A Proteomics-Based Analysis Reveals Predictive Biological Patterns in Fabry Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Blood Samples
2.2. Targeted Proteomic Analysis
2.3. Plasma lysoGb3 Analysis
2.4. Alpha-d-Galactopyranosidase Activity Analysis
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arends, M.; Wanner, C.; Hughes, D.; Mehta, A.; Oder, D.; Watkinson, O.T.; Elliott, P.M.; Linthorst, G.E.; Wijburg, F.A.; Biegstraaten, M.; et al. Characterization of classical and nonclassical fabry disease: A multicenter study. J. Am. Soc. Nephrol. 2017, 28, 1631–1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meikle, P.J.; Hopwood, J.J.; Clague, A.E.; Carey, W.F. Prevalence of lysosomal storage disorders. Jama 1999, 281, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Hattori, K.; Ihara, K.; Ishii, A.; Nakamura, K.; Hirose, S. Newborn screening for Fabry disease in Japan: Prevalence and genotypes of Fabry disease in a pilot study. J. Hum. Genet. 2013, 58, 548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mechtler, T.P.; Stary, S.; Metz, T.F.; De Jesús, V.R.; Greber-Platzer, S.; Pollak, A.; Herkner, K.R.; Streubel, B.; Kasper, D.C. Neonatal screening for lysosomal storage disorders: Feasibility and incidence from a nationwide study in Austria. Lancet 2012, 379, 335–341. [Google Scholar] [CrossRef]
- Spada, M.; Pagliardini, S.; Yasuda, M.; Tukel, T.; Thiagarajan, G.; Sakuraba, H.; Ponzone, A.; Desnick, R.J. High incidence of later-onset Fabry disease revealed by newborn screening. Am. J. Hum. Genet. 2006, 79, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, P.V.; Campbell, C.; Klug, T.; Rogers, S.; Raburn-Miller, J.; Kiesling, J. Lysosomal storage disorder screening implementation: Findings from the first six months of full population pilot testing in Missouri. J. Pediatrics 2015, 166, 172–177. [Google Scholar] [CrossRef]
- Lin, H.Y.; Chong, K.W.; Hsu, J.H.; Yu, H.C.; Shih, C.C.; Huang, C.H.; Lin, S.J.; Chen, C.H.; Chiang, C.C.; Ho, H.J.; et al. High incidence of the cardiac variant of Fabry disease revealed by newborn screening in the Taiwan Chinese population. Circ. Cardiovasc. Genet. 2009, 2, 450–456. [Google Scholar] [CrossRef] [Green Version]
- Kramer, J.; Weidemann, F. Biomarkers for diagnosing and staging of Fabry disease. Curr. Med. Chem. 2018, 25, 1530–1537. [Google Scholar] [CrossRef]
- Waldek, S.; Patel, M.R.; Banikazemi, M.; Lemay, R.; Lee, P. Life expectancy and cause of death in males and females with Fabry disease: Findings from the Fabry Registry. Genet. Med. Off. J. Am. Coll. Med Genet. 2009, 11, 790–796. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.S.; Mehta, A.B. Difficulties and barriers in diagnosing Fabry disease: What can be learnt from the literature? Expert Opin. Med. Diagn. 2013, 7, 589–599. [Google Scholar] [CrossRef]
- El-Abassi, R.; Singhal, D.; England, J.D. Fabry’s disease. J. Neurol. Sci. 2014, 344, 5–19. [Google Scholar] [CrossRef]
