Neonatal Immune Incompatibilities between Newborn and Mother
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Neonatal Alloimmune Thrombocytopenia (NAIT) and Fetal Neonatal Alloimmune Thrombocytopenia (FNAIT)
3.2. Modified anti-HPA-1 antibodies in Fetal Neonatal Alloimmune Thrombocytopenia (FNAIT)
3.3. Neonatal Alloimmune Neutropenia
3.4. Morbus Hemolyticus Neonatorum
3.5. Therapeutic Strategies
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Peterson, J.A.; McFarland, J.G.; Curtis, B.R.; Aster, R.H. Neonatal alloimmune thrombocytopenia: Pathogenesis, diagnosis and management. Br. J. Haematol. 2013, 161, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahlen, M.T.; Husebekk, A.; Killie, M.K.; Kjeldsen-Kragh, J.; Olsson, M.L.; Skogen, B. The development of severe neonatal alloimmune thrombocytopenia due to anti-HPA-1a antibodies is correlated to maternal ABO genotaypes. Clin. Dev. Immunol. 2012, 2012, 156867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arinsburg, S.A.; Shaz, B.H.; Westhoff, C.; Cushing, M.M. Determination of human platelet antigen typing by molecular methods: Importance in diagnosis and early treatment of neonatal alloimmune thrombocytopenia. Am. J. Hematol. 2012, 87, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Bakchoul, T.; Kubiak, S.; Krautwurst, A.; Roderfeld, M.; Siebert, H.C.; Bein, G.; Sachs, U.J.; Santoso, S. Low-avidity anti-HPA-1a alloantibodies are capable of antigen-positive platelet destruction in the NOD/SCID mouse model of alloimmune thrombocytopenia. Transfusion 2011, 51, 2455–2461. [Google Scholar] [CrossRef]
- Bessos, H.; Killie, M.K.; Seghatchian, J.; Skogen, B.; Urbaniak, S.J. The relationship of anti-HPA-1a amount to severity of neonatal alloimmune thrombocytopenia—Where does it stand? Transfus. Apher. Sci. 2009, 40, 75–78. [Google Scholar] [CrossRef]
- Bussel, J. Diagnosis and management of the fetus and neonate with alloimmune thrombocytopenia. J. Thromb. Haemost. 2009, 7 (Suppl. 1), 253–257. [Google Scholar] [CrossRef]
- Van den Tooren-de Groot, R.; Ottink, M.; Huiskes, E.; van Rossum, A.; van der Voorn, B.; Slomp, J.; de Haas, M.; Porcelijn, L. Management and outcome of 35 cases with fetal/neonatal alloimmune neutropenia. Acta Paediatr. 2014, 103, e467–e474. [Google Scholar] [CrossRef]
- Porcelijn, L.; de Haas, M. Neonatal alloimmune neutropenia. Transfus. Med. Hemother. 2018, 45, 311–316. [Google Scholar] [CrossRef]
- Kissel, K.; Santoso, S.; Hofmann, C.; Stroncek, D.; Bux, J. Molecular basis of the neutrophil glycoprotein NB1 (CD177) involved in the pathogenesis of immune neutropenias and transfusion reactions. Eur. J Immunol. 2001, 31, 1301–1309. [Google Scholar] [CrossRef]
- Tomicic, M.; Starcevic, M.; Ribicic, R.; Golubic-Cepulic, B.; Hundric-Haspl, Z.; Jukic, I. Alloimmune neonatal neutropenia in Croatia during the 1998-2008 period. Am. J. Reprod. Immunol. 2014, 71, 451–457. [Google Scholar] [CrossRef]
- Boxer, L.A.; Bolyard, A.A.; Kelley, M.L.; Marrero, T.M.; Phan, L.; Bond, J.M.; Newburger, P.E.; Dale, D.C. Use of granulocyte colony-stimulating factor during pregnancy in women with chronic neutropenia. Obs. Gynecol. 2015, 125, 197–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bussel, J.B.; Sola-Visner, M. Current approaches to the evaluation and management of the fetus and neonate with immune thrombocytopenia. Semin. Perinatol. 2009, 33, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, J.P.; Caradeux, J.; Norwitz, E.R.; Illanes, S.E. Fetal and neonatal alloimmune thrombocytopenia. Rev. Obstet Gynecol. 2013, 6, e15–e21. [Google Scholar] [PubMed]
