An Ethnic Comparison of Arginine Dimethylation and Cardiometabolic Factors in Healthy Black and White Youth: The ASOS and African-PREDICT Studies
Abstract
:1. Introduction
- [DMA] + [ADMA] asymmetric PADiMe (aPADiMeX)
- [SDMA] symmetric PADiMe (sPADiMeX)
- [DMA] + [ADMA] + [SDMA] total PADiMe (toPADiMeX)
- ([DMA] + [ADMA])/[SDMA] asymmetric/symmetric PADiMe (a/sPADiMeX)
2. Experimental Section
2.1. Investigated Studies
2.2. Anthropometric Measures
2.3. Cardiovascular Measures
2.4. Urine Collection and Measurement of Urinary ADMA, DMA, SDMA, and Creatinine
2.5. Clinical Chemistry Measures
2.6. Statistical Analysis
3. Results
3.1. The ASOS study
3.2. The African-PREDICT Study
3.3. Comparison of the Arg-Dimethylation Indices between Boys and Men (Table 3)
3.4. Correlations in the ASOS and African-PREDICT Studies
3.5. Arg Dimethylation Indices in the Women of the African-PREDICT Study
3.6. Comparison of the Arg-Dimethylation Indices between Men and Women in the African-PREDICT Study
4. Discussion
4.1. Arg Dimethylation and Blood Pressure
4.2. Arg Dimethylation and Growth and Inflammatory Factors
4.3. Potential Limitations of the Study
5. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blanc, R.S.; Richard, S. Arginine Methylation: The Coming of Age. Mol. Cell. 2017, 65, 8–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, C.; Wong, C.C. The story of protein arginine methylation: Characterization, regulation, and function. Expert Rev. Proteom. 2017, 14, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Greer, E.L.; Shi, Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 2012, 13, 343–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltran-Alvarez, P.; Pagans, S.; Brugada, R. The cardiac sodium channel is post-translationally modified by arginine methylation. J. Proteome Res. 2011, 10, 3712–3719. [Google Scholar] [CrossRef] [PubMed]
- Beltran-Alvarez, P.; Tarradas, A.; Chiva, C.; Pérez-Serra, A.; Batlle, M.; Pérez-Villa, F.; Schulte, U.; Sabidó, E.; Brugada, R.; Pagans, S. Identification of N-terminal protein acetylation and arginine methylation of the voltage-gated sodium channel in end-stage heart failure human heart. J. Mol. Cell. Cardiol. 2014, 76, 126–129. [Google Scholar] [CrossRef]
- Beltran-Alvarez, P.; Feixas, F.; Osuna, S.; Díaz-Hernández, R.; Brugada, R.; Pagans, S. Interplay between R513 methylation and S516 phosphorylation of the cardiac voltage-gated sodium channel. Amino Acids 2015, 47, 429–434. [Google Scholar] [CrossRef]
- Tsikas, D. A critical review and discussion of analytical methods in the L-arginine/nitric oxide area of basic and clinical research. Anal. Biochem. 2008, 379, 139–163. [Google Scholar] [CrossRef]
- Martens-Lobenhoffer, J.; Bode-Böger, S.M. Quantification of L-arginine, asymmetric dimethylarginine and symmetric dimethylarginine in human plasma: A step improvement in precision by stable isotope dilution mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 904, 140–143. [Google Scholar] [CrossRef]
- Achan, V.; Broadhead, M.; Malaki, M.; Whitley, G.; Leiper, J.; MacAllister, R.; Vallance, P. Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1455–1459. [Google Scholar] [CrossRef] [Green Version]
