Effect of Subcutaneous Insulin on Spirometric Maneuvers in Patients with Type 1 Diabetes: A Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statement on Ethics
2.2. Design of the Study and Description of the Study Population
2.3. Measurement of Lung Function
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lecube, A.; Simó, R.; Pallayova, M.; Punjabi, N.M.; López-Cano, C.; Turino, C.; Hernández, C.; Barbé, F. Pulmonary function and sleep breathing: Two new targets for type 2 diabetes. Endocr. Rev. 2017, 38, 550–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampol, G.; Lecube, A. Type 2 diabetes and the lung: A bidirectional relationship. Endocrinol. Nutr. 2012, 59, 95–97. [Google Scholar] [CrossRef] [PubMed]
- Nicolaie, T.; Zavoianu, C.; Nuta, P. Pulmonary involvement in diabetes mellitus. Rom. J. Intern. Med. 2003, 41, 365–374. [Google Scholar] [PubMed]
- Davis, T.M.; Knuiman, M.; Kendall, P.; Vu, H.; Davis, W.A. Reduced pulmonary function and its associations in type 2 diabetes: The Fremantle Diabetes Study. Diabetes Res. Clin. Pract. 2000, 50, 153–159. [Google Scholar] [CrossRef]
- Yeh, H.C.; Punjabi, N.M.; Wang, N.Y.; Pankow, J.S.; Duncan, B.B.; Cox, C.E.; Selvin, E.; Brancati, F.L. Cross-sectional and prospective study of lung function in adults with type 2 diabetes: The Atherosclerosis Risk in Communities (ARIC) study. Diabetes Care 2008, 31, 741–746. [Google Scholar] [CrossRef] [Green Version]
- Verrotti, A.; Verini, M.; Chiarelli, F.; Verdesca, V.; Misticoni, G.; Morgese, G. Pulmonary function in diabetic children with and without persistent microalbuminuria. Diabetes Res. Clin. Pract. 1993, 21, 171–176. [Google Scholar] [CrossRef]
- Martín-Frías, M.; Lamas, A.; Lara, E.; Alonso, M.; Ros, P.; Barrio, R. Pulmonary function in children with type 1 diabetes mellitus. J. Pediatr. Endocrinol. Metab. 2015, 28, 163–169. [Google Scholar] [CrossRef]
- Sánchez, E.; Lecube, A.; Betriu, À.; Hernández, C.; López-Cano, C.; Gutiérrez-Carrasquilla, L.; Kerkeni, M.; Yeramian, A.; Purroy, F.; Pamplona, R.; et al. Subcutaneous advanced glycation end-products and lung function according to glucose abnormalities: The ILERVAS Project. Diabetes Metab. 2019, 45, 595–598. [Google Scholar] [CrossRef]
- Pieniawska, A.; Horodnicka-Józwa, A.; Petriczko, E.; Walczak, M. Evaluation of respiratory function tests in children and adolescents with type 1 diabetes. Pediatr. Endocrinol. Diabetes Metab. 2012, 18, 15–20. [Google Scholar]
- Corbin, K.D.; Driscoll, K.A.; Pratley, R.E.; Smith, S.R.; Maahs, D.M.; Mayer-Davis, E.J. Advancing Care for Type 1 Diabetes and Obesity Network (ACT1ON). Obesity in Type 1 Diabetes: Pathophysiology, Clinical Impact, and Mechanisms. Endocr. Rev. 2018, 39, 629–663. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Bodas, M.; Bhatraju, N.K.; Pattnaik, B.; Gheware, A.; Parameswaran, P.K.; Thompson, M.; Freeman, M.; Mabalirajan, U.; Gosens, R.; et al. Hyperinsulinemia adversely affects lung structure and function. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 310, L837–L845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alabraba, V.; Farnsworth, A.; Leigh, R.; Dodson, P.; Gough, S.C.; Smyth, T. Exubera inhaled insulin in patients with type 1 and type 2 diabetes: The first 12 months. Diabetes Technol. Ther. 2009, 11, 427–430. [Google Scholar] [CrossRef] [PubMed]