- Duro, G.; Zizzo, C.; Cammarata, G.; Burlina, A.; Burlina, A.; Polo, G.; Scalia, S.; Oliveri, R.; Sciarrino, S.; Francofonte, D.; et al. Mutations in the GLA Gene and LysoGb3: Is it really Anderson-Fabry disease? Int. J. Mol. Sci. 2018, 19, 3726. [Google Scholar] [CrossRef] [Green Version]
- Winchester, B.; Young, E. Biochemical and genetic diagnosis of Fabry disease. In Fabry Disease: Perspectives from 5 Years of FOS; Oxford PharmaGenesis: Oxford, UK, 2006. [Google Scholar]
- Desnick, R.J.; Allen, K.Y.; Desnick, S.J.; Raman, M.K.; Bernlohr, R.W.; Krivit, W. Fabry’s disease: Enzymatic diagnosis of hemizygotes and heterozygotes: α-galactosidase activities in plasma, serum, urine, and leukocytes. J. Lab. Clin. Med. 1973, 81, 157–171. [Google Scholar] [PubMed]
- Chamoles, N.; Blanco, M.; Gaggioli, D. Fabry disease: Enzymatic diagnosis in dried blood spots on filter paper. Clin. Chim. Acta 2001, 1, 195–196. [Google Scholar] [CrossRef]
- Desnick, R.J.; Ioannou, Y.A.; Eng, C.M. α-Galactosidase A deficiency: Fabry disease. In The Metabolic and Molecular Bases of Inherited Disease; McGraw-Hill: New York, NY, USA, 2001; Volume 3, pp. 2741–2784. [Google Scholar]
- Mills, K.; Johnson, A.; Winchester, B. Synthesis of novel internal standards for the quantitative determination of plasma ceramide trihexoside in Fabry disease by tandem mass spectrometry. FEBS Lett. 2002, 515, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Nowak, A.; Mechtler, T.; Kasper, D.C.; Desnick, R.J. Correlation of Lyso-Gb3 levels in dried blood spots and sera from patients with classic and Later-Onset Fabry disease. Mol. Genet. Metab. 2017, 121, 320–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boscaro, F.; Pieraccini, G.; Marca, G.L.; Bartolucci, G.; Luceri, C.; Luceri, F.; Moneti, G. Rapid quantitation of globotriaosylceramide in human plasma and urine: A potential application for monitoring enzyme replacement therapy in Anderson-Fabry disease. Rapid Commun. Mass Spectrom. 2002, 16, 1507–1514. [Google Scholar] [CrossRef] [PubMed]
- Aerts, J.M.; Groener, J.E.; Kuiper, S.; Donker-Koopman, W.E.; Strijland, A.; Ottenhoff, R.; van Roomen, C.; Mirzaian, M.; Wijburg, F.A.; Linthorst, G.E. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc. Natl. Acad. Sci. USA 2008, 105, 2812–2817. [Google Scholar] [CrossRef] [Green Version]
- Talbot, A.; Nicholls, K.; Fletcher, J.M.; Fuller, M. A simple method for quantification of plasma globotriaosylsphingosine: Utility for Fabry disease. Mol. Genet. Metab. 2017, 122, 121–125. [Google Scholar] [CrossRef]
- Zarate, Y.A.; Hopkin, R.J. Fabry’s disease. Lancet 2008, 372, 1427–1435. [Google Scholar] [CrossRef]
- Auray-Blais, C.; Cyr, D.; Mills, K.; Giguere, R.; Drouin, R. Development of a filter paper method potentially applicable to mass and high-risk urinary screenings for Fabry disease. J. Inherit. Metab. Dis. 2007, 30, 106. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A. Fabry disease: A review of current enzyme replacement strategies. Expert Opin. Orphan Drugs 2015, 3, 1319–1330. [Google Scholar] [CrossRef]