- Tsikas, D.; Thum, T.; Becker, T.; Pham, V.V.; Chobanyan, K.; Mitschke, A.; Beckmann, B.; Gutzki, F.M.; Bauersachs, J.; Stichtenoth, D.O. Accurate quantification of dimethylamine (DMA) in human urine by gas chromatography-mass spectrometry as pentafluorobenzamide derivative: Evaluation of the relationship between DMA and its precursor asymmetric dimethylarginine (ADMA) in health and disease. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 851, 229–239. [Google Scholar] [CrossRef]
- Tsikas, D. Does the inhibitory action of asymmetric dimethylarginine (ADMA) on the endothelial nitric oxide synthase activity explain its importance in the cardiovascular system? The ADMA paradox. J. Controv. Biomed. Res. 2017, 3, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Tsikas, D.; Bollenbach, A.; Hanff, E.; Kayacelebi, A.A. Asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and homoarginine (hArg): The ADMA, SDMA and hArg paradoxes. Cardiovasc. Diabetol. 2018, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Tousoulis, D.; Kampoli, A.M.; Tentolouris, C.; Papageorgiou, N.; Stefanadis, C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 2012, 10, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Tain, Y.L.; Hsu, C.N. Toxic Dimethylarginines: Asymmetric Dimethylarginine (ADMA) and Symmetric Dimethylarginine (SDMA). Toxins (Basel) 2017, 9, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busch, M.; Fleck, C.; Wolf, G.; Stein, G. Asymmetric (ADMA) and symmetric dimethylarginine (SDMA) as potential risk factors for cardiovascular and renal outcome in chronic kidney disease—Possible candidates for paradoxical epidemiology? Amino Acids 2006, 30, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Lücke, T.; Kanzelmeyer, N.; Kemper, M.J.; Tsikas, D.; Das, A.M. Developmental changes in the L-arginine/nitric oxide pathway from infancy to adulthood: Plasma asymmetric dimethylarginine levels decrease with age. Clin. Chem. Lab. Med. 2007, 45, 1525–1530. [Google Scholar] [CrossRef] [Green Version]
- Buck, A.; Kayacelebi, A.A.; Chobanyan-Jürgens, K.; Illsinger, S.; Bohnhorst, B.; Beckmann, B.; Hanff, E.; Das, A.M.; Tsikas, D.; Lücke, T. Comprehensive analysis of the L-arginine/L-homoarginine/nitric oxide pathway in preterm neonates: Potential roles for homoarginine and asymmetric dimethylarginine in foetal growth. Amino Acids 2017, 49, 783–794. [Google Scholar] [CrossRef]
- Bollenbach, A.; Hanff, E.; Brunner, G.; Tsikas, D. Asymmetric dimethylation and citrullination of proteinic arginine and homoarginine synthesis in human Helicobacter pylori infection. Amino Acids 2019, 51, 961–971. [Google Scholar] [CrossRef]
- Kielstein, J.T.; Impraim, B.; Simmel, S.; Bode-Böger, S.M.; Tsikas, D.; Frölich, J.C.; Hoeper, M.M.; Haller, H.; Fliser, D. Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetric dimethylarginine in humans. Circulation 2004, 109, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Arikan, E.; Karadag, C.H.; Guldiken, S. Asymmetric dimethylarginine levels in thyroid diseases J. Endocrinol. Invest. 2007, 30, 186–191. [Google Scholar] [CrossRef]