- Tiller, H.; Husebekk, A.; Skogen, B.; Kjeldsen-Kragh, J.; Kjaer, M. True risk of fetal/neonatal alloimmune thrombocytopenia in subsequent pregnancies: A prospective observational follow-up study. BJOG 2016, 123, 738–744. [Google Scholar] [CrossRef]
- Peterson, J.A.; Pechauer, S.M.; Gitter, M.L.; Szabo, A.; Curtis, B.R.; Aster, R.H. The human platelet antigen-21bw is relatively common among Asians and is a potential trigger for neonatal alloimmune thrombocytopenia. Transfusion 2012, 52, 915–916. [Google Scholar] [CrossRef] [Green Version]
- Kapur, R.; Kustiawan, I.; Vestrheim, A.; Koeleman, C.A.; Visser, R.; Einarsdottir, H.K.; Porcelijn, L.; Jackson, D.; Kumpel, B.; Deelder, A.M.; et al. A prominent lack of IgG1-Fc fucosylation of platelet alloantibodies in pregnancy. Blood 2014, 123, 471–480. [Google Scholar] [CrossRef]
- Bakchoul, T.; Greinacher, A.; Sachs, U.J.; Krautwurst, A.; Renz, H.; Harb, H.; Bein, G.; Newman, P.J.; Santoso, S. Inhibition of HPA-1a Alloantibody-Mediated Platelet Destruction by a Deglycosylated anti-HPA-1a Monoclonal Antibody in Mice: Toward Targeted Treatment of Fetal- Autoimmune Thrombocytopenia. Blood 2013, 122, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Santoso, S.; Wihadmadyatami, H.; Bakchoul, T.; Werth, S.; Al-Fakhri, N.; Bein, G.; Kiefel, V.; Zhu, J.; Newman, P.J.; Bayat, B.; et al. Anti-endothelial αvβ3 antibodies are a major cause of intracranial bleeding in fetal-neonatal alloimmune thrombocytopenia. Arter. Thromb. Vasc. Biol. 2016, 36, 1517–1524. [Google Scholar] [CrossRef] [Green Version]
- Winkelhorst, D.; Oepkes, D.; Lopriore, E. Fetal and neonatal alloimmune thrombocytopenia: Evidence based antenatal and postnatal management strategies. Expert Rev. Hematol. 2017, 10, 729–737. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, J.; Mitra, S.; Mukhopadhyay, D.; Chakraborty, S.; Chatterjee, S. Granulocyte colony-stimulating factor for preterms with sepsis and neutropenia: A randomized controlled trial. J. Clin. Neonatol. 2012, 1, 202–206. [Google Scholar] [CrossRef] [Green Version]
- Aktaş, D.; Demirel, B.; Gürsoy, T.; Ovalı, F. A randomized case-controlled study of recombinant human granulocyte colony stimulating factor for the treatment of sepsis in preterm neutropenic infants. Pediatr. Neonatol. 2015, 56, 171–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtis, B.R.; Roman, A.S.; Sullivan, M.J.; Raven, C.S.; Larison, J.; Weitekamp, L.A. Two cases of maternal alloimmunization against human neutrophil alloantigen-4b, one causing severe alloimmune neonatal neutropenia. Transfusion 2016, 56, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Regan, F.; Lees, C.C.; Jones, B.; Nicolaides, K.H.; Wimalasundera, R.C.; Mijovic, A. Prenatal management of pregnancies at risk of fetal neonatal alloimmune thrombocytopenia (FNAIT): Scientific impact paper no. 61. BJOG 2019, 126, e173–e185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Vecchio, A.; Christensen, R.D. Neonatal neutropenia: What diagnostic evaluation is needed and when is treatment recommended? Early Hum. Dev. 2012, 88 (Suppl. 2), S19–S24. [Google Scholar] [CrossRef]
- Basu, S.; Kaur, R.; Kaur, G. Hemolytic disease of the fetus and newborn: Current trends and perspectives. Asian J. Transfus. Sci. 2011, 5, 3–7. [Google Scholar] [CrossRef]