- Schiffmann, R.; Kopp, J.B.; Austin, H.A., 3rd; Sabnis, S.; Moore, D.F.; Weibel, T.; Balow, J.E.; Brady, R.O. Enzyme replacement therapy in Fabry disease: A randomized controlled trial. Jama 2001, 285, 2743–2749. [Google Scholar] [CrossRef] [PubMed]
- McCafferty, E.H.; Scott, L.J. Migalastat: A review in Fabry disease. Drugs 2019, 79, 543–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arends, M.; Biegstraaten, M.; Hughes, D.A.; Mehta, A.; Elliott, P.M.; Oder, D.; Watkinson, O.T.; Vaz, F.M.; van Kuilenburg, A.B.P.; Wanner, C.; et al. Retrospective study of long-term outcomes of enzyme replacement therapy in Fabry disease: Analysis of prognostic factors. PLoS ONE 2017, 12, e0182379. [Google Scholar] [CrossRef]
- Citro, V.; Cammisa, M.; Liguori, L.; Cimmaruta, C.; Lukas, J.; Cubellis, M.V.; Andreotti, G. The large phenotypic spectrum of Fabry disease requires graduated diagnosis and personalized therapy: A meta-analysis can help to differentiate missense mutations. Int. J. Mol. Sci. 2016, 17, 2010. [Google Scholar] [CrossRef] [Green Version]
- Reisin, R.; Perrin, A.; Garcia-Pavia, P. Time delays in the diagnosis and treatment of Fabry disease. Int. J. Clin. Pract. 2017, 71, e12914. [Google Scholar] [CrossRef]
- Sudrie-Arnaud, B.; Marguet, F.; Patrier, S.; Martinovic, J.; Louillet, F.; Broux, F.; Charbonnier, F.; Dranguet, H.; Coutant, S.; Vezain, M.; et al. Metabolic causes of nonimmune hydrops fetalis: A next-generation sequencing panel as a first-line investigation. Clin. Chim. Acta Int. J. Clin. Chem. 2018, 481, 1–8. [Google Scholar] [CrossRef]
- Tebani, A.; Schmitz-Afonso, I.; Abily-Donval, L.; Heron, B.; Piraud, M.; Ausseil, J.; Brassier, A.; De Lonlay, P.; Zerimech, F.; Vaz, F.M.; et al. Urinary metabolic phenotyping of mucopolysaccharidosis type I combining untargeted and targeted strategies with data modeling. Clin. Chim. Acta Int. J. Clin. Chem. 2017, 475, 7–14. [Google Scholar] [CrossRef]
- Tebani, A.; Afonso, C.; Marret, S.; Bekri, S. Omics-based strategies in precision medicine: Toward a paradigm shift in inborn errors of metabolism investigations. Int. J. Mol. Sci. 2016, 17, 1555. [Google Scholar] [CrossRef] [Green Version]
- Tebani, A.; Abily-Donval, L.; Afonso, C.; Marret, S.; Bekri, S. Clinical metabolomics: The new metabolic window for inborn errors of metabolism investigations in the post-genomic era. Int. J. Mol. Sci. 2016, 17, 1167. [Google Scholar] [CrossRef] [Green Version]
- Cigna, D.; D’Anna, C.; Zizzo, C.; Francofonte, D.; Sorrentino, I.; Colomba, P.; Albeggiani, G.; Armini, A.; Bianchi, L.; Bini, L.; et al. Alteration of proteomic profiles in PBMC isolated from patients with Fabry disease: Preliminary findings. Mol. Biosyst. 2013, 9, 1162–1168. [Google Scholar] [CrossRef] [PubMed]
