Predicting Total Knee Replacement from Symptomology and Radiographic Structural Change Using Artificial Neural Networks—Data from the Osteoarthritis Initiative (OAI)
Abstract
:1. Introduction
2. Material and Methods
2.1. The Osteoarthritis Initiative
2.2. Sample Selection
2.3. Clinical Data
2.4. Analysis Strategy
2.5. Statistical Methods
3. Results
3.1. Demographic Data
3.2. Change in Symptomology
3.3. Structural Change as Evaluated by Kellgren and Lawrence Grading
3.4. Prediction of TKR Using Artificial Neural Networks
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- White, D.K.; Neogi, T.; Nguyen, U.-S.; Niu, J.; Zhang, Y. Trajectories of functional decline in knee osteoarthritis: The Osteoarthritis Initiative. Rheumatology 2015, 55, 801–808. [Google Scholar] [CrossRef] [Green Version]
- Cross, M.; Smith, E.; Hoy, D.G.; Nolte, S.; Ackerman, I.N.; Fransen, M.; Bridgett, L.; Williams, S.; Guillemin, F.; Hill, C.L.; et al. The global burden of hip and knee osteoarthritis: Estimates from the global burden of disease 2010 study. Ann. Rheum. Dis. 2014, 73, 1323–1330. [Google Scholar] [CrossRef]
- Guccione, A.; Felson, D.; Anderson, J.J.; Anthony, J.M.; Zhang, Y.; Wilson, P.W.; Kelly-Hayes, M.; Wolf, P.A.; Kreger, B.E.; Kannel, W.B. The effects of specific medical conditions on the functional limitations of elders in the Framingham Study. Am. J. Public Health 1994, 84, 351–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, C.J.; Richards, M.A.; Newton, J.N.; Fenton, K.A.; Anderson, H.R.; Atkinson, C.; Bennett, D.; Bernabe, E.; Blencowe, H.; Bourne, R.; et al. UK health performance: Findings of the Global Burden of Disease Study 2010. Lancet 2013, 381, 997–1020. [Google Scholar] [CrossRef]
- Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012, 64, 1697–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Manen, M.D.; Nace, J.; Mont, M.A. Management of primary knee osteoarthritis and indications for total knee arthroplasty for general practitioners. J. Am. Osteopath. Assoc. 2012, 112, 709–715. [Google Scholar] [PubMed]
- Feeley, B.T.; Gallo, R.A.; Sherman, S.; Williams, R.J. Management of osteoarthritis of the knee in the active patient. J. Am. Acad. Orthop. Surg. 2010, 18, 406–416. [Google Scholar] [CrossRef]
- Gossec, L.; Paternotte, S.; Maillefert, J.F.; Combescure, C.; Conaghan, P.G.; Davis, A.M.; Gunther, K.-P.; Hawker, G.; Hochberg, M.; Katz, J.N.; et al. The role of pain and functional impairment in the decision to recommend total joint replacement in hip and knee osteoarthritis: An international cross-sectional study of 1909 patients. Report of the OARSI-OMERACT Task Force on total joint replacement. Osteoarthr. Cartil. 2011, 19, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.A.; Voaklander, D.C.; Suarez-Alma, M.E. Determinants of function after total knee arthroplasty. Phys. Ther. 2003, 83, 696–706. [Google Scholar] [CrossRef] [Green Version]
- Löfvendahl, S.; Bizjajeva, S.; Ranstam, J.; Lidgren, L. Indications for hip and knee replacement in Sweden. J. Eval. Clin. Pract. 2011, 17, 251–260. [Google Scholar] [CrossRef]
- Mancuso, C.A.; Ranawat, C.S.; Esdaile, J.M.; Johanson, N.A.; Charlson, M.E. Indications for total hip and total knee arthroplasties. Results of orthopaedic surveys. J. Arthroplast. 1996, 11, 34–46. [Google Scholar] [CrossRef]