- Arora, S.; Doda, V.; Maria, A.; Kotwal, U.; Goyal, S. Maternal anti-M induced hemolytic disease of newborn followed by prolonged anemia in newborn twins. Asian J. Transfus. Sci. 2015, 9, 98–101. [Google Scholar] [CrossRef]
- Gowri, V.; Al-Dughaishi, T.; Al-Rubkhi, I.; Al-Duhli, M.; Al-Harrasi, Y. Alloimmunization due to red cell antibodies in Rhesus positive Omani pregnant women: Maternal and perinatal outcome. Asian J. Transfus. Sci. 2015, 9, 150–154. [Google Scholar] [CrossRef]
- De Haas, M.; Thurik, F.; Koelewijn, J.; Van Der Schoot, C. Haemolytic disease of the fetus and newborn. Vox Sang. 2015, 109, 99–113. [Google Scholar] [CrossRef]
- Rath, M.E.A.; Smits-Wintjens, V.E.H.J.; Oepkes, D.; Walther, F.J.; Lopriore, E. Iron status in infants with alloimmune haemolytic disease in the first three months of life. Vox Sang. 2013, 105, 328–333. [Google Scholar] [CrossRef]
- Smith, G.A.; Rankin, A.; Riddle, C.; Cheetham-Wilkinson, C.; Ranasinghe, E.; Ouwehand, W.H.; Watkins, N.A. Severe Fetomaternal Alloimmune Thrombocytopenia Due to Anti-Human Platelet Antigen (HPA)-1a in a Mother With a Rare and Silenced ITGB 3*0101 (GPIIIa) Allele. Vox Sang. 2007, 93, 325–330. [Google Scholar] [CrossRef]
- Tiller, H.; Kamphuis, M.M.; Flodmark, O.; Papa-dogiannakis, N.; David, A.L.; Sainio, S.; Koskinen, S.; Javela, K.; Wikman, A.T.; Kekomaki, R.; et al. Fetal intracranial haemorrhages caused by fetal and neonatal alloimmune thrombocytopenia: An observational cohort study of 43 cases from an international multicentre registry. BMJ Open 2013, 3, e002490. [Google Scholar] [CrossRef] [PubMed]
- Paridaans, N.P.; Kamphuis, M.M.; TauneWikman, A.; Tiblad, E.; Van den Akker, E.S.; Lopriore, E.; Challis, D.; Westgren, M.; Oepkes, D. Low-dose versus standard-dose intra-venous immunoglobulin to prevent fetalintracranial hemorrhage in fetal and neonatal alloimmune thrombocytopenia: A randomized trial. Fetal Diagn. 2015, 38, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Kjaer, M.; Bertrand, G.; Bakchoul, T.; Massey, E.; Baker, J.M.; Lieberman, L.; Tanael, S.; Greinacher, A.; Murphy, M.F.; Arnold, D.M.; et al. Maternal HPA-1a antibody level and its role in predicting the severity of Fetal/Neonatoal Alloimmune Thrombocytopenia: a systematic review. Vox Sang. 2019, 114, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Reeves, H.M. Immune-mediated cytopenia in the pediatric setting, immunologic concepts in transfusion medicine. Bone Marrow Transpl. 2017, 52, 1571–1574. [Google Scholar]
- Kim, C.J.; Romero, R.; Chaemsaithong, P.; Kim, J.S. Chronic inflammation of the placenta: Definition, classification, pathogenesis, and clinical significance. Am. J. Obstet. Gynecol. 2015, 213 (Suppl. 4), S53–S69. [Google Scholar] [CrossRef] [Green Version]
- Skogen, B.; Killie, M.K.; Kjeldsen-Kragh, J. Reconsidering fetal and neonatal alloimmune thrombocytopenia with a focus on screening and prevention. Expert Rev. Hematol. 2010, 3, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Gyamfi-Bannerman, C.; Thom, E.A.; Blackwell, S.C. Antenatal betamethasone for women at risk for late preterm delivery. NEJM 2016, 374, 1311–1320. [Google Scholar] [CrossRef]
- Kamphuis, M.; Paridaans, N.; Porcelijn, L. Screening in pregnancy for fetal or neonatal alloimmune thrombocytopenia: Systematic review. BJOG 2010, 117, 1335–1343. [Google Scholar] [CrossRef]