- Ittermann, T.; Bahls, M.; Atzler, D.; Friedrich, N.; Schwedhelm, E.; Böger, R.H.; Felix, S.B.; Völzke, H.; Dörr, M. L-Arginine derivatives are associated with the hyperthyroid state in the general population. Thyroid 2016, 26, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Melikian, N.; Wheatcroft, S.B.; Ogah, O.S.; Murphy, C.; Chowienczyk, P.J.; Wierzbicki, A.S.; Sanders, T.A.; Jiang, B.; Duncan, E.R.; Shah, A.M.; et al. Asymmetric dimethylarginine and reduced nitric oxide bioavailability in young Black African men. Hypertension 2007, 49, 873–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimann, M.; Schutte, A.E.; Malan, N.T.; Schwarz, P.E.; Benndorf, R.A.; Schulze, F.; Böger, R.H. Asymmetric dimethylarginine is associated with parameters of glucose metabolism in Caucasian but not in African women from South Africa. Exp. Clin. Endocrinol. Diabetes 2007, 115, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Schutte, A.E.; Schutte, R.; Huisman, H.W.; van Rooyen, J.M.; Fourie, C.M.; Malan, L.; Malan, N.T.; Schwedhelm, E.; Strimbeanu, S.; Anderssohn, M.; et al. Dimethylarginines: Their vascular and metabolic roles in Africans and Caucasians. Eur. J. Endocrinol. 2010, 162, 525–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sydow, K.; Fortmann, S.P.; Fair, J.M.; Varady, A.; Hlatky, M.A.; Go, A.S.; Iribarren, C.; Tsao, P.S. Distribution of asymmetric dimethylarginine among 980 healthy, older adults of different ethnicities. Clin. Chem. 2010, 56, 111–120. [Google Scholar] [CrossRef]
- Sandrim, V.C.; Palei, A.C.; Metzger, I.F.; Cavalli, R.C.; Duarte, G.; Tanus-Santos, J.E. Interethnic differences in ADMA concentrations and negative association with nitric oxide formation in preeclampsia. Clin. Chim. Acta 2010, 411, 1457–1460. [Google Scholar] [CrossRef]
- Reimann, M.; Hamer, M.; Malan, N.T.; Schlaich, M.P.; Lambert, G.W.; Ziemssen, T.; Boeger, R.H.; Malan, L. Effects of acute and chronic stress on the L-arginine nitric oxide pathway in black and white South Africans: The sympathetic activity and ambulatory blood pressure in Africans study. Psychosom. Med. 2013, 75, 751–758. [Google Scholar] [CrossRef]
- Mels, C.M.; Huisman, H.W.; Smith, W.; Schutte, R.; Schwedhelm, E.; Atzler, D.; Boger, R.H.; Ware, L.J.; Schutte, A.E. The relationship of nitric oxide synthesis capacity, oxidative stress, and albumin-to-creatinine ratio in black and white men: The SABPA study. Age (Dordr) 2016, 38, 9. [Google Scholar] [CrossRef] [Green Version]
- Bollenbach, A.; Huneau, J.F.; Mariotti, F.; Tsikas, D. Asymmetric and Symmetric Protein Arginine Dimethylation: Concept and Postprandial Effects of High-Fat Protein Meals in Healthy Overweight Men. Nutrients 2019, 11, 1463. [Google Scholar] [CrossRef] [Green Version]
- Mokwatsi, G.G.; Schutte, A.E.; Kruger, R. Ethnic differences regarding arterial stiffness of 6–8-year-old black and white boys. J. Hypertens. 2017, 35, 960–967. [Google Scholar] [CrossRef]
- Erasmus, D.; Mels, C.M.C.; Louw, R.; Lindeque, J.Z.; Kruger, R. Urinary Metabolites and Their Link with Premature Arterial Stiffness in Black Boys: The ASOS Study. Pulse (Basel) 2019, 6, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Schutte, A.E.; Gona, P.N.; Delles, C.; Uys, A.S.; Burger, A.; Mels, C.M.; Kruger, R.; Smith, W.; Fourie, C.M.; Botha, S.; et al. The African Prospective study on the Early Detection and Identification of Cardiovascular disease and Hypertension (African-PREDICT): Design, recruitment and initial examination. Eur. J. Prev. Cardiol. 2019, 26, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Carlson, R.V.; Boyd, K.M.; Webb, D.J. The revision of the Declaration of Helsinki: Past, present and future. Br. J. Clin. Pharmacol. 2004, 57, 695–713. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.; Marfell-Jones, M. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Lower Hutt, New Zealand, 2011. [Google Scholar]
