Lower Activity and Function Scores Are Associated with a Higher Risk of Preoperative Deep Venous Thrombosis in Patients Undergoing Total Hip Arthroplasty
Abstract
:1. Introduction
2. Patients and Methods
Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Samama, C.M. Fast-Track Procedures in Major Orthopaedic Surgery: Is Venous Thromboembolism Prophylaxis Still Mandatory? Thromb. Haemost. 2019, 119, 3–5. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Chan, N.C.; Ibrahim, Q.; Kruger, P.; Sinha, S.; Bhagirath, V.; Ginsberg, J.; Bangdiwala, S.; Guyatt, G.; Eikelboom, J.; et al. Reduction in Mortality following Elective Major Hip and Knee Surgery: A Systematic Review and Meta-Analysis. Thromb. Haemost. 2019, 119, 668–674. [Google Scholar] [CrossRef]
- Falck-Ytter, Y.; Francis, C.W.; Johanson, N.A.; Curley, C.; Dahl, O.E.; Schulman, S.; Ortel, T.L.; Pauker, S.G.; Colwell, C.W. Prevention of VTE in orthopedic surgery patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012, 141 (Suppl. 2), e278S–e325S. [Google Scholar] [CrossRef] [Green Version]
- Wakabayashi, H.; Hasegawa, M.; Niimi, R.; Sudo, A. Clinical analysis of preoperative deep vein thrombosis risk factors in patients undergoing total hip arthroplasty. Thromb. Res. 2015, 136, 855–858. [Google Scholar] [CrossRef]
- Imai, N.; Miyasaka, D.; Shimada, H.; Suda, K.; Ito, T.; Endo, N. Usefulness of a novel method for the screening of deep vein thrombosis by using a combined D-dimer- and age-based index before total hip arthroplasty. PLoS ONE 2017, 12, e0172849. [Google Scholar] [CrossRef]
- Beksac, B.; Gonzalez Della Valle, A.; Salvati, E.A. Thromboembolic disease after total hip arthroplasty: Who is at risk? Clin. Orthop. Relat. Res. 2006, 453, 211–224. [Google Scholar] [CrossRef]
- Baser, O.; Supina, D.; Sengupta, N.; Wang, L.; Kwong, L. Impact of postoperative venous thromboembolism on Medicare recipients undergoing total hip replacement or total knee replacement surgery. Am. J. Health Syst. Pharm. 2010, 67, 1438–1445. [Google Scholar] [CrossRef]
- Pedersen, A.B.; Mehnert, F.; Sorensen, H.T.; Emmeluth, C.; Overgaard, S.; Johnsen, S.P. The risk of venous thromboembolism, myocardial infarction, stroke, major bleeding and death in patients undergoing total hip and knee replacement: A 15-year retrospective cohort study of routine clinical practice. Bone Jt. J. 2014, 96, 479–485. [Google Scholar] [CrossRef]
- Wu, P.-K.; Chen, C.-F.; Chung, L.-H.; Liu, C.-L.; Chen, W.-M. Population-based epidemiology of postoperative venous thromboembolism in Taiwanese patients receiving hip or knee arthroplasty without pharmacological thromboprophylaxis. Thromb. Res. 2014, 133, 719–724. [Google Scholar] [CrossRef]
- Pedersen, A.B.; Mehnert, F.; Johnsen, S.P.; Husted, S.; Sorensen, H.T. Venous thromboembolism in patients having knee replacement and receiving thromboprophylaxis: A Danish population-based follow-up study. J. Bone Jt. Surg. Am. 2011, 93, 1281–1287. [Google Scholar] [CrossRef]