- Verra, W.C.; Witteveen, K.Q.; Maier, A.B.; Gademan, M.G.J.; Van Der Linden, H.M.J.; Nelissen, R.G.H.H. The reason why orthopaedic surgeons perform total knee replacement: Results of a randomised study using case vignettes. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2697–2703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, D.J.; Guermazi, A.; Roemer, F.; Zhang, Y.; Neogi, T. Structural correlates of pain in joints with osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1170–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterfy, C.G.; Schneider, E.; Nevitt, M. The osteoarthritis initiative: Report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthr. Cartil. 2008, 16, 1433–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hitzl, W.; Wirth, W.; Maschek, S.; Cotofana, S.; Nevitt, M.; John, M.R.; Ladel, C.; Eckstein, F. Greater Lateral Femorotibial Cartilage Loss in Osteoarthritis Initiative Participants With Incident Total Knee Arthroplasty: A Prospective Cohort Study. Arthritis Care Res. 2015, 67, 1481–1486. [Google Scholar] [CrossRef] [Green Version]
- Heilmeier, U.; Wamba, J.M.; Joseph, G.B.; Darakananda, K.; Callan, J.; Neumann, J.; Link, T.M. Baseline knee joint effusion and medial femoral bone marrow edema, in addition to MRI-based T2 relaxation time and texture measurements of knee cartilage, can help predict incident total knee arthroplasty 4-7 years later: Data from the Osteoarthritis Initiative. Skelet. Radiol. 2019, 48, 89–101. [Google Scholar]
- Cicuttini, F.M.; Jones, G.; Forbes, A.B.; Wluka, A.E. Rate of cartilage loss at two years predicts subsequent total knee arthroplasty: A prospective study. Ann. Rheum. Dis. 2004, 63, 1124–1127. [Google Scholar] [CrossRef] [Green Version]
- Gossec, L.; Tubach, F.; Baron, G.; Ravaud, P.; Logeart, I.; Dougados, M. Predictive factors of total hip replacement due to primary osteoarthritis: A prospective 2 year study of 505 patients. Ann. Rheum. Dis. 2005, 64, 1028–1032. [Google Scholar] [CrossRef] [Green Version]
- Chan, W.P.; Hsu, S.-M.; Huang, G.-S.; Yao, M.-S.; Chang, Y.-C.; Ho, W.-P. Creation of a reflecting formula to determine a patient’s indication for undergoing total knee arthroplasty. J. Orthop. Sci. 2010, 15, 44–50. [Google Scholar] [CrossRef]
- Zeni, J.A., Jr.; Axe, M.J.; Snyder-Mackler, L. Clinical predictors of elective total joint replacement in persons with end-stage knee osteoarthritis. BMC Musculoskelet. Disord. 2010, 11, 86. [Google Scholar] [CrossRef] [Green Version]
- Osteoarthritis Initiative (OAI) Guidelines For Publications Using Public Use Data Sets. Available online: https://oai.epi-ucsf.org/datarelease/Docs/OAIPubsGuidePublicData.pdf (accessed on 8 March 2020).
- Eckstein, F.; Boudreau, R.; Wang, Z.; Hannon, M.J.; Duryea, J.; Wirth, W.; Cotofana, S.; Guermazi, A.; Roemer, F.; Nevitt, M.; et al. Comparison of radiographic joint space width and magnetic resonance imaging for prediction of knee replacement: A longitudinal case-control study from the Osteoarthritis Initiative. Eur. Radiol. 2016, 26, 1942–1951. [Google Scholar] [CrossRef] [PubMed]
- Steidle-Kloc, E.; Wirth, W.; Glass, N.; Ruhdorfer, A.; Cotofana, S.; Eckstein, F.; Segal, N.; Steidle, E. Is Pain in One Knee Associated with Isometric Muscle Strength in the Contralateral Limb?: Data From the Osteoarthritis Initiative. Am. J. Phys. Med. Rehabil. 2015, 94, 792–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckstein, F.; Wirth, W.; Nevitt, M.C. Recent advances in osteoarthritis imaging—The osteoarthritis initiative. Nat. Rev. Rheumatol. 2012, 8, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Kellgren, J.L.J. Atlas of Standard Radiographs; Blackwell Scientific: Oxford, UK, 1963. [Google Scholar]