- Yogasundaram, H.; Nikhanj, A.; Putko, B.N.; Boutin, M.; Jain-Ghai, S.; Khan, A.; Auray-Blais, C.; West, M.L.; Oudit, G.Y. Elevated inflammatory plasma biomarkers in patients with Fabry disease: A critical link to heart failure with preserved ejection fraction. J. Am. Heart Assoc. 2018, 7, e009098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matafora, V.; Cuccurullo, M.; Beneduci, A.; Petrazzuolo, O.; Simeone, A.; Anastasio, P.; Mignani, R.; Feriozzi, S.; Pisani, A.; Comotti, C.; et al. Early markers of Fabry disease revealed by proteomics. Mol. Biosyst. 2015, 11, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Manwaring, V.; Heywood, W.E.; Clayton, R.; Lachmann, R.H.; Keutzer, J.; Hindmarsh, P.; Winchester, B.; Heales, S.; Mills, K. The identification of new biomarkers for identifying and monitoring kidney disease and their translation into a rapid mass spectrometry-based test: Evidence of presymptomatic kidney disease in pediatric Fabry and Type-I diabetic patients. J. Proteome Res. 2013, 12, 2013–2021. [Google Scholar] [CrossRef]
- Heo, S.H.; Kang, E.; Kim, Y.M.; Go, H.; Kim, K.Y.; Jung, J.Y.; Kang, M.; Kim, G.H.; Kim, J.M.; Choi, I.H.; et al. Fabry disease: Characterisation of the plasma proteome pre- and post-enzyme replacement therapy. J. Med Genet. 2017, 54, 771–780. [Google Scholar] [CrossRef]
- Moore, D.F.; Krokhin, O.V.; Beavis, R.C.; Ries, M.; Robinson, C.; Goldin, E.; Brady, R.O.; Wilkins, J.A.; Schiffmann, R. Proteomics of specific treatment-related alterations in Fabry disease: A strategy to identify biological abnormalities. Proc. Natl. Acad. Sci. USA 2007, 104, 2873–2878. [Google Scholar] [CrossRef] [Green Version]
- Birket, M.J.; Raibaud, S.; Lettieri, M.; Adamson, A.D.; Letang, V.; Cervello, P.; Redon, N.; Ret, G.; Viale, S.; Wang, B.; et al. A human stem cell model of Fabry disease implicates LIMP-2 accumulation in cardiomyocyte pathology. Stem Cell Rep. 2019, 13, 380–393. [Google Scholar] [CrossRef] [Green Version]
- Song, H.-Y.; Chien, C.-S.; Yarmishyn, A.A.; Chou, S.-J.; Yang, Y.-P.; Wang, M.-L.; Wang, C.-Y.; Leu, H.-B.; Yu, W.-C.; Chang, Y.-L.; et al. Generation of GLA-knockout human embryonic stem cell lines to model autophagic dysfunction and exosome secretion in Fabry disease-associated hypertrophic cardiomyopathy. Cells 2019, 8, 327. [Google Scholar] [CrossRef] [Green Version]
- Weidemann, F.; Beer, M.; Kralewski, M.; Siwy, J.; Kampmann, C. Early detection of organ involvement in Fabry disease by biomarker assessment in conjunction with LGE cardiac MRI: Results from the SOPHIA study. Mol. Genet. Metab. 2019, 126, 169–182. [Google Scholar] [CrossRef]
- Doykov, I.D.; Heywood, W.E.; Nikolaenko, V.; Śpiewak, J.; Hällqvist, J.; Clayton, P.T.; Mills, P.; Warnock, D.G.; Nowak, A.; Mills, K. Rapid, proteomic urine assay for monitoring progressive organ disease in Fabry disease. J. Med. Genet. 2020, 57, 38–47. [Google Scholar] [CrossRef]