- Guijarro, R.; Montes, J.; Roman, C.S.; Arcelus, J.I.; Barillari, G.; Granero, X.; Monreal, M. Venous thromboembolism and bleeding after total knee and hip arthroplasty. Findings from the Spanish National Discharge Database. Thromb. Haemost. 2011, 105, 610–615. [Google Scholar] [CrossRef]
- Cohen, A.; Eriksson, B.I.; Puskas, D.; Shi, M.; Bocanegra, T.; Weitz, J.; Raskob, G.E. Oral direct factor Xa inhibition with edoxaban for thromboprophylaxis after elective total hip replacement. A randomised double-blind dose-response study. Thromb. Haemost. 2010, 104, 642–649. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, A.; Labonte, A.J.; Winter, M.R.; Segal, J.B.; Silliman, R.A.; Katz, J.N.; Losina, E.; Berlowitz, D. Risk of venous thromboembolism after total hip and knee replacement in older adults with comorbidity and co-occurring comorbidities in the Nationwide Inpatient Sample (2003–2006). BMC Geriatr. 2010, 10, 63. [Google Scholar] [CrossRef] [Green Version]
- Joseph, J.E.; Low, J.; Courtenay, B.; Neil, M.J.; McGrath, M.; Ma, D. A single-centre prospective study of clinical and haemostatic risk factors for venous thromboembolism following lower limb arthroplasty. Br. J. Haematol. 2005, 129, 87–92. [Google Scholar] [CrossRef]
- Kang, B.J.; Lee, Y.-K.; Kim, H.J.; Ha, Y.-C.; Koo, K.-H. Deep venous thrombosis and pulmonary embolism are uncommon in East Asian patients after total hip arthroplasty. Clin. Orthop. Relat. Res. 2011, 469, 3423–3428. [Google Scholar] [CrossRef] [Green Version]
- Baser, O.; Supina, D.; Sengupta, N.; Wang, L.; Kwong, L. Clinical and cost outcomes of venous thromboembolism in Medicare patients undergoing total hip replacement or total knee replacement surgery. Curr. Med. Res. Opin. 2011, 27, 423–429. [Google Scholar] [CrossRef]
- Friedman, R.J.; Hess, S.; Berkowitz, S.D.; Homering, M. Complication rates after hip or knee arthroplasty in morbidly obese patients. Clin. Orthop. Relat. Res. 2013, 471, 3358–3366. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, N.M. Venous thrombosis of the lower limbs with particular reference to bed-rest. Br. J. Surg. 1957, 45, 209–236. [Google Scholar] [CrossRef]
- Jørgensen, P.S.; Warming, T.; Hansen, K.; Paltved, C.; Berg, H.V.; Jensen, R.; Kirchhoff-Jensen, R.; Kjaer, L.; Kerbouche, N.; Leth-Espensen, P.; et al. Low molecular weight heparin (Innohep) as thromboprophylaxis in outpatients with a plaster cast: A venografic controlled study. Thromb. Res. 2002, 105, 477–480. [Google Scholar] [CrossRef]
- Lassen, M.R.; Borris, L.C.; Nakov, R.L. Use of the low-molecular-weight heparin reviparin to prevent deep-vein thrombosis after leg injury requiring immobilization. N. Engl. J. Med. 2002, 347, 726–730. [Google Scholar] [CrossRef]
