Salivary Levels of Titanium, Nickel, Vanadium, and Arsenic in Patients Treated with Dental Implants: A Case-Control Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Study Population
- Single crown implants functioning for >1 year
- No clinical signs of pathologies of the oral mucosa
- Age ≥ 18 years
- Implants classified as clinically healthy
- No antibiotic treatment in the previous three months
- Non-smoker
- No uncontrolled systemic diseases
- Not pregnant or breastfeeding
- No metal reconstruction, crowns or other prosthetic restorations present in the oral cavity
- Single crown implants functioning for >1 year
- No clinical signs of pathologies of the oral mucosa
- Age ≥ 18 years
- Implants with a diagnosis of peri-implantitis
- No antibiotic treatment in the previous three months
- Non-smoker
- No uncontrolled systemic diseases
- Not pregnant or breastfeeding
- No metal reconstruction, crowns or other prosthetic restorations present in the oral cavity
- Absence of dental implants
- No metal reconstruction, crowns or other prosthetic restorations present in the oral cavity
- Age ≥ 18 years
- No clinical signs of pathologies of the oral mucosa
- No antibiotic treatment in the previous three months
- Non-smoker
- No uncontrolled systemic diseases
- Not pregnant or breastfeeding
2.3. Clinical Examination
- Probing pocket depth (PPD) measured in millimeters
- Plaque index (PI) recorded with dichotomic values (present/absent)
- Mucosal redness recorded with dichotomic values (present/absent)
- Suppuration recorded with dichotomic values (present/absent)
- Bleeding on probing recorded with dichotomic values (present/absent)
2.4. Radiographic Assessment
2.5. Saliva Collection
2.6. ICP-MS Analysis
2.7. Statistical Analysis
3. Results
3.1. Titanium
3.2. Nickel
3.3. Vanadium
3.4. Arsenic
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- De Angelis, F.; Papi, P.; Mencio, F.; Rosella, D.; Di Carlo, S.; Pompa, G. Implant survival and success rates in patients with risk factors: Results from a long-term retrospective study with a 10 to 18 years follow-up. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 433–437. [Google Scholar] [PubMed]
- Rossi, F.; Lang, N.P.; Ricci, E.; Ferraioli, L.; Baldi, N.; Botticelli, D. Long-term follow-up of single crowns supported by short, moderately rough implants—A prospective 10-year cohort study. Clin. Oral Implant. Res. 2018, 29, 1212–1219. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; He, X.; Zhang, G.; Hang, R.; Huang, X.; Tang, B.; Zhang, X. Electrochemical corrosion, wear and cell behavior of ZrO(2)/TiO(2) alloyed layer on Ti-6Al-4V. Bioelectrochemistry 2018, 121, 105–114. [Google Scholar] [CrossRef]
- Zhang, R.; Wan, Y.; Ai, X.; Liu, Z.; Zhang, D. Corrosion resistance and biological activity of TiO(2) implant coatings produced in oxygen-rich environments. Proc. Inst. Mech. Eng. Part H 2017, 231, 20–27. [Google Scholar] [CrossRef]
- Delgado-Ruiz, R.; Romanos, G. Potential Causes of Titanium Particle and Ion Release in Implant Dentistry: A Systematic Review. Int. J. Mol. Sci. 2018, 19, 3585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apaza-Bedoya, K.; Tarce, M.; Benfatti, C.A.M.; Henriques, B.; Mathew, M.T.; Teughels, W.; Souza, J.C.M. Synergistic interactions between corrosion and wear at titanium-based dentalimplant connections: A scoping review. J. Periodontal Res. 2017, 52, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Maruthamuthu, S.; Rajasekar, A.; Sathiyanarayanan, S.; Muthukumar, N.; Palaniswamy, N. Electrochemical behaviour of microbes on orthodontic wires. Curr. Sci. 2005, 89, 988–996. [Google Scholar]
- Chang, J.C.; Oshida, Y.; Gregory, R.L.; Andres, C.J.; Barco, T.M.; Brown, D.T. Electrochemical study on microbiology-related corrosion of metallic dental materials. Bio-Med. Mater. Eng. 2003, 13, 281–295. [Google Scholar]