- Cole, T.J.; Faith, M.S.; Pietrobelli, A.; Heo, M. What is the best measure of adiposity change in growing children: BMI, BMI %, BMI z-score or BMI centile? Eur. J. Clin. Nutr. 2005, 59, 419–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Assaad, M.A.; Topouchian, J.A.; Asmar, R.G. Evaluation of two devices for self-measurement of blood pressure according to the international protocol: The Omron M5-I and the Omron 705IT. Blood Press Monit. 2003, 8, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Kiers, H.D.; Hofstra, J.M.; Wetzels, J.F. Oscillometric blood pressure measurements: Differences between measured and calculated mean arterial pressure. Neth. J. Med. 2008, 66, 474–479. [Google Scholar]
- Tsikas, D.; Schubert, B.; Gutzki, F.M.; Sandmann, J.; Frölich, J.C. Quantitative determination of circulating and urinary asymmetric dimethylarginine (ADMA) in humans by gas chromatography-tandem mass spectrometry as methyl ester tri(N-pentafluoropropionyl) derivative. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003, 798, 87–99. [Google Scholar] [CrossRef]
- Bollenbach, A.; Hanff, E.; Beckmann, B.; Kruger, R.; Tsikas, D. GC-MS quantification of urinary symmetric dimethylarginine (SDMA), a whole-body symmetric L-arginine methylation index. Anal. Biochem. 2018, 556, 40–44. [Google Scholar] [CrossRef]
- Tsikas, D.; Wolf, A.; Mitschke, A.; Gutzki, F.M.; Will, W.; Bader, M. GC-MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: Inter-laboratory comparison in urine with Jaffe, HPLC and enzymatic assays. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 2582–2592. [Google Scholar] [CrossRef]
- Tsikas, D.; Sandmann, J.; Savva, A.; Luessen, P.; Böger, R.H.; Gutzki, F.M.; Mayer, B.; Frölich, J.C. Assessment of nitric oxide synthase activity in vitro and in vivo by gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 2000, 742, 143–153. [Google Scholar] [CrossRef]
- Kagura, J.; Adair, L.S.; Musa, M.G.; Pettifor, J.M.; Norris, S.A. Blood pressure tracking in urban black South African children: Birth to twenty cohort. BMC Pediatr. 2015, 15, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glyn, M.C.; Anderssohn, M.; Lüneburg, N.; Van Rooyen, J.M.; Schutte, R.; Huisman, H.W.; Fourie, C.M.; Smith, W.; Malan, L.; Malan, N.T.; et al. Ethnicity-specific differences in L-arginine status in South African men. J. Hum. Hypertens. 2012, 26, 737–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mels, C.M.C.; Loots, I.; Schwedhelm, E.; Atzler, D.; Böger, R.H.; Schutte, A.E. Nitric oxide synthesis capacity, ambulatory blood pressure and end organ damage in a black and white population: The SABPA study. Amino Acids 2016, 48, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Wolf, C.; Lorenzen, J.M.; Stein, S.; Tsikas, D.; Störk, S.; Weidemann, F.; Ertl, G.; Anker, S.D.; Bauersachs, J.; Thum, T. Urinary asymmetric dimethylarginine (ADMA) is a predictor of mortality risk in patients with coronary artery disease. Int. J. Cardiol. 2012, 156, 289–294. [Google Scholar] [CrossRef]