- Rayment, R.; Brunskill, S.J.; Soothill, P.W. Antenatal interventions for fetomaternal alloimmune thrombocytopenia. Cochrane Database Syst. Rev. 2011, 5, CD004226. [Google Scholar] [CrossRef]
- Scheffer, P.; Ait Soussan, A.; Verhagen, O. Noninvasive fetal genotyping of human platelet antigen-1a. BJOG 2011, 118, 1392–1395. [Google Scholar] [CrossRef]
- Vinograd, C.A.; Bussel, J.B. Antenatal treatment of fetal alloimmune thrombocytopenia: A current perspective. Haematologica 2010, 95, 1807–1811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, M.; Pierce, M.; Allen, D.; Kurinczuk, J.J.; Spark, P.; Roberts, D.J.; Murphy, M.F. The incidence and outcomes of fetomaternal alloimmune thrombocytopenia: A UK national study using three data sources. Br. J. Haematol. 2011, 152, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Bussel, J.B.; Berkowitz, R.L.; Hung, C.; Kolb, E.A.; Wissert, M.; Primiani, A.; Tsaur, F.W.; McFarland, J.G. Intracranial hemorrage in alloimmune thrombocytopenia: Stratified management to prevent recurrence in the subsequent affected fetus. Am. J. Obstet. Gynecol. 2010, 203, 135-e1. [Google Scholar] [CrossRef] [PubMed]
- Provan, D.; Stasi, R.; Newland, A.C. International consensus report on the investigation and management of primary immune thrombocytopenia. Blood 2010, 115, 168–175. [Google Scholar] [CrossRef]
- Wu, G.G.; Kaplan, C.; Curtis, B.R.; Pearson, H.A. Report of the 14th international society of blood transfusion platelet immunology workshop. Vox Sang. 2010, 99, 375–381. [Google Scholar] [CrossRef]
- Tiller, H.; Killie, M.K.; Husebekk, A.; Skogen, B.; Ni, H.; Kjeldsen-Kragh, J.; Øian, P. Platelet antibodies and fetal growth: Maternal antibodies against fetal platelet antigen 1a are strongly associated with reduced birth weight in boys. Acta Obs. Gynecol. Scand. 2012, 91, 79–86. [Google Scholar] [CrossRef]
- Ghevaert, C.; Rankin, A.; Huiskes, E.; Porcelijn, L.; Javela, K.; Kekomaki, R.; Bakchoul, T.; Santoso, S.; Nutland, S.; Smyth, D.J.; et al. Alloantibodies against low-frequency human platelet antigens do not account for a significant proportion of cases of fetomaternal alloimmune thrombocytopenia: Evidence from 1054 cases. Transfusion 2009, 49, 2084–2089. [Google Scholar] [CrossRef]
- Pacheco, L.D.; Berkowitz, R.L.; Moise, K.J., Jr.; Bussel, J.B.; McFarland, J.G.; Saade, G.R. Fetal and neonatal alloimmune thrombocytopenia: A management algorithm based on risk stratification. Obstet. Gynecol. 2011, 118, 1157–1163. [Google Scholar] [CrossRef]
- Sachs, U.J.; Santoso, S. Bleeding or no bleeding? Anti-endothelial alphaVbeta3 antibodies as a major cause of intracranial haemorrhage in fetal-neonatal alloimmune thrombocytopenia. ISBT Sci. Ser. 2017, 13, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Middelburg, R.A.; Porcelijn, L.; Lardy, N.; Briët, E.; Vrielink, H. Prevalence of leucocyte antibodies in the Dutch donor population. Vox Sang. 2011, 100, 327–335. [Google Scholar] [CrossRef]
- Middelburg, R.A.; Vrielink, H.; Porcelijn, L. Prevalence of granulocyte antibodies in never allo-exposed female and male donors. Eur J. Haematol. 2017, 98, 250–253. [Google Scholar] [CrossRef] [PubMed]
- INIS Collaborative Group; Brocklehurst, P.; Farrell, B.; King, A.; Juszczak, E.; Darlow, B.; Haque, K.; Salt, A.; Stenson, B.; Tarnow-Mordi, W. Treatment of neonatal sepsis with intravenous immune globulin. N. Engl. J. Med. 2011, 365, 1201–1211. [Google Scholar] [PubMed] [Green Version]