- Raskin, P.; Heller, S.; Honka, M.; Chang, P.C.; Boss, A.H.; Richardson, P.C.; Amin, N. Pulmonary function over 2 years in diabetic patients treated with prandial inhaled Technosphere Insulin or usual antidiabetes treatment: A randomized trial. Diabetes Obes. Metab. 2012, 14, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Bode, B.W.; McGill, J.B.; Lorber, D.L.; Gross, J.L.; Chang, P.C.; Bregman, D.B. Affinity 1 Study Group. Inhaled Technosphere Insulin Compared with Injected Prandial Insulin in Type 1 Diabetes: A Randomized 24-Week Trial. Diabetes Care 2015, 38, 2266–2273. [Google Scholar] [CrossRef] [Green Version]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Schnack, C.; Festa, A.; Schwarzmaier-D’Assie, A.; Haber, P.; Schernthaner, G. Pulmonary dysfunction in type 1 diabetes in relation to metabolic long-term control and to incipient diabetic nephropathy. Nephron 1996, 74, 395–400. [Google Scholar] [CrossRef]
- Bonora, E.; Micciolo, R.; Ghiatas, A.A.; Lancaster, J.L.; Alyassin, A.; Muggeo, M.; DeFronzo, R.A. Is it possible to derive a reliable estimate of human visceral and subcutaneous abdominal adipose tissue from simple anthropometric measurements? Metabolism 1995, 44, 1617–1625. [Google Scholar] [CrossRef]
- Hume, R. Prediction of lean body mass from height and weight. J. Clin. Pathol. 1966, 19, 389–391. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van der Grinten, C.P.; Gustafsson, P.; et al. ATS/ERS Task Force. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Backman, H.; Eriksson, B.; Hedman, L.; Stridsman, C.; Jansson, S.A.; Sovijärvi, A.; Lindberg, A.; Rönmark, E.; Lundbäck, B. Restrictive spirometric pattern in the general adult population: Methods of defining the condition and consequences on prevalence. Respir. Med. 2016, 120, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017. Report. GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2017, 195, 557–582. [Google Scholar] [CrossRef] [PubMed]
- Van den Borst, B.; Gosker, H.R.; Zeegers, M.P.; Schols, A.M.W.J. Pulmonary function in diabetes: A metaanalysis. Chest 2010, 138, 393–406. [Google Scholar] [CrossRef] [PubMed]
- George, C.; Ducatman, A.M.; Conway, B.N. Increased risk of respiratory diseases in adults with Type 1 and Type 2 diabetes. Diabetes Res. Clin. Pract. 2018, 142, 46–55. [Google Scholar] [CrossRef]
- Schnapf, B.M.; Banks, R.A.; Silverstein, J.H.; Rosenbloom, A.L.; Chesrown, S.E.; Loughlin, G.M. Pulmonary function in insulin-dependent diabetes mellitus with limited joint mobility. Am. Rev. Respir. Dis. 1984, 130, 930–932. [Google Scholar] [PubMed]