- Said, M.Y.; Bollenbach, A.; Minović, I.; van Londen, M.; Frenay, A.R.; de Borst, M.H.; van den Berg, E.; Kayacelebi, A.A.; Tsikas, D.; van Goor, H.; et al. Plasma ADMA, urinary ADMA excretion, and late mortality in renal transplant recipients. Amino Acids 2019, 51, 913–927. [Google Scholar] [CrossRef] [Green Version]
- Mels, C.M.C.; Schutte, A.E.; Huisman, H.W.; Smith, W.; Kruger, R.; van Rooyen, J.M.; Schwedhelm, E.; Atzler, D.; Böger, R.H.; Malan, N.T.; et al. Asymmetric dimethylarginine and symmetric dimethylarginine prospectively relates to carotid wall thickening in black men: The SABPA study. Amino Acids 2017, 49, 1843–1853. [Google Scholar] [CrossRef]
- Haghikia, A.; Yanchev, G.R.; Kayacelebi, A.A.; Hanff, E.; Bledau, N.; Widera, C.; Sonnenschein, K.; Haghikia, A.; Weissenborn, K.; Bauersachs, J.; et al. The role of L-arginine/L-homoarginine/nitric oxide pathway for aortic distensibility and intima-media thickness in stroke patients. Amino Acids 2017, 49, 1111–1121. [Google Scholar] [CrossRef]
- Choucair, A.; Pham, T.H.; Omarjee, S.; Jacquemetton, J.; Kassem, L.; Trédan, O.; Rambaud, J.; Marangoni, E.; Corbo, L.; Treilleux, I.; et al. The arginine methyltransferase PRMT1 regulates IGF-1 signaling in breast cancer. Oncogene 2019, 38, 4015–4027. [Google Scholar] [CrossRef]
- Laios, I.; Journe, F.; Nonclercq, D.; Vidal, D.S.; Toillon, R.A.; Laurent, G.; Leclercq, G. Role of the proteasome in the regulation of estrogen receptor alpha turnover and function in MCF-7 breast carcinoma cells. J. Steroid Biochem. Mol. Biol. 2005, 94, 347–359. [Google Scholar] [CrossRef]
- He, Y.; Kothari, V.; Bornfeldt, K.E. High-density lipoprotein function in cardiovascular disease and diabetes mellitus. Arterioscler. Thromb. Vasc. Biol. 2018, 38, e10–e16. [Google Scholar] [CrossRef] [Green Version]
- Speer, T.; Rohrer, L.; Blyszczuk, P.; Shroff, R.; Kuschnerus, K.; Kränkel, N.; Kania, G.; Zewinger, S.; Akhmedov, A.; Shi, Y.; et al. Abnormal high-density lipoprotein induces endothelial dysfunction via activation of Toll-like receptor-2. Immunity 2013, 38, 754–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jellinger, P.S.; Handelsman, Y.; Rosenblit, P.D.; Bloomgarden, Z.T.; Fonseca, V.A.; Garber, A.J.; Grunberger, G.; Guerin, C.K.; Bell, D.S.H.; Mechanick, J.I.; et al. American association of clinical endocrinologists and american college of endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr. Pract. 2017, 23, 1–87. [Google Scholar] [CrossRef] [PubMed]
- März, W.; Kleber, M.E.; Scharnagl, H.; Speer, T.; Zewinger, S.; Ritsch, A.; Parhofer, K.G.; von Eckardstein, A.; Landmesser, U.; Laufs, U. HDL cholesterol: Reappraisal of its clinical relevance. Clin. Res. Cardiol. 2017, 106, 663–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, S.C.; Zhang, A.Q.; Smith, R.L. Dimethylamine and diet. Food Chem. Toxicol. 2008, 46, 1734–17348. [Google Scholar] [CrossRef] [PubMed]
- Wanby, P.; Brattström, L.; Brudin, L.; Hultberg, B.; Teerlink, T. Asymmetric dimethylarginine and total homocysteine in plasma after oral methionine loading. Scand. J. Clin. Lab. Invest. 2003, 63, 347–353. [Google Scholar] [CrossRef]