- Mauhin, W.; Lidove, O.; Amelin, D.; Lamari, F.; Caillaud, C.; Mingozzi, F.; Dzangue-Tchoupou, G.; Arouche-Delaperche, L.; Douillard, C.; Dussol, B.; et al. Deep characterization of the anti-drug antibodies developed in Fabry disease patients, a prospective analysis from the French multicenter cohort FFABRY. Orphanet J. Rare Dis. 2018, 13, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksson, L.; Trygg, J.; Wold, S. A chemometrics toolbox based on projections and latent variables. J. Chemom. 2014, 28, 332–346. [Google Scholar] [CrossRef]
- Alharbi, F.J.; Baig, S.; Auray-Blais, C.; Boutin, M.; Ward, D.G.; Wheeldon, N.; Steed, R.; Dawson, C.; Hughes, D.; Geberhiwot, T. Globotriaosylsphingosine (Lyso-Gb3) as a biomarker for cardiac variant (N215S) Fabry disease. J. Inherit. Metab. Dis. 2018, 41, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Simons, M. Fibroblast growth factor regulation of neovascularization. Curr. Opin. Hematol. 2008, 15, 215–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.H.; Choi, E.N.; Jeon, Y.J.; Jung, S.C. Possible role of transforming growth factor-beta1 and vascular endothelial growth factor in Fabry disease nephropathy. Int. J. Mol. Med. 2012, 30, 1275–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Zhang, J.; Lao, X.; Jiang, H.; Yu, Y.; Deng, Y.; Zhong, J.; Liang, Y.; Xiong, L.; Deng, N. Construction of a disulfide-stabilized diabody against fibroblast growth factor-2 and the inhibition activity in targeting breast cancer. Cancer Sci. 2016, 107, 1141–1150. [Google Scholar] [CrossRef]
- Hamamoto, J.; Yasuda, H.; Nonaka, Y.; Fujiwara, M.; Nakamura, Y.; Soejima, K.; Betsuyaku, T. The FGF2 aptamer inhibits the growth of FGF2-FGFR pathway driven lung cancer cells. Biochem. Biophys. Res. Commun. 2018, 503, 1330–1334. [Google Scholar] [CrossRef]
- Satoh, K. Globotriaosylceramide induces endothelial dysfunction in fabry disease. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2–4. [Google Scholar] [CrossRef] [Green Version]
- Bird, S.; Hadjimichael, E.; Mehta, A.; Ramaswami, U.; Hughes, D. Fabry disease and incidence of cancer. Orphanet J. Rare Dis. 2017, 12, 150. [Google Scholar] [CrossRef] [Green Version]
- Thurberg, B.L.; Germain, D.P.; Perretta, F.; Jurca-Simina, I.E.; Politei, J.M. Fabry disease: Four case reports of meningioma and a review of the literature on other malignancies. Mol. Genet. Metab. Rep. 2017, 11, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Rozenfeld, P.; Feriozzi, S. Contribution of inflammatory pathways to Fabry disease pathogenesis. Mol. Genet. Metab. 2017, 122, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Liebau, M.C.; Braun, F.; Höpker, K.; Weitbrecht, C.; Bartels, V.; Müller, R.-U.; Brodesser, S.; Saleem, M.A.; Benzing, T.; Schermer, B. Dysregulated autophagy contributes to podocyte damage in Fabry’s disease. PLoS ONE 2013, 8, e63506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chévrier, M.; Brakch, N.; Céline, L.; Genty, D.; Ramdani, Y.; Moll, S.; Djavaheri-Mergny, M.; Brasse-Lagnel, C.; Annie Laquerrière, A.L.; Barbey, F. Autophagosome maturation is impaired in Fabry disease. Autophagy 2010, 6, 589–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.H.; Chien, Y.; Wang, K.L.; Leu, H.B.; Hsiao, C.Y.; Lai, Y.H.; Wang, C.Y.; Chang, Y.L.; Lin, S.J.; Niu, D.M.; et al. Evaluation of proinflammatory prognostic biomarkers for fabry cardiomyopathy with enzyme replacement therapy. Can. J. Cardiol. 2016, 32, 1221.e1–1221.e9. [Google Scholar] [CrossRef]