- Van Gent, R.; Brackel, H.J.; De Vroede, M.; Van der Ent, C.K. Lung function abnormalities in children with type I diabetes. Respir. Med. 2002, 96, 976–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stubbe, B.; Schipf, S.; Schäper, C.; Felix, S.B.; Steveling, A.; Nauck, M.; Völzke, H.; Wallaschofski, H.; Friedrich, N.; Ewert, R.; et al. Influence of Type 1 Diabetes Mellitus on Pulmonary Function and Exercise Capacity—Results from the Study of Health in Pomerania (SHIP). Exp. Clin. Endocrinol. Diabetes 2017, 125, 64–69. [Google Scholar] [CrossRef]
- Pitocco, D.; Santangeli, P.; Fuso, L.; Zaccardi, F.; Longobardi, A.; Infusino, F.; Incalzi, R.A.; Lanza, G.A.; Crea, F.; Ghirlanda, G. Association between reduced pulmonary diffusing capacity and cardiac autonomic dysfunction in Type 1 diabetes. Diabet. Med. 2008, 25, 1366–1369. [Google Scholar] [CrossRef]
- Fuso, L.; Paladini, L.; Pitocco, D.; Musella, T.; Contu, C.; Maugeri, L.; Santamaria, A.P.; Varone, F.; Ghirlanda, G.; Antonelli Incalzi, R. Pulmonary diffusing capacity for carbon monoxide: A marker of depressed hypercapnic drive in type 1 diabetes mellitus? Diabet. Med. 2011, 28, 1407–1411. [Google Scholar] [CrossRef]
- Lasagna-Reeves, C.A.; Clos, A.L.; Midoro-Hiriuti, T.; Goldblum, R.M.; Jackson, G.R.; Kayed, R. Inhaled insulin forms toxic pulmonary amyloid aggregates. Endocrinology 2010, 151, 4717–4724. [Google Scholar] [CrossRef] [Green Version]
- Lange, P.; Groth, S.; Kastrup, J.; Mortensen, J.; Appleyard, M.; Nyboe, J.; Jensen, G.; Schnohr, P. Diabetes mellitus, plasma glucose and lung function in a cross-sectional population study. Eur. Respir. J. 1989, 2, 14–19. [Google Scholar]
- Ahmadizar, F.; Souverein, P.C.; Arets, H.G.; De Boer, A.; Maitland-van der Zee, A.H. Asthma related medication use and exacerbations in children and adolescents with type 1 diabetes. Pediatr. Pulmonol. 2016, 51, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Vargas, H.A.; Rondón, M.; Dennis, R. Pharmacological treatment and impairment of pulmonary function in patients with type 2 diabetes: A cross-sectional study. Biomedica 2016, 36, 276–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, D.L.; Livingston, J.N.; Maniscalco, W.M.; Finkelstein, J.N. Insulin receptors and insulin effects on type II alveolar epithelial cells. Biochim. Biophys. Acta 1986, 885, 216–220. [Google Scholar] [CrossRef]
- Lecube, A.; Sampol, G.; Muñoz, X.; Lloberes, P.; Hernández, C.; Simó, R. Insulin resistance is related to impaired lung function in morbidly obese women: A case-control study. Diabetes Metab. Res. Rev. 2010, 26, 639–645. [Google Scholar] [CrossRef]
- Davis, W.A.; Knuiman, M.; Kendall, P.; Grange, V.; Davis, T.M. Fremantle Diabetes Study. Glycemic exposure is associated with reduced pulmonary function in type 2 diabetes: The Fremantle Diabetes Study. Diabetes Care 2004, 27, 752–757. [Google Scholar] [CrossRef] [Green Version]
Type 1 Diabetes (n = 75) | Non-Type 1 Diabetes (n = 75) | Mean Difference (95% CI) | p | |
---|---|---|---|---|
Age (years) | 40.7 ± 12.6 | 40.2 ± 12.4 | −0.5 (−4.6 to 3.5) | 0.790 |