- Mariotti, F.; Hammiche, A.; Blouet, C.; Daré, S.; Tomé, D.; Huneau, J.F. Medium-term methionine supplementation increases plasma homocysteine but not ADMA and improves blood pressure control in rats fed a diet rich in protein and adequate in folate and choline. Eur. J. Nutr. 2006, 45, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Tousoulis, D.; Bouras, G.; Antoniades, C.; Marinou, K.; Papageorgiou, N.; Miliou, A.; Hatzis, G.; Stefanadi, E.; Tsioufis, C.; Stefanadis, C. Methionine-induced homocysteinemia impairs endothelial function in hypertensives: The role of asymmetric dimethylarginine and antioxidant vitamins. Am. J. Hypertens. 2011, 24, 936–942. [Google Scholar] [CrossRef] [Green Version]
- Davids, M.; Swieringa, E.; Palm, F.; Smith, D.E.; Smulders, Y.M.; Scheffer, P.G.; Blom, H.J.; Teerlink, T. Simultaneous determination of asymmetric and symmetric dimethylarginine, L-monomethylarginine, L-arginine, and L-homoarginine in biological samples using stable isotope dilution liquid chromatography tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 900, 38–47. [Google Scholar] [CrossRef]
- Schneider, J.Y.; Rothmann, S.; Schröder, F.; Langen, J.; Lücke, T.; Mariotti, F.; Huneau, J.F.; Frölich, J.C.; Tsikas, D. Effects of chronic oral L-arginine administration on the L-arginine/NO pathway in patients with peripheral arterial occlusive disease or coronary artery disease: L-Arginine prevents renal loss of nitrite, the major NO reservoir. Amino Acids 2015, 47, 1961–1974. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, J.D.; Heresztyn, T. An overview of plasma concentrations of asymmetric dimethylarginine (ADMA) in health and disease and in clinical studies: Methodological considerations. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 851, 42–50. [Google Scholar] [CrossRef]
- Helms, C.C.; Gladwin, M.T.; Kim-Shapiro, D.B. Erythrocytes and Vascular Function: Oxygen and Nitric Oxide. Front. Physiol. 2018, 9, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bollenbach, A.; Gambaryan, S.; Mindukshev, I.; Pich, A.; Tsikas, D. GC-MS and LC-MS/MS pilot studies on the guanidine (NG)-dimethylation in native, asymmetrically and symmetrically NG-dimethylated arginine-vasopressin peptides and proteins in human red blood cells. J. Chromatogr. B. 2020, 1141, 122024.63. [Google Scholar] [CrossRef] [PubMed]
- Polonikov, A.V.; Ushachev, D.V.; Ivanov, V.P.; Churnosov, M.I.; Freidin, M.B.; Ataman, A.V.; Harbuzova, V.Y.; Bykanova, M.A.; Bushueva, O.Y.; Solodilova, M.A. Altered erythrocyte membrane protein composition mirrors pleiotropic effects of hypertension susceptibility genes and disease pathogenesis. J. Hypertens. 2015, 33, 2265–2277. [Google Scholar] [CrossRef] [PubMed]
Parameter | White (n = 41) | Black (n = 39) | p-Value | Mean Δ(white−black) (%) |
---|---|---|---|---|
Characteristics | ||||
Age (years) | 7.68 ± 0.97 | 7.84 ± 0.72 | 0.426 | |
BMI (kg/m2) | 16 (15–17) | 16 (15–17) | 0.238 | |
Weight (kg) | 23.3 (22.1–28.5) | 25.1 (23.0–28.6) | 0.303 | |
Height (cm) | 127 (120–132) | 125 (122–129) | 0.772 | |
Waist circumference (cm) | 56 (54–61) | 56 (53–60) | 0.432 | |
Neck circumference (cm) | 27.5 ± 1.73 | 26.5 ± 1.56 | 0.004 | +3.6 |
Waist to height ratio | 0.86 ± 0.04 | 0.83 ± 0.03 | 0.0001 | +3.5 |
SBP (mmHg) | 102 ± 7 | 105 ± 11 | 0.160 | |
DBP (mmHg) | 63 ± 8 | 69 ± 9 | 0.001 | −8.7 |
MAP (mmHg) | 78.7 ± 6.61 | 83.7 ± 9.21 | 0.006 | −6.0 |
Clinical chemistry (urine) | ||||
Chloride (mM/mM) | 8.81 (6.55–11.7) | 10.8 (6.04–19.9) | 0.299 | |
Potassium (mM/mM) | 0.59 (0.41–0.90) | 0.54 (0.45–0.90) | 0.684 | |