- Xia, W.; Simtong, P.; Santoso, S. Neutrophil alloantigens and alloantibodies in different populations. ISBT Sci. Ser. 2017, 12, 62–67. [Google Scholar] [CrossRef]
- Xia, W.; Ye, X.; Xu, X.; Chen, D.; Deng, J.; Chen, Y.; Ding, H.; Shao, Y.; Wang, J.; Liu, J.; et al. The prevalence of leucocyte alloantibodies in blood donors from South China. Transfus. Med. 2015, 25, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Desenfants, A.; Jeziorski, E.; Plan, O.; Rodière, M.; Rimbert, M.; Muller, J.Y.; Taïb, J.; Cambonie, G. Intravenous immunoglobulins for neonatal alloimmune neutropenia refractory to recombinant human granulocyte colony-stimulating factor. Am. J. Perinatol. 2011, 28, 461–466. [Google Scholar] [CrossRef]
- Reil, A.; Sachs, U.J.; Siahanidou, T.; Flesch, B.K.; Bux, J. HNA-1d: A new human neutrophil antigen located on Fcγ receptor IIIb associated with neonatal immune neutropenia. Transfusion 2013, 53, 2145–2151. [Google Scholar] [CrossRef]
- Reil, A.; Flesch B, Bux, J. FCGR3B*04—A novel allele of the human Fc gamma receptor IIIb gene. Transfus. Med. Hemother. 2011, 38 (Suppl. 1), 69–75. [Google Scholar]
- Nagelkerke, S.Q.; Tacke, C.E.; Breunis, W.B.; Geissler, J.; Sins, J.W.; Appelhof, B.; van den Berg, T.K.; de Boer, M.; Kuijpers, T.W. Nonallelic homologous recombination of the FCGR2/3 locus results in copy number variation and novel chimeric FCGR2 genes with aberrant functional expression. Genes Immun. 2015, 16, 422–429. [Google Scholar] [CrossRef] [Green Version]
- Chiba, A.K.; Kimura, E.Y.; Albuquerque, D.; Guirão, F.P.; Yamamoto, M.; Costa, F.F.; Bordin, J.O. Molecular studies reveal that A134T, G156A and G1333A SNPs in the CD177 gene are associated with atypical expression of human neutrophil antigen-2. Vox Sang. 2010, 98, 160–166. [Google Scholar]
- Greinacher, A.; Wesche, J.; Hammer, E.; Fürll, B.; Völker, U.; Reil, A.; Bux, J. Characterization of the human neutrophil alloantigen-3a. Nat. Med. 2010, 16, 45–48. [Google Scholar] [CrossRef]
- Curtis, B.R.; Cox, N.J.; Sullivan, M.J.; Konkashbaev, A.; Bowens, K.; Hansen, K.; Aster, R.H. The neutrophil alloantigen HNA-3a (5b) is located on choline transporter-like protein 2 and appears to be encoded by an R>Q154 amino acid substitution. Blood 2010, 115, 2073–2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, L.B.; Abbas, S.A.; Moritz, E.; Martins, J.O.; Chiba, A.K.; Langhi, D.M., Jr.; Bordin, J.O. Antibodies to human neutrophil antigen HNA-3b implicated in cases of neonatal alloimmune neutropenia. Transfusion 2018, 58, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Porcelijn, L.; Abbink, F.; Terraneo, L.; Onderwater-vd Hoogen, L.; Huiskes, E.; de Haas, M. Neonatal alloimmune neutropenia due to immunoglobulin G antibodies against human neutrophil antigen-5a. Transfusion 2011, 51, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A.; Sauer, B.; Tuminski, W.; Cheong, J.; Fitz-Henley, J., 2nd; Mayers, M.; Ezuma-Igwe, C.; Arnold, C.; Hornik, C.P.; Clark, R.H.; et al. Best Pharmaceuticals for Children Act—Pediatric Trials Network Steering Committee Effectiveness of granulocyte colony-stimulating factor in hospitalized infants with neutropenia. Am. J. Perinatol. 2017, 34, 458–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taaning, E.; Jensen, L.; Varming, K. Simultaneous Occurrence of Foetal and Neonatal Alloimmune Thrombocytopenia and Neonatal Neutropenia Due to Maternal Neutrophilic Autoantibodies: A Case Study and Review of the Literature. Acta Paediatr. 2012, 101, 896–899. [Google Scholar] [CrossRef]