- Murray, D.W.; Fitzpatrick, R.; Rogers, K.; Pandit, H.G.; Beard, D.J.; Carr, A.J.; Dawson, J. The use of the Oxford hip and knee scores. J. Bone Jt. Surg. Br. 2007, 89, 1010–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field, R.E.; Cronin, M.D.; Singh, P.J. The Oxford hip scores for primary and revision hip replacement. J. Bone Jt. Surg. Br. 2005, 87, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Amstutz, H.C.; Thomas, B.J.; Jinnah, R.; Kim, W.; Grogan, T.; Yale, C. Treatment of primary osteoarthritis of the hip. A comparison of total joint and surface replacement arthroplasty. J. Bone Jt. Surg. Am. 1984, 66, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Naal, F.D.; Impellizzeri, F.M.; Leunig, M. Which is the best activity rating scale for patients undergoing total joint arthroplasty? Clin. Orthop. Relat. Res. 2009, 467, 958–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weel, H.; Lindeboom, R.; Kuipers, S.E.; Vervest, T.M.J.S. Comparison between the Harris- and Oxford Hip Score to evaluate outcomes one-year after total hip arthroplasty. Acta Orthop. Belg. 2017, 83, 98–109. [Google Scholar] [PubMed]
- Parsons, N.R.; De Souza, R.-M.; Oni, T.; Achten, J.; Krikler, S.J.; Costa, M.L. A comparison of Harris and Oxford hip scores for assessing outcome after resurfacing arthroplasty of the hip: Can the patient tell us everything we need to know. HIP Int. 2010, 20, 453–459. [Google Scholar] [CrossRef]
- Beaule, P.E.; Dorey, F.J.; Hoke, R.; Le Duff, M.; Amstutz, H.C. The value of patient activity level in the outcome of total hip arthroplasty. J. Arthroplast. 2006, 21, 547–552. [Google Scholar] [CrossRef]
- Sechriest, V.F., 2nd; Kyle, R.F.; Marek, D.J.; Spates, J.D.; Saleh, K.J.; Kuskowski, M. Activity level in young patients with primary total hip arthroplasty: A 5-year minimum follow-up. J. Arthroplast. 2007, 22, 39–47. [Google Scholar] [CrossRef]
- Kawai, T.; Kataoka, M.; Goto, K.; Kuroda, Y.; So, K.; Matsuda, S. Patient- and Surgery-Related Factors that Affect Patient-Reported Outcomes after Total Hip Arthroplasty. J. Clin. Med. 2018, 7, 358. [Google Scholar] [CrossRef] [Green Version]
- Heit, J.A.; Silverstein, M.D.; Mohr, D.N.; Petterson, T.M.; O’Fallon, W.M.; Melton, L.J., 3rd. Risk factors for deep vein thrombosis and pulmonary embolism: A population-based case-control study. Arch. Intern. Med. 2000, 160, 809–815. [Google Scholar] [CrossRef] [Green Version]
- Akeda, K.; Matsunaga, H.; Imanishi, T.; Hasegawa, M.; Sakakibara, T.; Kasai, Y.; Sudo, A. Prevalence and countermeasures for venous thromboembolic diseases associated with spinal surgery: A follow-up study of an institutional protocol in 209 patients. Spine (Phila Pa 1976) 2014, 39, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Shiozaki, T.; Tabata, T.; Motohashi, T.; Kondo, E.; Tanida, K.; Okugawa, T.; Ikeda, T. Preoperative management of patients with gynecologic malignancy complicated by existing venous thromboembolism. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 164, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Sloan, M.; Sheth, N.; Lee, G.-C. Is Obesity Associated with Increased Risk of Deep Vein Thrombosis or Pulmonary Embolism After Hip and Knee Arthroplasty? A Large Database Study. Clin. Orthop. Relat. Res. 2019, 477, 523–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieber, B.; Han, J.; Appelboom, G.; Taylor, B.E.; Han, B.; Agarwal, N.; Connolly, E.S. Association of Steroid Use with Deep Venous Thrombosis and Pulmonary Embolism in Neurosurgical Patients: A National Database Analysis. World Neurosurg. 2016, 89, 126–132. [Google Scholar] [CrossRef]