- Coats, C.J.; Parisi, V.; Ramos, M.; Janagarajan, K.; O’Mahony, C.; Dawnay, A.; Lachmann, R.H.; Murphy, E.; Mehta, A.; Hughes, D.; et al. Role of serum N-terminal pro-brain natriuretic peptide measurement in diagnosis of cardiac involvement in patients with anderson-fabry disease. Am. J. Cardiol. 2013, 111, 111–117. [Google Scholar] [CrossRef]
- Seydelmann, N.; Liu, D.; Krämer, J.; Drechsler, C.; Hu, K.; Nordbeck, P.; Schneider, A.; Störk, S.; Bijnens, B.; Ertl, G.; et al. High-sensitivity troponin: A clinical blood biomarker for staging cardiomyopathy in Fabry disease. J. Am. Heart Assoc. 2016, 5, e002839. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Liu, D.; Salinger, T.; Oder, D.; Knop, S.; Ertl, G.; Weidemann, F.; Frantz, S.; Störk, S.; Nordbeck, P. Value of cardiac biomarker measurement in the differential diagnosis of infiltrative cardiomyopathy patients with preserved left ventricular systolic function. J. Thorac. Dis. 2018, 10, 4966–4975. [Google Scholar] [CrossRef]
- McLeod, I.X.; Zhou, X.; Li, Q.J.; Wang, F.; He, Y.W. The class III kinase Vps34 promotes T lymphocyte survival through regulating IL-7Ralpha surface expression. J. Immunol. 2011, 187, 5051–5061. [Google Scholar] [CrossRef] [Green Version]
- Lundstrom, W.; Fewkes, N.M.; Mackall, C.L. IL-7 in human health and disease. Semin. Immunol. 2012, 24, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Stappers, F.; Scharnetzki, D.; Schmitz, B.; Manikowski, D.; Brand, S.M.; Grobe, K.; Lenders, M.; Brand, E. Neutralising anti-drug antibodies in Fabry disease can inhibit endothelial enzyme uptake and activity. J. Inherit. Metab. Dis. 2020, 43, 334–347. [Google Scholar] [CrossRef] [PubMed]
Summary | n | Fabry Classical n = 34 (14%) 1 | Fabry Non-Classical n = 35 (14%) 1 | Control n = 83 (33%) 1 | Pompe n = 59 (24%) 1 | Gaucher n = 30 (12%) 1 | Niemann–Pick C n = 8 (3.2%) 1 | p-Value 2 | |
---|---|---|---|---|---|---|---|---|---|
Age (Years) | mean (SD) | 248 | 44 (15) | 48 (15) | 42 (13) | 54 (13) | 41 (18) | 45 (13) | 0.3 |
Sex | 249 | 0.5 | |||||||
Female | n/N (%) | 20/34 (59%) | 15/35 (43%) | 44/83 (53%) | 30/59 (51%) | 14/30 (47%) | 2/8 (25%) | ||
Male | n/N (%) | 14/34 (41%) | 20/35 (57%) | 39/83 (47%) | 29/59 (49%) | 16/30 (53%) | 6/8 (75%) | ||
BMI (kg/m2) | mean (SD) | 56 | 25 (7) | 29 (16) | 0.2 | ||||
Cornea verticilata | n/N (%) | 57 | 26/26 (100%) | 3/31 (9.7%) | <0.001 | ||||
Hypertrophic cardiomyopathy | n/N (%) | 67 | 14/33 (42%) | 19/34 (56%) | 0.3 | ||||
Angiokeratoma | n/N (%) | 66 | 20/32 (62%) | 12/34 (35%) | 0.048 | ||||