- Kikkawa, M.; Matsubara, S.; Takatoku, M.; Kuwata, T.; Ohkuchi, A.; Izumi, A.; Watanabe, T.; Suzuki, M. Granulocyte-colony Stimulating Factor for the Treatment of Ritodrine- Induced Neutropenia. J. Obstet. Gynaecol. Res. 2008, 34, 286–290. [Google Scholar] [CrossRef]
- Maheshwari, A. Neutropenia in the newborn. Curr. Opin. Hematol. 2014, 21, 43–49. [Google Scholar] [CrossRef] [Green Version]
- ISBT Working Party on Granulocyte Immunobiology; Bierling, P.; Bux, J.; Curtis, B.; Flesch, B.; Fung, L.; Lucas, G.; Macek, M.; Muniz-Diaz, E.; Porcelijn, L.; et al. Recommendations of the ISBT Working Party on Granulocyte Immunobiology for leucocyte antibody screening in the investigation and prevention of antibody-mediated transfusion-related acute lung injury. Vox Sang. 2009, 96, 266–269. [Google Scholar]
- Wiedl, C.; Walter, A.W. Granulocyte colony stimulating factor in neonatal alloimmune neutropenia: A possible association with induced thrombocytopenia. Pediatr. Blood Cancer. 2010, 54, 1014–1046. [Google Scholar] [CrossRef]
- Águeda, S.; Rocha, G.; Ferreira, F.; Bonito, V.; Margarida, L.; Guimarães, H. Neonatal alloimmune neutropenia: Still a diagnostic and therapeutical challenge. J. Pediatr. Hematol. 2012, 34, 497–499. [Google Scholar]
- Giers, G.; Wenzel, F.; Stockschläder, M.; Riethmacher, R.; Lorenz, H.; Tutschek, B. Fetal alloimmune thrombocytopenia and maternal intravenous immunoglobulin infusion. Haematologica 2010, 95, 1921–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertrand, G.; Drame, M.; Martageix, C.; Kaplan, C. Prediction of the fetal status in noninvasive management of alloimmune thrombocytopenia. Blood 2011, 117, 3209–3213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayment, R.; Kooij, T.W.; Zhang, W.; Siebold, C.; Murphy, M.F.; Allen, D.; Willcox, N.; Roberts, D.J. Evidence for the specificity for platelet HPA-1a alloepitope and the presenting HLA-DR52a of diverse antigen-specific helper T cell clones from alloimmunized mothers. J. Immunol. 2009, 183, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Sachs, U.J.; Bakchoul, T.; Eva, O.; Giptner, A.; Bein, G.; Aster, R.H.; Gitter, M.; Peterson, J.; Santoso, S. A point mutation in the EGF-4 domain of beta (3) integrin is responsible for the formation of the Sec(a) platelet alloantigen and affects receptor function. Thromb. Haemost. 2012, 107, 80–87. [Google Scholar] [CrossRef] [Green Version]
Author | Design | Findings |
---|---|---|
Peterson et al. (2013) [1] | Review | The authors opined that different kinds of the first human platelet antigen (HPA) have been linked to the pathogenesis of NAIT. The identification of the HPAs that increase the risk of developing the disease provides an avenue through which the disease can be diagnosed and managed. |
Ahlen et al. (2012) [2] | Correlational study | The researchers reported that there was a significant link between the risk of NAIT due to anti-HPA-1a antibodies and the maternal blood type. The risk of NAIT was high among pregnant women with blood type A. |