- Buchanan, I.A.; Lin, M.; Donoho, D.A.; Ding, L.; Giannotta, S.L.; Attenello, F.; Mack, W.J.; Liu, J.C. Venous Thromboembolism After Degenerative Spine Surgery: A Nationwide Readmissions Database Analysis. World Neurosurg. 2019, 125, e165–e174. [Google Scholar] [CrossRef]
- Shen, M.; Cutrera, N.J.; Dodd, A.C.; Wallace, C.; Avilucea, F.R.; Melbourne, C.; Jahangir, A.A.; Mir, H.H.; Obremskey, W.T.; Sethi, M.K. The risk of deep vein thrombosis in total joint patients compared to orthopaedic trauma patients: Need for new prevention guidelines. J. Clin. Orthop. Trauma 2017, 8 (Suppl. 2), S52–S56. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Zheng, J.; Breusch, S.J.; Tian, J. Risk factors for venous thromboembolism after total hip and total knee arthroplasty: A meta-analysis. Arch. Orthop. Trauma Surg. 2015, 135, 759–772. [Google Scholar] [CrossRef]
- Enga, K.F.; Rye-Holmboe, I.; Hald, E.M.; Mathiesen, E.B.; Njølstad, I.; Wilsgaard, T.; Braekkan, S.K.; Løchen, M.-L.; Hansen, J.-B. Atrial fibrillation and future risk of venous thromboembolism:the Tromso study. J. Thromb. Haemost. 2015, 13, 10–16. [Google Scholar] [CrossRef]
- Noel, P.; Gregoire, F.; Capon, A.; Lehert, P. Atrial fibrillation as a risk factor for deep venous thrombosis and pulmonary emboli in stroke patients. Stroke 1991, 22, 760–762. [Google Scholar] [CrossRef] [Green Version]
Variables | Overall | DVT | No DVT | p Value # | |
---|---|---|---|---|---|
n | 500 | 26 | 474 | ||
Sex | Male | 91 | 2 | 89 | 0.12 |
Female | 409 | 24 | 385 | ||
Age, years | 64.79 ± 12.7 (22–89) | 70.0 ± 14.6 (35–87) | 64.5 ± 12.5 (22–89) | 0.0083 | |
BMI, kg/m2 | 24.0 ± 4.0 (12.2–41.7) | 23.6 ± 3.9 (18.2–32.2) | 24.3 ± 4.2 (12.2–41.8) | 0.63 | |
Current steroid use | 54 | 10/26 | 44/474 | <0.0001 | |
Previous DVT history | 11/500 | 6/26 | 5/474 | <0.0001 | |
Current anticoagulant use | 51/500 | 6/26 | 45/474 | 0.026 | |
Atrial fibrillation | 15/500 | 1/26 | 14/474 | 0.80 | |
Congestive heart failure | 16/500 | 1/26 | 15/474 | 0.85 | |
Major surgery | 347/500 | 20/26 | 327/474 | 0.22 | |
Major surgery within last 12 months | 70/500 | 7/26 | 63/474 | 0.053 | |
Diabetes mellitus | 54/500 | 3/26 | 51/474 | 0.9 | |
Collagen disease | 55/500 | 7/26 | 48/474 | 0.023 | |
Malignancy | 78/500 | 3/26 | 75/474 | 0.55 | |
Current smoking | 36/500 | 1/26 | 35/474/ | 0.50 |
Type of Collagen Disease | Overall (n = 500) | DVT (n = 26) | No DVT (n = 474) |
---|---|---|---|
Rheumatoid arthritis | 23 | 2 | 21 |
Systemic lupus erythematosus | 15 | 2 | 13 |
Dermatomyositis | 8 | 1 | 7 |
Systemic sclerosis | 3 | 3 | 0 |
Sjögren syndrome | 3 | 0 | 3 |
Polymyalgia rheumatica | 2 | 0 | 2 |
Polyarteritis nodosa | 1 | 0 | 1 |
Adult Still’s disease | 1 | 0 | 1 |