Women, n (%) | 53 (71) | 53 (71) | – | 1.000 |
Body mass index (kg/m2) | 24.6 ± 3.7 | 24.3 ± 3.6 | −0.2 (−1.4 to 0.9) | 0.632 |
Waist circumference (cm) | 86.6 ± 12.5 | 89.5 ± 17.7 | 2.8 (−2.1 to 7.8) | 0.262 |
Neck circumference (cm) | 35.6 ± 3.4 | 36.0 ± 4.5 | 0.4 (−2.3 to 3.3) | 0.742 |
Visceral adipose tissue (cm2) | 94.6 ± 78.6 | 102.0 ± 88.6 | 7.3 (−19.6 to 34.4) | 0.591 |
Lean body mass (kg) | 46.8 ± 7.5 | 47.9 ± 6.1 | 1.1 (−1.0 to 3.4) | 0.293 |
Former smoker, n (%) | 13 (17) | 10 (13) | – | 0.820 |
Current smoker, n (%) | 11 (15) | 12 (16) | – | 0.908 |
Fasting glucose (mmol/L) | 8.8 ± 3.5 | 5.9 ± 0.7 | −2.9 (−4.0 to −1.9) | <0.001 |
HbA1c (%) | 7.6 ± 1.1 | 5.1 ± 0.4 | −2.4 (−2.7 to −2.1) | <0.001 |
HbA1c (mmol/mol) | 59.8 ± 12.4 | 33.0 ± 4.3 | −26.7 (−29.7 to −23.7) | <0.001 |
HbA1c ≥7.0%, n (%) | 52 (69.3) | – | - | - |
Type 1 Diabetes (n = 150) | |
---|---|
Age (years) | 38.6 ± 14.9 |
Women, n (%) | 67 (44.7) |
Body mass index (kg/m2) | 24.4 ± 3.8 |
Waist circumference (cm) | 87.5 ± 12.9 |
Visceral adipose tissue (cm2) | 101.3 ± 83.0 |
Lean body mass (kg) | 49.2 ± 7.9 |
Former smoker, n (%) | 16 (10.6) |
Current smoker, n (%) | 36 (24.0) |
Fasting glucose (mmol/L) | 9.9 ± 5.1 |
HbA1c (%) | 8.0 ± 1.6 |
HbA1c (mmol/mol) | 64.0 ± 17.8 |
HbA1c ≥7.0%, n (%) | 107 (71.3) |
Type 1 Diabetes (n = 75) | Non-Type 1 Diabetes (n = 75) | Mean Difference (95% CI) | p | |
---|---|---|---|---|
FVC (% predicted) | 95.0 ± 11.9 | 99.7 ± 11.0 | −4.7 (−8.3 to −1.8) | 0.017 |
FEV1 (% predicted) | 95.2 ± 12.8 | 100.2 ± 10.5 | −6.0 (−9.5 to −2.1) | 0.015 |
FEV1/FVC | 91.7 ± 11.0 | 85.1 ± 6.1 | 6.6 (2.9 to 8.7) | <0.001 |
PEF (% predicted) | 91.7 ± 10.9 | 102.9 ± 16.4 | −11.2 (−16.2 to −6.5) | 0.030 |
FEF25–75% (% predicted) | 87.1 ± 24.1 | 92.4 ± 23.0 | −5.3 (−12.6 to 0.4) | 0.288 |
Restrictive spirometric pattern, n (%) | 8 (10.7) | 0 (0) | – | 0.006 |
FEV1 < 80%, n (%) | 8 (10.7) | 2 (2.7) | – | 0.044 |
Obstructive spirometric pattern, n (%) | 1 (1.3) | 2 (2.7) | – | 0.559 |
FVC (% Predicted) | FEV1 (% Predicted) | PEF (% Predicted) | FEF 25–75 (% Predicted) | |||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
Age (years) | −0.042 | 0.608 | −0.003 | 0.973 | −0.076 | 0.354 | −0.084 | 0.304 |
HbA1c (%) | −0.001 | 0.989 | −0.034 | 0.683 | −0.118 | 0.150 | −0.035 | 0.670 |
Body mass index (kg/m2) | −0.098 | 0.231 | 0.019 | 0.819 | 0.169 | 0.039 | 0.154 | 0.061 |
Waist circumference (cm) | −0.311 | 0.130 | −0.144 | 0.493 | −0.177 | 0.397 | 0.051 | 0.808 |
Visceral AT (cm2) | −0.093 | 0.166 | −0.049 | 0.466 | 0.036 | 0.596 | −0.004 | 0.952 |
TDD of insulin (U/kg/day) | −0.157 | 0.055 | −0.144 | 0.080 | −0.067 | 0.413 | −0.014 | 0.864 |
Basal insulin dose (U/kg/day) | −0.205 | 0.012 | −0.182 | 0.026 | −0.086 | 0.297 | −0.023 | 0.778 |
Bolus insulin dose (U/kg/day) | −0.056 | 0.494 | −0.057 | 0.485 | −0.024 | 0.766 | −0.004 | 0.959 |
Restrictive Spirometric Pattern | OR (95% CI) | p Value | |
---|---|---|---|
Age (years) | 1.00 (0.95 to 1.05) | 0.964 | |