Arinsburg, Shaz, Westhoff, and Cushing (2012) [3] | Review | The study showed that NAIT was a major cause of intracranial hemorrhage and severe cases of thrombocytopenia. The disorder can be detected through the use of the HPA-specific antibodies and platelet genotyping with the sequence-specific primer-polymerase chain reaction (PCR-SSP) approach. |
Bakchoul et al. (2011) [4] | Retrospective cohort analysis and a NOD/SCID mouse model of alloimmune thrombocytopenia | Low-avidity HPA-1a antibodies are present in a significant number of NAIT cases and, although they can escape detection by standard serology, they harbor the capability of PLT destruction in mice. |
Porcelijn and de Haas (2018) [8] | Review | A review of prospective screening studies showed that granulocyte-specific antibodies that caused NAIN were present in approximately 0.35–1.1% of the maternal samples. Furthermore, the researchers stated that the incidence of the disease was below 0.1%. |
Tomicic et al. (2014) [10] | Prospective study | The researchers detected anti-HNA antibodies in approximately 54% of the samples that were proven to be serologically positive for alloimmune neonatal neutropenia (ANN) between 1998 and 2008. |
Bussel and Sola-Visner (2009) [12] | Review | The researchers stated that if a mother gives birth to a child with alloimmune thrombocytopenia, there are high chances that the next child will also develop severe NAIT. |
Espinoza, Caradeux, Norwitz, and Illanes (2013) [13] | Review | FNAIT is a rare fetal complication that develops when a woman is alloimmunized against the platelet antigens in the fetus. |
Tiller et al. (2016) [14] | Prospective observational study | The authors found that there was an increase in the neonatal platelet count in HPA-1a immunized women during their subsequent pregnancies. |
Peterson et al. (2012a) [15] | Observational study | The study showed that HPA-21bw and HPA-4b were common triggers of NAIT among Caucasian women. The production of maternal antibodies against these antigens can lead to the development of NAIT. |
Kapur et al. (2014) [16] | Human patient study (n = 48) | The study showed markedly decreased levels of the fucosylation of the anti-HPA-1a specific IgG1 in FNAIT patients. Antibodies with a low amount of Fc fucose showed enhanced phagocytosis of platelets. A positive correlation of anti-HPA-1fucosylation with neonatal platelet counts was found as well as a negative correlation of anti-HPA-1fucosylation with the clinical disease severity. |
Bakchoul et al. (2013) [17] | Mice study and human cell study | In FNAIT, platelet destruction is mediated via the Fc part of the anti-HPA alloantibodies. Deglycosylation of antibodies abrogates the Fc-related effector functions. Deglycosylation of SZ21 abrogates Fc-effector functions without interfering with placental transport or the ability to block anti–HPA-1a binding. A therapeutical use of such an antibody might be possible. |
Santoso et al. (2016) [18] | Human patient study (n = 36) Antibodies from mothers with ICH-positive FNAIT and with ICH-negative FNAIT were investigated and compared | The authors found a stronger binding of +ICH antibodies to endothelial cell-derived αvβ3. By absorption experiments, anti-HPA-1a antibodies with anti-αvβ3 specificity were found in the ICH positive, but not in the ICH negative cohort. Only the anti-αvβ3 subtype, but not the anti-β3 subtype was found to be able to induce epithelial cell apoptosis of HPA-1a positive epithelial cells. The maternal anti-HPA-1a subtype seems to determine the risk for ICH development of the child. |