Behçet’s disease | 1 | 0 | 1 |
Eosinophilic granulomatosis with polyangiitis | 1 | 0 | 1 |
Variables | Overall | DVT | No DVT | p Value # |
---|---|---|---|---|
Oxford Hip Score | 29.4 ± 10.2 | 22.5 ± 12.3 | 29.7 ± 10.0 | 0.0060 |
Harris Hip Score | 52.6 ± 16.1 | 50.9 ± 17.8 | 52.7 ± 16.0 | 0.55 |
UCLA activity score | 3.69 ± 1.34 | 2.64 ± 0.91 | 3.75 ± 1.33 | <0.0001 |
VAS | 6.08 ± 2.81 | 6.88 ± 2.50 | 6.04 ± 2.82 | 0.21 |
UCLA | OHS | HHS | VAS | |
---|---|---|---|---|
UCLA | <0.0001 | <0.0001 | <0.0001 | 0.0039 |
OHS | <0.0001 | <0.0001 | <0.0001 | |
HHS | <0.0001 | 0.0032 | ||
VAS | <0.0001 |
UCLA | OHS | HHS | VAS | |
---|---|---|---|---|
UCLA | 1.0 | 0.34 | 0.43 | −0.14 |
OHS | 1.0 | 0.42 | −0.60 | |
HHS | 1.0 | −0.31 | ||
VAS | 1.0 |
Variables | Odds Ratio | 95% CI | p Value | VIF |
---|---|---|---|---|
OHS | 0.95 | 0.91–0.99 | 0.031 | 1.02 |
Age | 1.07 | 1.03–1.12 | 0.00056 | 1.12 |
Previous history of DVT | 27.15 | 3.31–222.53 | 0.0021 | 1.18 |
Current anticoagulant use | 0.48 | 0.09–2.63 | 0.39 | 1.20 |
Collagen disease | 0.93 | 0.19–4.64 | 0.93 | 1.60 |
Current steroid use | 10.45 | 2.31–47.34 | 0.0023 | 1.67 |
Variables | Odds Ratio | 95% CI | p Value | VIF |
---|---|---|---|---|
UCLA activity score | 0.49 | 0.28–0.84 | 0.0099 | 1.16 |
Age | 1.07 | 1.02–1.12 | 0.0027 | 1.27 |
Previous history of DVT | 74.98 | 8.54–658.18 | <0.0001 | 1.17 |
Current anticoagulant use | 0.34 | 0.056–2.06 | 0.24 | 1.20 |
Collagen disease | 1.03 | 0.23–4.68 | 0.97 | 1.55 |
Current steroid use | 9.32 | 2.14–40.68 | 0.0030 | 1.69 |
Variables | AUC | Youden Index | Predictive Cutoff | Sensitivity | Specificity | PPV (%) | NPV (%) |
---|---|---|---|---|---|---|---|
UCLA activity score | 0.755 | 0.393 | 2 | 56.0 | 83.3 | 15.7 | 94.7 |
OHS | 0.673 | 0.312 | 22 | 54.5 | 76.6 | 10.4 | 97.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawai, T.; Goto, K.; Kuroda, Y.; Matsuda, S. Lower Activity and Function Scores Are Associated with a Higher Risk of Preoperative Deep Venous Thrombosis in Patients Undergoing Total Hip Arthroplasty. J. Clin. Med. 2020, 9, 1257. https://doi.org/10.3390/jcm9051257
Kawai T, Goto K, Kuroda Y, Matsuda S. Lower Activity and Function Scores Are Associated with a Higher Risk of Preoperative Deep Venous Thrombosis in Patients Undergoing Total Hip Arthroplasty. Journal of Clinical Medicine. 2020; 9(5):1257. https://doi.org/10.3390/jcm9051257
Chicago/Turabian StyleKawai, Toshiyuki, Koji Goto, Yutaka Kuroda, and Shuichi Matsuda. 2020. "Lower Activity and Function Scores Are Associated with a Higher Risk of Preoperative Deep Venous Thrombosis in Patients Undergoing Total Hip Arthroplasty" Journal of Clinical Medicine 9, no. 5: 1257. https://doi.org/10.3390/jcm9051257
APA StyleKawai, T., Goto, K., Kuroda, Y., & Matsuda, S. (2020). Lower Activity and Function Scores Are Associated with a Higher Risk of Preoperative Deep Venous Thrombosis in Patients Undergoing Total Hip Arthroplasty. Journal of Clinical Medicine, 9(5), 1257. https://doi.org/10.3390/jcm9051257