage for Treatment of Post-Burn Hand Edemas. Ann. Rehabil. Med. 2016, 40, 341–350. [Google Scholar] [CrossRef] [Green Version]
- French, B.; Leathley, M.J.; Sutton, C.J.; McAdam, J.; Thomas, L.H.; Forster, A.; Langhorne, P.; Price, C.; Walker, A.; Watkins, C.L. A systematic review of repetitive functional task practice with modelling of resource use, costs and effectiveness. Health Technol. Assess. 2008, 12, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, S.Y.; Patterson, C.B.; Lang, C.E. Transfer of training between distinct motor tasks after stroke: Implications for task-specific approaches to upper-extremity neurorehabilitation. Neurorehabil. Neural. Repair. 2013, 27, 602–612. [Google Scholar] [CrossRef]
- Saita, K.; Morishita, T.; Arima, H.; Hyakutake, K.; Ogata, T.; Yagi, K.; Shiota, E.; Inoue, T. Biofeedback effect of hybrid assistive limb in stroke rehabilitation: A proof of concept study using functional near infrared spectroscopy. PLoS ONE 2018, 13, e0191361. [Google Scholar] [CrossRef]
- You, S.H.; Jang, S.H.; Kim, Y.H.; Hallett, M.; Ahn, S.H.; Kwon, Y.H.; Kim, J.H.; Lee, M.Y. Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: An experimenter-blind randomized study. Stroke 2005, 36, 1166–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, X.; Lin, Q.; Lo, W.L.; Mao, Y.R.; Shi, X.C.; Cates, R.S.; Zhou, S.F.; Huang, D.F.; Li, L. Cerebral Reorganization in Subacute Stroke Survivors after Virtual Reality-Based Training: A Preliminary Study. Behav. Neurol. 2017, 2017, 6261479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, S.; Fluet, G.; Qiu, Q.; Merians, A.; Adamovich, S.V.; Tunik, E. Neural Patterns of Reorganization after Intensive Robot-Assisted Virtual Reality Therapy and Repetitive Task Practice in Patients with Chronic Stroke. Front. Neurol. 2017, 8, 452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
VR Group (n = 28) | CON Group (n = 29) | p-Value | |
---|---|---|---|
Male: Female | 28:0 | 26:3 | 0.24 |
Age (years) | 48.07 ± 8.14 | 41.69 ± 14.05 | 0.21 |
Cause of burn | 0.06 | ||
Flame burn | 18 | 16 | |
Electrical burn | 2 | ||
Contact burn | 6 | ||
Scalding burn | 2 | 4 | |
Spark burn | 6 | 3 | |
Time to treatment (days) | 74.79 ± 24.15 | 83.79 ± 46.22 | 0.98 |
TBSA (%) | 27.71 ± 20.15 | 27.38 ± 20.65 | |
Grasp and Pinch Power Test | |||
Grasp (kg) | 4.35 ± 4.73 | 4.59 ± 3.98 | 0.53 |
Lateral Pinch (kg) | 3.23 ± 1.38 | 3.97 ± 2.04 | 0.05 |
Tip Pinch (kg) | 1.66 ± 1.48 | 1.60 ± 0.95 | 0.74 |
Jebsen Hand Function Test | |||
Writing | 11.71 ± 2.81 | 10.72 ± 4.73 | 0.78 |
Cards | 4.21 ± 2.28 | 3.97 ± 3.18 | 0.43 |
Small | 7.86 ± 2.21 | 8.41 ± 4.82 | 0.05 |
Checkers | 10.43 ± 3.58 | 9.69 ± 4.45 | 0.60 |
Feeding | 11.36 ± 3.00 | 11.45 ± 3.71 | 0.32 |
Light | 10.21 ± 3.34 | 9.66 ± 5.61 | 0.38 |
Heavy | 9.79 ± 3.27 | 9.41 ± 4.81 | 0.45 |
Perdue Pegboard Test | |||
Affected hand | 8.64 ± 3.07 | 8.41 ± 6.12 | 0.40 |
Both hands | 6.86 ± 2.14 | 5.55 ± 5.21 | 0.58 |
Assembly | 16.43 ± 8.70 | 14.34 ± 12.94 | 0.63 |
Michigan Hand Outcomes Questionnaire | |||
Function | 19.64 ± 17.16 | 18.10 ± 13.19 | 0.83 |
ADL | 21.07 ± 20.38 | 20.69 ± 16.46 | 0.91 |
Work | 23.21 ± 22.49 | 15.52 ± 18.19 | 0.20 |
Pain | 50.71 ± 19.42 | 58.45 ± 17.38 | 0.16 |
Aesthetics | 15.63 ± 19.95 | 16.16 ± 17.72 | 0.58 |
Satisfaction | 19.64 ± 19.67 | 20.69 ± 16.46 | 0.73 |