- Souza, J.C.M.; Henriques, M.; Oliveira, R.; Teughels, W.; Celis, J.P.; Rocha, L.A. Do oral biofilms influence the wear and corrosion behavior of titanium titanium? Biofouling 2010, 26, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Mombelli, A.; Hashim, D.; Cionca, N. What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review. Clin. Oral. Implant. Res. 2018, 29, 37–53. [Google Scholar] [CrossRef]
- Boyce, B.F.; Xing, L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys. 2008, 473, 139–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, M.C.; Choi, Y. Biology of the RANKL-RANK-OPG System in Immunity, Bone, and Beyond. Front. Immunol. 2014, 5, 511. [Google Scholar]
- Wachi, T.; Shuto, T.; Shinohara, Y.; Matono, Y.; Makihira, S. Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption. Toxicology 2015, 327, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cadosch, D.; Al-Mushaiqri, M.S.; Gautschi, O.P.; Meagher, J.; Simmen, H.P.; Filgueira, L. Biocorrosion and uptake of titanium by human osteoclasts. J. Biomed. Mater. Res. 2010, 95, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Kato, T.; Ito, T. Influence of titanium ions on cytokine levels of murine splenocytes stimulated with periodontopathic bacterial lipopolysaccharide. Int. J. Oral. Maxillofac. Implant. 2014, 29, 472–477. [Google Scholar]
- La Monaca, G.; Pranno, N.; Annibali, S.; Cristalli, M.P.; Polimeni, A. Clinical and radiographic outcomes of a surgical reconstructive approach in the treatment of peri-implantitis lesions: A 5-year prospective case series. Clin. Oral Implant. Res. 2018, 29, 1025–1037. [Google Scholar] [CrossRef]
- Mencio, F.; De Angelis, F.; Papi, P.; Rosella, D.; Pompa, G.; Di Carlo, S. A randomized clinical trial about presence of pathogenic microflora and risk of peri-implantitis: Comparison of two different types of implant-abutment connections. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1443–1451. [Google Scholar]
- Schwarz, F.; Derks, J.; Monje, A.; Wang, H.L. Peri-implantitis. J. Periodontol. 2018, 89, 267–290. [Google Scholar] [CrossRef]
- Pimentel, S.P.; Shiota, R.; Cirano, F.R.; Casarin, R.C.V.; Pecorari, V.G.A.; Casati, M.Z.; Haas, A.N.; Ribeiro, F.V. Occurrence of peri-implant diseases and risk indicators at the patient and implant levels: A multilevel cross-sectional study. J. Periodontol. 2018, 89, 1091–1100. [Google Scholar] [CrossRef]
- Dreyer, H.; Grischke, J.; Tiede, C.; Eberhard, J.; Schweitzer, A.; Toikkanen, S.E.; Glöckner, S.; Krause, G.; Stiesch, M. Epidemiology and risk factors of peri-implantitis: A systematic review. J. Periodontal Res. 2018, 53, 657–681. [Google Scholar] [CrossRef]
- Papi, P.; Di Murro, B.; Pranno, N.; Bisogni, V.; Saracino, V.; Letizia, C.; Polimeni, A.; Pompa, G. Prevalence of peri-implant diseases among an Italian population of patients with metabolic syndrome: A cross-sectional study. J. Periodontol. 2019, 90, 1374–1382. [Google Scholar] [CrossRef]
- Papi, P.; Letizia, C.; Pilloni, A.; Petramala, L.; Saracino, V.; Rosella, D.; Pompa, G. Peri-implant diseases and metabolic syndrome components: A systematic review. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 866–875. [Google Scholar] [PubMed]
- Kotsakis, G.A.; Lan, C.X.; Barbosa, J.; Lill, K.; Chen, R.Q.; Rudney, J.; Aparicio, C. Antimicrobial agents used in the treatment of peri-implantitis alter the physicochemistry and cytocompatibility of titanium surfaces. J. Periodontol. 2016, 87, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Gurgel, B.C.V.; Montenegro, S.C.L.; Dantas, P.M.C.; Pascoal, A.L.B.; Lima, K.C.; Calderon, P.D.S. Frequency of peri-implant diseases and associated factors. Clin. Oral Implant. Res. 2017, 28, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Dalago, H.; Schuldt Filho, G.; Rodrigues, M.; Renvert, S.; Bianchini, M. Risk indicators for peri-implantitis: A cross-sectional study with 916 implants. Clin. Oral Implant. Res. 2017, 28, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Renvert, S.; Aghazadeh, A.; Hallström, H.; Persson, G.R. Factors related to peri-implantitis—A retrospective study. Clin. Oral Implant. Res. 2014, 25, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Safioti, L.M.; Kotsakis, G.A.; Pozhitkov, A.E.; Chung, W.O.; Daubert, D.M. Increased levels of dissolved titanium are associated with peri-implantitis—A cross-sectional study. J. Periodontol. 2017, 88, 436–442. [Google Scholar] [CrossRef]