Arterial thrombosis | n/N (%) | 65 | 1/31 (3.2%) | 2/34 (5.9%) | >0.9 | ||||
Venous thrombosis | n/N (%) | 66 | 6/32 (19%) | 1/34 (2.9%) | 0.051 | ||||
Arrhythmia | n/N (%) | 69 | 19/34 (56%) | 14/35 (40%) | 0.2 | ||||
Stroke | n/N (%) | 67 | 5/32 (16%) | 5/35 (14%) | >0.9 | ||||
Neuropathic pain | n/N (%) | 66 | 31/31 (100%) | 15/35 (43%) | <0.001 | ||||
Sudation disorder | n/N (%) | 69 | 24/34 (71%) | 13/35 (37%) | 0.008 | ||||
Kidney Transplant | n/N (%) | 69 | 3/34 (8.8%) | 0/35 (0%) | 0.11 | ||||
Dialysis | n/N (%) | 68 | 30/34 (88%) | 34/34 (100%) | 0.11 | ||||
CKD stages | 66 | 0.2 | |||||||
0 | n/N (%) | 18/33 (55%) | 18/33 (55%) | ||||||
1 | n/N (%) | 2/33 (6.1%) | 3/33 (9.1%) | ||||||
2 | n/N (%) | 6/33 (18%) | 9/33 (27%) | ||||||
3 | n/N (%) | 1/33 (3.0%) | 3/33 (9.1%) | ||||||
4 | n/N (%) | 2/33 (6.1%) | 0/33 (0%) | ||||||
5 | n/N (%) | 4/33 (12%) | 0/33 (0%) | ||||||
Treatment | 69 | >0.9 | |||||||
Non-Treated | n/N (%) | 11/34 (32%) | 12/35 (34%) | ||||||
Treated | n/N (%) | 23/34 (68%) | 23/35 (66%) | ||||||
Therapy | 69 | 0.3 | |||||||
Agalsidase α | n/N (%) | 9/34 (26%) | 3/35 (8.6%) | ||||||
Agalsidase α/Agalsidase β | n/N (%) | 4/34 (12%) | 6/35 (17%) | ||||||
Agalsidase α/Agalsidase β/Miglastat | n/N (%) | 0/34 (0%) | 1/35 (2.9%) | ||||||
Agalsidase α/Miglastat | n/N (%) | 0/34 (0%) | 1/35 (2.9%) | ||||||
Agalsidase β | n/N (%) | 10/34 (29%) | 11/35 (31%) | ||||||
Miglastat | n/N (%) | 0/34 (0%) | 1/35 (2.9%) | ||||||
Non-Treated | n/N (%) | 11/34 (32%) | 12/35 (34%) | ||||||
Treatment Duration (Years) | mean (SD) | 45 | 6.8 (4.8) | 6.0 (5.2) | 0.6 | ||||
Variant | 63 | 0.011 | |||||||
Missense | n/N (%) | 12/29 (41%) | 25/34 (74%) | ||||||
MTP | n/N (%) | 17/29 (59%) | 9/34 (26%) | ||||||
Neutralizing Antibody (Positive) | n/N (%) | 69 | 30/34 (88%) | 33/35 (94%) | 0.4 | ||||
lysoGb3 (ng/mL) | mean (SD) | 63 | 22 (31) | 10 (15) | 0.011 | ||||
Residual Enzymatic Activity (%) | mean (SD) | 57 | 0.94 (0.37) | 0.98 (0.29) | >0.9 | ||||
MDRD (mL/min) | mean (SD) | 63 | 85 (41) | 102 (30) | 0.14 |
Protein | Comparison | Log Fold Change | p-Value |
---|---|---|---|
FGF2 | Fabry Non-Treated vs. Control | 2.30 | 7.49 × 10−26 |
FGF2 | Fabry Treated vs. Control | 2.22 | 1.72 × 10−23 |
FGF2 | Fabry Non-Treated vs. Gaucher | −1.33 | 1.87 × 10−6 |
FGF2 | Fabry Treated vs. Gaucher | −1.24 | 7.46 × 10−6 |
FGF2 | Fabry Treated Classic Female vs. Control Female | 2.21 | 2.81 × 10−17 |
FGF2 | Fabry Non-Treated Non-Classic Female vs. Control Female | 2.26 | 1.45 × 10−15 |
FGF2 | Fabry Treated Non-Classic Female vs. Control Female | 2.24 | 3.20 × 10−11 |
FGF2 | Fabry Non-Treated Classic Male vs. Control Female | 2.00 | 1.45 × 10−3 |
FGF2 | Fabry Non-Treated vs. Fabry Treated | −0.09 | 8.63 × 10−1 |
IL-7 | Fabry Treated vs. Pompe | −1.48 | 4.47 × 10−11 |
IL-7 | Fabry Non-Treated vs. Pompe | −1.29 | 5.55 × 10−9 |
IL-7 | Fabry Treated vs. Niemann Pick C | −1.80 | 8.17 × 10−3 |
IL-7 | Fabry Non-Treated vs. Niemann Pick C | −1.60 | 2.12 × 10−2 |