Winkelhorst, Oepkes, and Lopriore (2017) [19] | Review | The researchers stated that the optimal intervention for the management of FNIAT was noninvasive treatment involving the weekly intravenous administration of immunoglobulin. A dose of 0.5 or 1.0 g/kg should be given to prevent aggravation of the condition. |
Chaudhuri et al. (2012) [20] | Randomized controlled trial | Chaudhuri et al. (2012) concluded that the mortality factor in the granulocyte colony-stimulating factor (GCF) group was significantly lower than the rate in the control group (10% vs. 35%). |
Atkas et al. (2015) [21] | Randomized case-controlled study | The study revealed that treatment with recombinant human granulocyte colony-stimulating factor therapy resulted in rapid recovery from sepsis among neutropenic children. |
Curtis et al. (2016) [22] | Case study | The sera analysis led to the detection of IgG antibodies in women with HNA-4b+ neutrophils. |
Regan et al. (2019) [23] | Review | NAIT occurs when the immune system of the mother fails to recognize the baby’s HPAs inherited from the father. In such instances, the mother develops antibodies that can cross the placenta and attack the fetal HPAs. |
Del Vecchio and Christensen (2012) [24] | Review | The researchers opined that the early onset of neutropenia in infants was linked to cases of severe sepsis, asphyxia, periventricular hemorrhage, and maternal hypertension. |
Basu, Kaur, and Kaur (2012) [25] | Review | The scholars found out that hemolytic disease occurs as a result of Rhesus incompatibility between the mother and the fetus. |
Arora et al. (2015) [26] | Case study | Morbus hemolyticus neonatorum develops due to maternal alloimmunization, a process that adversely affects the development of the fetus. |
Gowri et al. (2015) [27] | Retrospective study | Gowri et al. stated that Rhesus incompatibility could lead to a wide range of complications such as jaundice, neonatal anemia, and respiratory distress syndrome |
De Haas et al. (2015) [28] | Review | The study showed that morbus hemolyticus neonatorum was caused by maternal alloimmunization against the fetal red blood cell antigens. The disorder could lead to anemia, icterus, and fetal death. |
Platelet-Specific Antigens Associated with NAIT | Neutrophil Antigens Associated with NAIN | Risk Factor for Morbus Hemolyticus Neonatorum |
---|---|---|
HPA-1a [1,2] HPA-2b [1] HPA-3a [3,4] HPA-3b [3,4] HPA-4b [5,6] HPA-5a [1] HPA-6b [8] HPA-10b [10] HPA-13b [30] HPA-15 [32] HPA-16 [15,32] HPA-21b [1] | HNA-1a, b, c, and d [7] HNA-2 positive and HNA-2-negative (CD177) [19,52] HNA-3a and HNA-3b [7] HNA-4a and HNA-4b [53,54,55] HNA-5a [54,56] | Rhesus incompatibility [67,68] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arneth, B. Neonatal Immune Incompatibilities between Newborn and Mother. J. Clin. Med. 2020, 9, 1470. https://doi.org/10.3390/jcm9051470
Arneth B. Neonatal Immune Incompatibilities between Newborn and Mother. Journal of Clinical Medicine. 2020; 9(5):1470. https://doi.org/10.3390/jcm9051470
Chicago/Turabian StyleArneth, Borros. 2020. "Neonatal Immune Incompatibilities between Newborn and Mother" Journal of Clinical Medicine 9, no. 5: 1470. https://doi.org/10.3390/jcm9051470
APA StyleArneth, B. (2020). Neonatal Immune Incompatibilities between Newborn and Mother. Journal of Clinical Medicine, 9(5), 1470. https://doi.org/10.3390/jcm9051470