Sodium (mM/mM) | 1.89 (1.40–2.81) | 2.03 (1.44–3.14) | 0.509 | |
Urinary metabolites | ||||
Creatinine (mM) | 15.9 (12.8–18.7) | 15.3 (10.1–21.4) | 0.496 | |
DMA (µM/mM) | 38.4 (33.8–46.8) | 33.9 (29.0–38.8) | 0.017 | +11.7 |
ADMA (µM/mM) | 5.52 ± 0.94 | 5.72 ± 1.26 | 0.442 | |
SDMA (µM/mM) | 4.89 ± 0.89 | 4.50 ± 0.80 | 0.055 | |
DMA+ADMA+SDMA (µM/mM) | 48.5 (43.1–58.5) | 44.8 (39.3–49.9) | 0.026 | +7.6 |
DMA+ADMA (µM/mM) | 44 (39.0–52.7) | 39.8 (35.2–45.3) | 0.025 | +9.5 |
(DMA+ADMA)/SDMA | 8.97 (7.77–10.1) | 8.66 (7.70–9.87) | 0.592 | |
ADMA/SDMA | 1.14 (1.00–1.32) | 1.21 (1.10–1.44) | 0.105 |
Parameter | White (n = 281) | Black (n = 292) | p-Value | Mean Δ(white−black) (%) |
---|---|---|---|---|
Characteristics | ||||
Age (years) | 25 (22–27) | 24 (22–27) | 0.089 | |
BMI (kg/m2) | 26.2 (23.4–29.1) | 21.4 (19.4–24.2) | 0.0001 | +18.3 |
Weight (kg) | 84.2 (75.1–94.2) | 61.6 (55.1–72.2) | 0.0001 | +26.8 |
Height (cm) | 179.1 ± 6.22 | 170 ± 6.69 | 0.0001 | +5.1 |
Waist circumference (cm) | 87.5 (81.1–94.5) | 74.9 (69.9–81.2) | 0.0001 | +14.4 |
Neck circumference (cm) | 39.0 (37.1–40.8) | 35.1 (34.0–36.7) | 0.0001 | +10.0 |
Hip circumference (cm) | 104 (97.7–110) | 92.3 (86.5–99.5) | 0.0001 | +11.3 |
Waist to hip ratio | 0.85 (0.81–0.89) | 0.81 (0.77–0.86) | 0.0001 | +4.7 |
Ear temperature (°C) | 36.5 (36.2–36.7) | 36.4 (36.1–36.7) | 0.003 | +0.3 |
SBP (mmHg) | 122 (116–129) | 120 (113–130) | 0.022 | +1.6 |
DBP (mmHg) | 80 (75–86) | 81 (75–86) | 0.534 | |
Pulse pressure (mmHg) | 44.0 (39.0–49.3) | 41.3 (35.6–46.5) | 0.0001 | +6.8 |
MAP (mmHg) | 97.7 (93.0–103.3) | 96.8 (91.8–102) | 0.324 | |
Smokers, n (%) | 80 (28.5 %) | 125 (42.8 %) | 0.0001 | −33.4 |
Alcohol drinkers, n (%) | 165 (58.9 %) | 181 (62.0 %) | 0.517 | |
Clinical chemistry (plasma) | ||||
Total cholesterol (mM) | 4.03 (2.79–4.94) | 3.16 (2.62–3.86) | 0.0001 | +21.6 |
LDL (mM) | 2.63 (1.83–3.52) | 1.93 (1.47–2.52) | 0.0001 | +26.6 |
HDL (mM) | 0.93 (0.71–1.16) | 1.04 (0.81–1.33) | 0.0001 | −10.6 |
Total cholesterol/HDL | 4.07 (3.31–4.98) | 2.90 (2.43–3.57) | 0.0001 | +28.7 |
LDL/HDL | 2.84 (2.10–3.64) | 1.82 (1.39–2.42) | 0.0001 | +35.9 |
Triglycerides (mg/dL) | 0.85 (0.57–1.25) | 0.65 (0.46–0.89) | 0.0001 | +23.5 |
Alkaline phosphatase (U/L) | 61.9 (50.9–77.6) | 65 (52.8–80.7) | 0.099 | |
Alanine aminotransferase (U/L) | 19.8 (14.8–30.1) | 15.8 (11.9–21.7) | 0.0001 | +20.2 |
Aspartate aminotransferase (U/L) | 18.7 (14.4–22.5) | 19.3 (15.9–24.2) | 0.072 | |
GGT (U/L) | 18.9 (11.2–29.6) | 22.5 (15.6–33.7) | 0.0001 | −16.0 |
Glucose (mM) | 4.77 (3.10–5.26) | 3.36 (2.85–4.67) | 0.0001 | +29.6 |
CRP (mg/L) | 0.62 (0.23–1.55) | 0.57 (0.21–1.40) | 0.140 | |
IL-6 (pg/mL) | 0.89 (0.64–1.38) | 1.0 (0.68–1.41) | 0.059 | |
TNF-α (pg/mL) | 1.16 (0.93–1.60) | 0.99 (0.76–1.30) | 0.0001 | +14.7 |
IGF-1 (nM) | 30.8 (24.8–35.4) | 26.6 (22.1–35.1) | 0.081 | |
IGFBP-3 (nM) | 127 (115–144) | 114 (95.1–128) | 0.002 | +10.2 |
IGF-1/IGFBP-3 | 0.228 (0.181–0.268) | 0.241 (0.190–0.300) | 0.013 | −6.2 |
Urinary metabolites | ||||
Creatinine (mM) | 13.8 (10.3–18.6) | 12.3 (7.57–18.9) | 0.043 | +10.9 |
DMA (µM/mM) | 26.3 (23.55–29.8) | 25.4 (22.7–29.2) | 0.017 | +3.4 |
ADMA (µM/mM) | 3.28 (2.75–3.88) | 3.34 (2.91–3.98) | 0.235 | |
SDMA (µM/mM) | 3.59 (3.09–4.22) | 3.48 (2.97–3.98) | 0.029 | +3.1 |