- Olmedo, D.G.; Nalli, G.; Verdú, S.; Paparella, M.L.; Cabrini, R.L. Exfoliative cytology and titanium dental implants: A pilot study. J. Periodontol. 2013, 84, 78–83. [Google Scholar] [CrossRef]
- Barbieri, M.; Mencio, F.; Papi, P.; Rosella, D.; Di Carlo, S.; Valente, T.; Pompa, G. Corrosion behavior of dental implants immersed into human saliva: Preliminary results of an in vitro study. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 3543–3548. [Google Scholar]
- Berglundh, T.; Armitage, G.; Araujo, M.G. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45, 286–291. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Olmedo, D.; Fernandez, M.M.; Guglielmotti, M.B.; Cabrini, R.L. Macrophages related to dental implant failure. Implant Dent. 2003, 12, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Zwolak, I. Vanadium carcinogenic, immunotoxic and neurotoxic effects: A review of in vitro studies. Toxicol. Mech. Methods 2014, 24, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Domingo, J.L.; Gómez, M. Vanadium compounds for the treatment of human diabetes mellitus: A scientific curiosity? A review of thirty years of research. Food Chem. Toxicol. 2016, 95, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Imtiaz, M.; Rizwan, M.S.; Xiong, S.; Li, H.; Ashraf, M.; Shahzad, S.M.; Shahzad, M.; Rizwan, M.; Tu, S. Vanadium, recent advancements and research prospects: A review. Environ. Int. 2015, 80, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Gruzewska, K.; Michno, A.; Pawelczyk, T.; Belarczyk, H. Essentiality and toxicity of vanadium supplements in health and pathology. J. Physiol. Pharmacol. 2014, 65, 603–611. [Google Scholar]
- Lu, L.; Vollmer, J.; Moulon, C.; Weltzien, H.U.; Marrack, P.; Kappler, J. Components of the ligand for a Ni++ reactive human T cell clone. J. Exp. Med. 2003, 197, 567–574. [Google Scholar] [CrossRef] [Green Version]
- Saito, M.; Arakaki, R.; Yamada, A.; Tsunematsu, T.; Kudo, Y.; Ishimaru, N. Molecular mechanisms of nickel allergy. Int. J. Mol. Sci. 2016, 17, 202. [Google Scholar] [CrossRef] [Green Version]
- Girolomoni, G.; Gisondi, P.; Ottaviani, C.; Cavani, A. Immunoregulation of allergic contact dermatitis. J. Dermatol. 2004, 31, 264–270. [Google Scholar] [CrossRef]
- Martín-Cameán, A.; Jos, A.; Calleja, A.; Gil, F.; Iglesias, A.; Solano, E.; Cameán, A.M. Validation of a method to quantify titanium, vanadium and zirconium in oral mucosa cells by inductively coupled plasma-mass spectrometry (ICP-MS). Talanta 2014, 118, 238–244. [Google Scholar] [CrossRef]
- Martín-Cameán, A.; Jos, A.; Puerto, M.; Calleja, A.; Iglesias-Linares, A.; Solano, E.; Cameán, A.M. In vivo determination of aluminum, cobalt, chromium, copper, nickel, titanium and vanadium in oral mucosa cells from orthodontic patients with mini-implants by inductively coupled plasma-mass spectrometry (ICP-MS). J. Trace Elem. Med. Biol. 2015, 32, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Martín-Cameán, A.; Molina-Villalba, I.; Jos, A.; Iglesias-Linares, A.; Solano, E.; Cameán, A.M.; Gil, F. Biomonitorization of chromium, copper, iron, manganese and nickel in scalp hair from orthodontic patients by atomic absorption spectrometry. Environ. Toxicol. Pharmacol. 2014, 37, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Noronha Oliveira, M.; Schunemann, W.V.H.; Mathew, M.T.; Henriques, B.; Magini, R.S.; Teughels, W.; Souza, J.C.M. Can degradation products released from dental implants affect peri-implant tissues? J. Periodontal Res. 2018, 53, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.M.; Douglas-de-Oliveira, D.W.; Oliveira Costa, F. Could the biomarker levels in saliva help distinguish between healthy implants and implants with peri-implant disease? A systematic review. Arch. Oral Biol. 2018, 96, 216–222. [Google Scholar] [CrossRef]