- Haugen, I.K.; Englund, M.; Aliabadi, P.; Niu, J.; Clancy, M.; Kvien, T.K.; Felson, D. Prevalence, incidence and progression of hand osteoarthritis in the general population: The Framingham Osteoarthritis Study. Ann. Rheum. Dis. 2011, 70, 1581–1586. [Google Scholar] [CrossRef] [PubMed]
- Roos, E.M.; Lohmander, L.S. The Knee injury and Osteoarthritis Outcome Score (KOOS): From joint injury to osteoarthritis. Health Qual. Life Outcomes 2003, 1, 64. [Google Scholar] [CrossRef] [Green Version]
- Bellamy, N.; Buchanan, W.W.; Goldsmith, C.H.; Campbell, J.; Stitt, L.W. Validation study of WOMAC: A health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J. Rheumatol. 1988, 15, 1833–1840. [Google Scholar]
- Zobel, I.; Erfani, T.; Bennell, K.L.; Makovey, J.; Metcalf, B.; Chen, J.S.; March, L.; Zhang, Y.; Eckstein, F.; Hunter, D.J.; et al. Relationship of Buckling and Knee Injury to Pain Exacerbation in Knee Osteoarthritis: A Web-Based Case-Crossover Study. Interact. J. Med. Res. 2016, 5, e17. [Google Scholar] [CrossRef]
- Bishop, C. Neural Networks for Pattern Recognition; Oxford University Press, Inc.: New York, NY, USA, 1995. [Google Scholar]
- Yu, D.; Jordan, K.P.; Snell, K.I.; Riley, R.D.; Bedson, J.; Edwards, J.; Mallen, C.D.; Tan, V.; Ukachukwu, V.; Prieto-Alhambra, D.; et al. Development and validation of prediction models to estimate risk of primary total hip and knee replacements using data from the UK: Two prospective open cohorts using the UK Clinical Practice Research Datalink. Ann. Rheum. Dis. 2019, 78, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Fei, Y.; Hu, J.; Li, W.; Wang, W.; Zong, G. Artificial neural networks predict the incidence of portosplenomesenteric venous thrombosis in patients with acute pancreatitis. J. Thromb. Haemost. 2017, 15, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.E.; Nugent, C.D.; McClean, S.I. Evaluation of inherent performance of intelligent medical decision support systems: Utilising neural networks as an example. Artif. Intell. Med. 2003, 27, 1–27. [Google Scholar] [CrossRef]
- Statnikov, A.; Aliferis, C.; Tsamardinos, I.; Hardin, D.; Levy, S.E. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 2005, 21, 631–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, A.K.; Hitzl, W.; Iglseder, B. Three-question dementia screening. Development of the Salzburg Dementia Test Prediction (SDTP). Z. Gerontol. Geriatr. 2014, 47, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.D.; Brown, E.W. Artificial Intelligence in Medical Practice: The Question to the Answer? Am. J. Med. 2018, 131, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2015, 13, 8–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Demographics | |
Females (%) | 100 (60) |
Age (SD) | 64.5 (8.4) |
Body Mass Index (SD) | 29.7 (4.7) |
Ethnicity | |
Other Non-White (%) | 2 (1.2) |
Caucasian (%) | 140 (85) |
African American (%) | 20 (12) |
Asian (%) | 2 (1.2) |
Not Available (%) | 1 (0.6) |
Medication | |
Any Medication Used for Pain, Aching or Stiffness (%) | 98 (59) |
Annual Income in United States Dollar (USD) | |
Less Than 10,000 (%) | 2 (1.3) |
10,000 < 25,000 (%) | 16 (9.7) |
25,000 < 50,000 (%) | 41 (25) |
50,000 < 100,000 (%) | 57 (35) |
>100,000 (%) | 39 (24) |
Not available (%) | 10 (6) |
Education | |
Less Than High School (%) | 6 (3.5) |
High School (%) | 31 (19) |
Any College (%) | 44 (27) |
College Graduate (%) | 29 (18) |
Any Graduate School (%) | 12 (7) |
Graduate Degree (%) | 42 (25) |
Not Available (%) | 1 (0.5) |
Depression | |
At Risk for Clinical Depression (%) | 15 (9) |
Start of Knee Symptoms Prior to Baseline Screening Visit | |
None (%) | 11 (6.6) |