VR Group (n = 28) | CON Group (n = 29) | p-Value | |
---|---|---|---|
Grasp and Pinch Power Test | |||
Grasp (kg) | 3.71 ± 4.02 | 1.78 ± 3.17 | ** 0.03 |
Lateral Pinch (kg) | 1.31 ± 1.42 | −0.46 ± 2.41 | ** 0.002 |
Tip Pinch (kg) | 0.95 ± 0.88 | 0.19 ± 0.95 | * 0.03 |
Jebsen Hand Function Test | |||
Writing | 0.64 ± 1.95 | 0.93 ± 1.87 | 0.23 |
Cards | 0.07 ± 3.23 | 0.07 ± 3.13 | 0.96 |
Small | 2.36 ± 2.45 | −0.31 ± 3.24 | ** <0.001 |
Checkers | 0.57 ± 3.71 | 0.62 ± 4.32 | 0.81 |
Feeding | 0.64 ± 2.42 | −0.24 ± 2.85 | ** 0.04 |
Light | 1.00 ± 3.10 | 1.48 ± 5.47 | 0.69 |
Heavy | 0.07 ± 3.16 | 1.14 ± 3.99 | 0.90 |
Perdue Pegboard Test | |||
Affected hand | 1.86 ± 2.46 | 2.21 ± 4.39 | 0.58 |
Both hands | 2.93 ± 4.40 | 2.17 ± 3.42 | 0.69 |
Assembly | 5.86 ± 8.31 | 5.62 ± 10.54 | 0.96 |
Michigan Hand Outcomes Questionnaire | |||
Function | 32.14 ± 11.50 | 26.72 ± 18.82 | 0.28 |
ADL | 37.14 ± 15.95 | 22.59 ± 17.25 | ** 0.003 |
Work | 26.64 ± 28.25 | 22.07 ± 17.55 | 0.37 |
Pain | −23.21 ± 24.62 | −13.62 ± 21.25 | 0.12 |
Aesthetics | 21.88 ± 24.62 | 15.22 ± 22.93 | 0.24 |
Satisfaction | 30.95 ± 10.72 | 15.95 ± 17.22 | ** 0.001 |
VR Group (n = 28) | CON Group (n = 29) | p-Value | |
---|---|---|---|
Grasp and Pinch Power Test | |||
Grasp (kg) | 8.06 ± 6.61 | 6.37 ± 5.91 | 0.13 |
Lateral Pinch (kg) | 4.54 ± 1.75 | 3.50 ± 2.69 | 0.06 |
Tip Pinch (kg) | 2.61 ± 1.83 | 1.80 ± 1.29 | 0.07 |
Jebsen Hand Function Test | |||
Writing | 12.36 ± 1.31 | 11.66 ± 4.32 | 0.33 |
Cards | 4.29 ± 3.14 | 4.03 ± 3.21 | 0.69 |
Small | 10.21 ± 1.64 | 8.10 ± 3.49 | * 0.01 |
Checkers | 11.00 ± 3.08 | 10.31 ± 3.01 | 0.33 |
Feeding | 12.00 ± 2.80 | 11.21 ± 3.81 | 0.55 |
Light | 11.21 ± 2.56 | 11.14 ± 3.60 | 0.40 |
Heavy | 9.86 ± 3.50 | 10.55 ± 3.55 | 0.39 |
Perdue Pegboard Test | |||
Affected hand | 10.50 ± 3.24 | 10.62 ± 5.18 | 0.74 |
Both hands | 9.79 ± 5.88 | 7.72 ± 4.53 | 0.33 |
Assembly | 22.29 ± 8.20 | 19.97 ± 11.72 | 0.41 |
Michigan Hand Outcomes Questionnaire | |||
Function | 51.79 ± 17.91 | 44.83 ± 19.34 | 0.16 |
ADL | 58.21 ± 18.92 | 43.28 ± 18.48 | * 0.005 |
Work | 47.86 ± 19.88 | 37.59 ± 13.73 | * 0.04 |
Pain | 27.50 ± 16.64 | 44.83 ± 26.57 | * 0.002 |
Aesthetics | 37.50 ± 19.39 | 31.38 ± 20.17 | 0.25 |
Satisfaction | 50.60 ± 18.35 | 36.64 ± 17.55 | * 0.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, S.Y.; Cho, Y.S.; Lee, S.Y.; Seok, H.; Seo, C.H. Effects of Virtual Reality-Based Rehabilitation on Burned Hands: A Prospective, Randomized, Single-Blind Study. J. Clin. Med. 2020, 9, 731. https://doi.org/10.3390/jcm9030731
Joo SY, Cho YS, Lee SY, Seok H, Seo CH. Effects of Virtual Reality-Based Rehabilitation on Burned Hands: A Prospective, Randomized, Single-Blind Study. Journal of Clinical Medicine. 2020; 9(3):731. https://doi.org/10.3390/jcm9030731
Chicago/Turabian StyleJoo, So Young, Yoon Soo Cho, Seung Yeol Lee, Hyun Seok, and Cheong Hoon Seo. 2020. "Effects of Virtual Reality-Based Rehabilitation on Burned Hands: A Prospective, Randomized, Single-Blind Study" Journal of Clinical Medicine 9, no. 3: 731. https://doi.org/10.3390/jcm9030731
APA StyleJoo, S. Y., Cho, Y. S., Lee, S. Y., Seok, H., & Seo, C. H. (2020). Effects of Virtual Reality-Based Rehabilitation on Burned Hands: A Prospective, Randomized, Single-Blind Study. Journal of Clinical Medicine, 9(3), 731. https://doi.org/10.3390/jcm9030731