IL-7 | Fabry Treated Classic Female vs. Control Female | 2.10 | 1.73 × 10−16 |
IL-7 | Fabry Non-Treated Classic Female vs. Control Female | 1.94 | 2.21 × 10−12 |
IL-7 | Fabry Non-Treated Non-Classic Female vs. Control Female | 1.89 | 7.67 × 10−12 |
IL-7 | Fabry Treated Non-Classic Female vs. Control Female | 2.13 | 9.92 × 10−11 |
IL-7 | Fabry Non-Treated vs. Fabry Treated | 0.19 | 8.63 × 10−1 |
VEGFA | Fabry Non-Treated vs. Control | 1.82 | 6.38 × 10−15 |
VEGFA | Fabry Treated vs. Control | 1.85 | 9.63 × 10−15 |
VEGFA | Fabry Treated vs. Pompe | −1.49 | 4.19 × 10−9 |
VEGFA | Fabry Non-Treated vs. Pompe | −1.47 | 5.31 × 10−9 |
VEGFA | Fabry Treated vs. Niemann Pick C | −1.01 | 3.20 × 10−1 |
VEGFA | Fabry Treated Classic Female vs. Control Female | 1.75 | 6.00 × 10−10 |
VEGFA | Fabry Non-Treated Non-Classic Female vs. Control Female | 1.85 | 1.66 × 10−9 |
VEGFA | Fabry Non-Treated Classic Female vs. Control Female | 1.79 | 6.00 × 10−9 |
VEGFA | Fabry Treated Non-Classic Female vs. Control Female | 2.02 | 5.14 × 10−8 |
VEGFA | Fabry Non-Treated Classic Male vs. Control Male | 1.62 | 4.92 × 10−2 |
VEGFA | Fabry Non-Treated vs. Fabry Treated | 0.02 | 9.71 × 10−1 |
VEGFC | Fabry Treated vs. Control | 1.82 | 1.69 × 10−15 |
VEGFC | Fabry Treated vs. Pompe | −1.71 | 5.96 × 10−12 |
VEGFC | Fabry Non-Treated vs. Pompe | −1.45 | 2.25 × 10−9 |
VEGFC | Fabry Treated Classic Female vs. Control Female | 2.02 | 8.04 × 10−14 |
VEGFC | Fabry Non-Treated Non-Classic Female vs. Control Female | 1.71 | 3.71 × 10−9 |
VEGFC | Fabry Non-Treated vs. Fabry Treated | 0.26 | 8.63 × 10−1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tebani, A.; Mauhin, W.; Abily-Donval, L.; Lesueur, C.; Berger, M.G.; Nadjar, Y.; Berger, J.; Benveniste, O.; Lamari, F.; Laforêt, P.; et al. A Proteomics-Based Analysis Reveals Predictive Biological Patterns in Fabry Disease. J. Clin. Med. 2020, 9, 1325. https://doi.org/10.3390/jcm9051325
Tebani A, Mauhin W, Abily-Donval L, Lesueur C, Berger MG, Nadjar Y, Berger J, Benveniste O, Lamari F, Laforêt P, et al. A Proteomics-Based Analysis Reveals Predictive Biological Patterns in Fabry Disease. Journal of Clinical Medicine. 2020; 9(5):1325. https://doi.org/10.3390/jcm9051325
Chicago/Turabian StyleTebani, Abdellah, Wladimir Mauhin, Lenaig Abily-Donval, Céline Lesueur, Marc G. Berger, Yann Nadjar, Juliette Berger, Oliver Benveniste, Foudil Lamari, Pascal Laforêt, and et al. 2020. "A Proteomics-Based Analysis Reveals Predictive Biological Patterns in Fabry Disease" Journal of Clinical Medicine 9, no. 5: 1325. https://doi.org/10.3390/jcm9051325
APA StyleTebani, A., Mauhin, W., Abily-Donval, L., Lesueur, C., Berger, M. G., Nadjar, Y., Berger, J., Benveniste, O., Lamari, F., Laforêt, P., Noel, E., Marret, S., Lidove, O., & Bekri, S. (2020). A Proteomics-Based Analysis Reveals Predictive Biological Patterns in Fabry Disease. Journal of Clinical Medicine, 9(5), 1325. https://doi.org/10.3390/jcm9051325