0–1 year (%) | 21 (12.6) |
2–5 years (%) | 47 (28.1) |
> 5 years (%) | 67 (40.1) |
Not Available (%) | 21 (12.6) |
Total Knee Replacement at Which Year | |
Between Baseline and 1-Year Follow-up Screening Visit (%) | 24 (15) |
Between 1-Year and 2-Year Follow-up Screening Visit (%) | 33 (20) |
Between 2-Year and 3-Year Follow-up Screening Visit (%) | 40 (24) |
Between 3-Year and 4-Year Follow-up Screening Visit (%) | 38 (23) |
Between 4-Year and 5-Year Follow-up Screening Visit (%) | 30 (18) |
0 Years Prior TKR | 1 Year Prior TKR | 2 Years Prior TKR | 3 Years Prior TKR | 4 Years Prior TKR | |
---|---|---|---|---|---|
n = 165 | n = 140 | n = 107 | n =68 | n =30 | |
Quality of Life | 43 (25–56.3) | 50 (37.5–62.5) | 50 (31.3–62.5) | 50 (37.5–62.5) | 56.3 (43.8–68.8) |
WOMAC Pain Subscore | 8 (4–11) | 5 (3–8) | 5 (2–7.25) | 4 (3–7) | 4 (0–6) |
WOMAC Total Score | 34.3 (24–48) | 26 (12–36.1) | 21.4 (9.2–37.5) | 22.5 (10.4–34.7) | 19 (4–27) |
Pain Intensity | 7 (5–8) | 5 (4–7) | 5 (4–7) | 5 (3–6) | 4 (2–6) |
Kellgren and Lawrence Grades (%) 1 | *** | ** | ** | * | |
0 | 2 (1) | 4 (3) | 3 (3) | 2 (3) | 3 (10) |
1 | 2 (1) | 2 (1) | 2 (2) | 6 (9) | 3 (10) |
2 | 15 (9) | 21 (15) | 21 (19) | 12 (18) | 4 (13) |
3 | 46 (28) | 44 (31) | 33 (31) | 25 (37) | 14 (47) |
4 | 92 (56) | 64 (46) | 47 (44) | 22 (32) | 6 (20) |
Not Available | 8 (5) | 5 (4) | 1 (1) | 1 (1) | 0 (0) |
0 vs. 1 Years | 1 vs. 2 Years | 2 vs. 3 Years | 3 vs. 4 Years | |
---|---|---|---|---|
Median Difference, 95% CI, p-value | ||||
Quality of Life 1 | 9.4 (6.3–12.6) p < 0.0001 *** | 0 (−3.2–3.2) p = 0.73 | 0 (−6.2–6.2) p = 0.99 | 0 (−6.2–12.5) p = 0.32 |
WOMAC Pain Subscore 1 | 0.5 (1.5–3) p < 0.0001 *** | 0.5 (−0.3–1) p = 0.27 | 0 (−1.0–1.0) p = 0.75 | 1.2 (−0.5–3) p = 0.12 |
WOMAC Total Score 1 | 9.7 (7–12.5) p < 0.0001 *** | 2.6 (−0.1–5.4) p = 0.062 | 1.8 (−1.5–4.9) p = 0.24 | 2.3 (−1.8–7.2) p = 0.23 |
Pain Intensity 1 | 1.5 (1–2) p < 0.0001 *** | 0.5 (0.3–1.5) p = 0.014 * | 0 (−0.5–1.0) p = 0.89 | 0 (−1.0–1.5) p = 0.92 |
Change in KLG ≥ 2 | ||||
0 vs. 1 years | 1 vs. 2 years | 2 vs. 3 years | 3 vs. 4 years | |
Kellgren and Lawrence grades 2 | p = 0.0002 *** | p = 0.008 * | p = 0.002 * | p = 0.045 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heisinger, S.; Hitzl, W.; Hobusch, G.M.; Windhager, R.; Cotofana, S. Predicting Total Knee Replacement from Symptomology and Radiographic Structural Change Using Artificial Neural Networks—Data from the Osteoarthritis Initiative (OAI). J. Clin. Med. 2020, 9, 1298. https://doi.org/10.3390/jcm9051298
Heisinger S, Hitzl W, Hobusch GM, Windhager R, Cotofana S. Predicting Total Knee Replacement from Symptomology and Radiographic Structural Change Using Artificial Neural Networks—Data from the Osteoarthritis Initiative (OAI). Journal of Clinical Medicine. 2020; 9(5):1298. https://doi.org/10.3390/jcm9051298
Chicago/Turabian StyleHeisinger, Stephan, Wolfgang Hitzl, Gerhard M. Hobusch, Reinhard Windhager, and Sebastian Cotofana. 2020. "Predicting Total Knee Replacement from Symptomology and Radiographic Structural Change Using Artificial Neural Networks—Data from the Osteoarthritis Initiative (OAI)" Journal of Clinical Medicine 9, no. 5: 1298. https://doi.org/10.3390/jcm9051298
APA StyleHeisinger, S., Hitzl, W., Hobusch, G. M., Windhager, R., & Cotofana, S. (2020). Predicting Total Knee Replacement from Symptomology and Radiographic Structural Change Using Artificial Neural Networks—Data from the Osteoarthritis Initiative (OAI). Journal of Clinical Medicine, 9(5), 1298. https://doi.org/10.3390/jcm9051298