Years with type 1 diabetes | 1.05 (0.99 to 1.11) | 0.076 | |
Sex | Women | Reference | |
Men | 1.58 (0.48 to 5.21) | 0.452 | |
Body mass index (kg/m2) | 1.00 (0.86 to 1.17) | 0.992 | |
HbA1c | <7.0% | Reference | |
≥7.0% | 1.75 (0.47 to 6.54) | 0.404 | |
Basal insulin (U/kg/day) | 77.14 (3.27 to 1816.63) | 0.007 | |
Bolus insulin (U/kg/day) | 0.05 (0.00 to 2.56) | 0.142 | |
Smoking habit | Never | Reference | |
Current | 2.56 (0.41 to 16.00) | 0.315 | |
Former | 0.34 (0.02 to 5.13) | 0.439 | |
Retinopathy | No | Reference | |
Yes | 1.02 (0.28 to 3.68) | 0.975 | |
Nephropathy | No | Reference | |
Yes | 1.04 (0.98 to 1.11) | 0.725 | |
Hosmer–Lemeshow test of fit | 0.975 | ||
Area under the ROC curve | 0.79 (0.69 to 0.90) | <0.001 | |
FEV1 < 80% | |||
Age (years) | 1.05 (1.00 to 1.09) | 0.042 | |
Years with type 1 diabetes | 0.99 (0.95 to 1.04) | 0.794 | |
Sex | Women | Reference | |
Men | 1.51 (0.52 to 4.38) | 0.451 | |
Body mass index (kg/m2) | 1.02 (0.89 to 1.17) | 0.741 | |
HbA1c | <7.0% | Reference | |
≥7.0% | 1.17 (0.36 to 3.75) | 0.798 | |
Basal insulin (U/kg/day) | 29.93 (1.59 to 562.81) | 0.023 | |
Bolus insulin (U/kg/day) | 0.74 (0.03 to 17.48) | 0.854 | |
Smoking habit | Never | Reference | |
Current | 0.91 (0.22 to 3.82) | 0.892 | |
Former | 0.66 (0.10 to 4.23) | 0.663 | |
Retinopathy | No | Reference | |
Yes | 1.81 (0.52 to 6.30) | 0.654 | |
Nephropathy | No | Reference | |
Yes | 2.02 (0.60 to 6.84) | 0.510 | |
Hosmer–Lemeshow test of fit | 0.195 | ||
Area under the ROC curve | 0.73 (0.62 to 0.85) | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, E.; Mizab, C.; Sauret, A.; Barbé, F.; Martí, R.; López-Cano, C.; Hernández, M.; Gutiérrez-Carrasquilla, L.; Carmona, P.; González, J.; et al. Effect of Subcutaneous Insulin on Spirometric Maneuvers in Patients with Type 1 Diabetes: A Case-Control Study. J. Clin. Med. 2020, 9, 1249. https://doi.org/10.3390/jcm9051249
Sánchez E, Mizab C, Sauret A, Barbé F, Martí R, López-Cano C, Hernández M, Gutiérrez-Carrasquilla L, Carmona P, González J, et al. Effect of Subcutaneous Insulin on Spirometric Maneuvers in Patients with Type 1 Diabetes: A Case-Control Study. Journal of Clinical Medicine. 2020; 9(5):1249. https://doi.org/10.3390/jcm9051249
Chicago/Turabian StyleSánchez, Enric, Chadia Mizab, Ariadna Sauret, Ferran Barbé, Raquel Martí, Carolina López-Cano, Marta Hernández, Liliana Gutiérrez-Carrasquilla, Paola Carmona, Jessica González, and et al. 2020. "Effect of Subcutaneous Insulin on Spirometric Maneuvers in Patients with Type 1 Diabetes: A Case-Control Study" Journal of Clinical Medicine 9, no. 5: 1249. https://doi.org/10.3390/jcm9051249
APA StyleSánchez, E., Mizab, C., Sauret, A., Barbé, F., Martí, R., López-Cano, C., Hernández, M., Gutiérrez-Carrasquilla, L., Carmona, P., González, J., Dalmases, M., Hernández, C., Simó, R., & Lecube, A. (2020). Effect of Subcutaneous Insulin on Spirometric Maneuvers in Patients with Type 1 Diabetes: A Case-Control Study. Journal of Clinical Medicine, 9(5), 1249. https://doi.org/10.3390/jcm9051249