DMA+ADMA+SDMA (µM/mM) | 33.2 (29.8–37.72) | 32.6 (28.9–44.4) | 0.050 | +1.8 |
DMA+ADMA (µM/mM) | 29.6 (26.5–33.7) | 29.0 (26.7–33.1) | 0.042 | +2.0 |
(DMA+ADMA)/SDMA | 8.35 (7.56–9.22) | 8.51 (7.57–9.27) | 0.363 | |
ADMA/SDMA | 0.91 (0.80–1.08) | 0.99 (0.86–1.12) | 0.0001 | −8.1 |
Parameter | ASOS (boys) | African-PREDICT (men) | p-Value | p-Value | ||
---|---|---|---|---|---|---|
White (n = 41) | Black (n = 39) | White (n = 281) | Black (n = 292) | White vs. white | Black vs. black | |
Creatinine (mM) | 15.9 (12.8–18.7) | 15.3 (10.1–21.4) | 13.8 (10.3–18.6) | 12.3 (7.57–18.9) | 0.053 | 0.123 |
DMA (µM/mM) | 38.4 (33.846.8) | 33.9 (29.0–38.8) | 26.3 (23.6–29.8) | 25.4 (22.7–29.2) | 0.0001 | 0.0001 |
ADMA (µM/mM) | 5.51 (4.91–6.30) | 5.17 (4.81–6.52) | 3.28 (2.75–3.88) | 3.34 (2.91–3.98) | 0.0001 | 0.0001 |
SDMA (µM/mM) | 4.56 (4.17–5.52) | 4.52 (4.06–5.07) | 3.59 (3.09–4.22) | 3.48 (2.97–3.98) | 0.0001 | 0.0001 |
DMA+ADMA+SDMA (µM/mM) | 48.5 (43.1–58.5) | 44.8 (39.3–49.9) | 33.2 (29.8–37.7) | 32.6 (28.9–44.4) | 0.0001 | 0.0001 |
DMA+ADMA (µM/mM) | 44 (39.0–52.7) | 39.8 (35.2–45.3) | 29.6 (26.5–33.7) | 29.0 (26.7–33.1) | 0.0001 | 0.0001 |
(DMA+ADMA)/SDMA | 8.97 (7.77–10.1) | 8.66 (7.70–9.87) | 8.35 (7.56–9.22) | 8.51 (7.57–9.27) | 0.043 | 0.259 |
ADMA/SDMA | 1.14 (1.00–1.32) | 1.21 (1.10–1.44) | 0.91 (0.80–1.08) | 0.99 (0.86–1.12) | 0.0001 | 0.0001 |
Parameter | White (n = 312) | Black (n = 309) | p Value | Mean Δ(white−black) (%) |
---|---|---|---|---|
Characteristics | ||||
Age (years) | 24 (22–27) | 25 (22–27) | 0.596 | |
BMI (kg/m2) | 23.2 (21.0–26.5) | 26.0 (22.4–30.3) | <0.0001 | −10.8 |
Urinary metabolites | ||||
Creatinine (mM) | 14.8 (11.1–20.0) | 11.0 (6.87–17.0) | 0.185 | |
DMA (µM/mM) | 29.9 (26.2–34.5) | 27.7 (24.8–32.4) | 0.001 | +7.4 |
ADMA (µM/mM) | 4.09 (3.38–4.92) | 4.25 (3.47–4.97) | 0.594 | |
SDMA (µM/mM) | 4.26 (3.71–4.81) | 3.97 (3.40–4.57) | 0.001 | +6.8 |
DMA+ADMA+SDMA (µM/mM) | 38.7 (33.9–44.4) | 36.4 (32.5–41.7) | <0.0001 | +5.9 |
(DMA+ADMA)/SDMA | 8.10 (7.33–9.06) | 8.25 (7.67–9.07) | 0.422 | |
SDMA/ADMA | 1.04 (0.88–1.23) | 0.93 (0.81–1.08) | < 0.0001 | +10.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bollenbach, A.; Schutte, A.E.; Kruger, R.; Tsikas, D. An Ethnic Comparison of Arginine Dimethylation and Cardiometabolic Factors in Healthy Black and White Youth: The ASOS and African-PREDICT Studies. J. Clin. Med. 2020, 9, 844. https://doi.org/10.3390/jcm9030844
Bollenbach A, Schutte AE, Kruger R, Tsikas D. An Ethnic Comparison of Arginine Dimethylation and Cardiometabolic Factors in Healthy Black and White Youth: The ASOS and African-PREDICT Studies. Journal of Clinical Medicine. 2020; 9(3):844. https://doi.org/10.3390/jcm9030844
Chicago/Turabian StyleBollenbach, Alexander, Aletta E. Schutte, Ruan Kruger, and Dimitrios Tsikas. 2020. "An Ethnic Comparison of Arginine Dimethylation and Cardiometabolic Factors in Healthy Black and White Youth: The ASOS and African-PREDICT Studies" Journal of Clinical Medicine 9, no. 3: 844. https://doi.org/10.3390/jcm9030844
APA StyleBollenbach, A., Schutte, A. E., Kruger, R., & Tsikas, D. (2020). An Ethnic Comparison of Arginine Dimethylation and Cardiometabolic Factors in Healthy Black and White Youth: The ASOS and African-PREDICT Studies. Journal of Clinical Medicine, 9(3), 844. https://doi.org/10.3390/jcm9030844