- Pettersson, M.; Pettersson, J.; Johansson, A.; Molin Thorén, M. Titanium release in peri-implantitis. J. Oral Rehabil. 2019, 46, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Eger, M.; Sterer, N.; Liron, T.; Kohavi, D.; Gabet, Y. Scaling of titanium implants entrains inflammation-induced osteolysis. Sci. Rep. 2017, 7, 39612. [Google Scholar] [CrossRef]
Study Variable | Group A | Group B | Group C |
---|---|---|---|
Sample size | 26 | 24 | 50 |
Male | 11 | 11 | 20 |
Female | 15 | 13 | 30 |
Age (y) ± SD (range) | 63.13 ± 17.72 | 70.52 ± 8.24 | 46.57 ± 9.23 |
Dental implants (n) | 26 | 24 | NA |
Functional loading (y) ± SD (range) | 7.8 ± 2.62 | 9.88 ± 3.52 | NA |
Mean PPD (mm) | 3.2 ± 0.44 | 4.66 ± 1.32 | NA |
Mean MBL (mm) | 0.89 ± 0.32 | 1.95 ± 1.43 | NA |
Multiple Comparisons | |||||||
---|---|---|---|---|---|---|---|
Tukey’s HSD | |||||||
Dependent Variable | (I) Groups | (J) Groups | Mean Difference (I-J) | Std. Error | Sig. | 95% Confidence Interval | |
Lower Bound | Upper Bound | ||||||
Titanium | Group C | Group A | −352.951280 * | 59.517272 | 0.000 | −494.61555 | −211.28701 |
Group B | −356.184613 * | 61.127007 | 0.000 | −501.68041 | −210.68882 | ||
Group A | Group C | 352.951280 * | 59.517272 | 0.000 | 211.28701 | 494.61555 | |
Group B | −3.233333 | 69.678791 | 0.999 | −169.08426 | 162.61760 | ||
Group B | Group C | 356.184613 * | 61.127007 | 0.000 | 210.68882 | 501.68041 | |
Group A | 3.233333 | 69.678791 | 0.999 | −162.61760 | 169.08426 | ||
Nickel | Group C | Group A | −20.215246 * | 2.410887 | 0.000 | −25.95369 | −14.47680 |
Group B | −18.728483 * | 2.476093 | 0.000 | −24.62213 | −12.83483 | ||
Group A | Group C | 20.215246 * | 2.410887 | 0.000 | 14.47680 | 25.95369 | |
Group B | 1.486763 | 2.822503 | 0.858 | −5.23142 | 8.20494 | ||
Group B | Group C | 18.728483 * | 2.476093 | 0.000 | 12.83483 | 24.62213 | |
Group A | −1.486763 | 2.822503 | 0.858 | −8.20494 | 5.23142 | ||
Vanadium | Group C | Group A | −0.965529 | 0.809320 | 0.460 | −2.89189 | 0.96083 |
Group B | −0.707260 | 0.831209 | 0.672 | −2.68572 | 1.27120 | ||
Group A | Group C | 0.965529 | 0.809320 | 0.460 | −0.96083 | 2.89189 | |
Group B | 0.258269 | 0.947497 | 0.960 | −1.99698 | 2.51352 | ||
Group B | Group C | 0.707260 | 0.831209 | 0.672 | −1.27120 | 2.68572 | |
Group A | −0.258269 | 0.947497 | 0.960 | −2.51352 | 1.99698 | ||
Arsenic | Group C | Group A | −2.193412 * | 0.336286 | 0.000 | −2.99385 | −1.39298 |
Group B | −1.525553 * | 0.345382 | 0.000 | −2.34764 | −0.70347 | ||
Group A | Group C | 2.193412 * | 0.336286 | 0.000 | 1.39298 | 2.99385 | |
Group B | 0.667859 | 0.393701 | 0.212 | −0.26924 | 1.60496 | ||
Group B | Group C | 1.525553 * | 0.345382 | 0.000 | 0.70347 | 2.34764 | |
Group A | −0.667859 | 0.393701 | 0.212 | −1.60496 | 0.26924 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papi, P.; Raco, A.; Pranno, N.; Di Murro, B.; Passarelli, P.C.; D’Addona, A.; Pompa, G.; Barbieri, M. Salivary Levels of Titanium, Nickel, Vanadium, and Arsenic in Patients Treated with Dental Implants: A Case-Control Study. J. Clin. Med. 2020, 9, 1264. https://doi.org/10.3390/jcm9051264
Papi P, Raco A, Pranno N, Di Murro B, Passarelli PC, D’Addona A, Pompa G, Barbieri M. Salivary Levels of Titanium, Nickel, Vanadium, and Arsenic in Patients Treated with Dental Implants: A Case-Control Study. Journal of Clinical Medicine. 2020; 9(5):1264. https://doi.org/10.3390/jcm9051264
Chicago/Turabian StylePapi, Piero, Andrea Raco, Nicola Pranno, Bianca Di Murro, Pier Carmine Passarelli, Antonio D’Addona, Giorgio Pompa, and Maurizio Barbieri. 2020. "Salivary Levels of Titanium, Nickel, Vanadium, and Arsenic in Patients Treated with Dental Implants: A Case-Control Study" Journal of Clinical Medicine 9, no. 5: 1264. https://doi.org/10.3390/jcm9051264
APA StylePapi, P., Raco, A., Pranno, N., Di Murro, B., Passarelli, P. C., D’Addona, A., Pompa, G., & Barbieri, M. (2020). Salivary Levels of Titanium, Nickel, Vanadium, and Arsenic in Patients Treated with Dental Implants: A Case-Control Study. Journal of Clinical Medicine, 9(5), 1264. https://doi.org/10.3390/jcm9051264