Acute Kidney Injury after Endovascular Treatment in Patients with Acute Ischemic Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Clinical Assessment and EVT Process
2.3. Statistical Analyses
3. Results
3.1. Factors Associated with Acute Kidney Injury
3.2. Factors Associated with Functional Outcome and Mortality at 3 Months
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wichmann, J.L.; Katzberg, R.W.; Litwin, S.E.; Zwerner, P.L.; De Cecco, C.N.; Vogl, T.J.; Costello, P.; Schoepf, U.J. Contrast-Induced Nephropathy. Circulation 2015, 132, 1931–1936. [Google Scholar] [CrossRef]
- Mehran, R.; Dangas, G.D.; Weisbord, S.D. Contrast-Associated Acute Kidney Injury. N. Engl. J. Med. 2019, 380, 2146–2155. [Google Scholar] [CrossRef]
- Gadalean, F.; Simu, M.; Parv, F.; Vorovenci, R.; Tudor, R.; Schiller, A.; Timar, R.; Petrica, L.; Velciov, S.; Gluhovschi, C.; et al. The impact of acute kidney injury on in-hospital mortality in acute ischemic stroke patients undergoing intravenous thrombolysis. PLoS ONE 2017, 12, e0185589. [Google Scholar] [CrossRef] [Green Version]
- Saeed, F.; Adil, M.M.; Khursheed, F.; Daimee, U.A.; Branch, L.A., Jr.; Vidal, G.A.; Qureshi, A.I. Acute renal failure is associated with higher death and disability in patients with acute ischemic stroke: Analysis of nationwide inpatient sample. Stroke 2014, 45, 1478–1480. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.; Ng, K.P.; Sims, D.; Gill, P.; Cockwell, P.; Ferro, C. Incidence and impact on outcomes of acute kidney injury after a stroke: A systematic review and meta-analysis. BMC Nephrol. 2018, 19, 283. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Guo, Y.; Zhang, Y.; Li, Z.; Li, A.; Luo, Y. Epidemiology of acute kidney injury in patients with stroke: A retrospective analysis from the neurology ICU. Intern Emerg. Med. 2018, 13, 17–25. [Google Scholar] [CrossRef]
- Goyal, M.; Menon, B.K.; van Zwam, W.H.; Dippel, D.W.; Mitchell, P.J.; Demchuk, A.M.; Davalos, A.; Majoie, C.B.; van der Lugt, A.; de Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [CrossRef]
- Kim, Y.D.; Heo, J.H.; Yoo, J.; Park, H.; Kim, B.M.; Bang, O.Y.; Kim, H.C.; Han, E.; Kim, D.J.; Heo, J.; et al. Improving the Clinical Outcome in Stroke Patients Receiving Thrombolytic or Endovascular Treatment in Korea: From the SECRET Study. J. Clin. Med. 2020, 9, 717. [Google Scholar] [CrossRef] [Green Version]
- Loh, Y.; McArthur, D.L.; Vespa, P.; Shi, Z.S.; Liebeskind, D.S.; Jahan, R.; Gonzalez, N.R.; Starkman, S.; Saver, J.L.; Tateshima, S.; et al. The risk of acute radiocontrast-mediated kidney injury following endovascular therapy for acute ischemic stroke is low. AJNR Am. J. Neuroradiol. 2010, 31, 1584–1587. [Google Scholar] [CrossRef] [Green Version]
- Sharma, J.; Nanda, A.; Jung, R.S.; Mehta, S.; Pooria, J.; Hsu, D.P. Risk of contrast-induced nephropathy in patients undergoing endovascular treatment of acute ischemic stroke. J. Neurointerv. Surg. 2013, 5, 543–545. [Google Scholar] [CrossRef] [Green Version]
- Diprose, W.K.; Sutherland, L.J.; Wang, M.T.M.; Barber, P.A. Contrast-Associated Acute Kidney Injury in Endovascular Thrombectomy Patients With and Without Baseline Renal Impairment. Stroke 2019, 50, 3527–3531. [Google Scholar] [CrossRef]
- Lee, J.S.; Lee, S.J.; Yoo, J.S.; Hong, J.H.; Kim, C.H.; Kim, Y.W.; Kang, D.H.; Kim, Y.S.; Hong, J.M.; Choi, J.W.; et al. Prognosis of Acute Intracranial Atherosclerosis-Related Occlusion after Endovascular Treatment. J. Stroke 2018, 20, 394–403. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.; Hong, J.M.; Choi, J.W.; Park, J.H.; Park, B.; Kang, D.H.; Kim, Y.W.; Kim, Y.S.; Hong, J.H.; Yoo, J.; et al. Predicting Endovascular Treatment Outcomes in Acute Vertebrobasilar Artery Occlusion: A Model to Aid Patient Selection from the ASIAN KR Registry. Radiology 2020, 294, 628–637. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2012, 2, 19–36. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.E.; Blaine, C.; Dawnay, A.; Devonald, M.A.; Ftouh, S.; Laing, C.; Latchem, S.; Lewington, A.; Milford, D.V.; Ostermann, M. The definition of acute kidney injury and its use in practice. Kidney Int. 2015, 87, 62–73. [Google Scholar] [CrossRef]
- Tomsick, T.; Broderick, J.; Carrozella, J.; Khatri, P.; Hill, M.; Palesch, Y.; Khoury, J. Revascularization results in the Interventional Management of Stroke II trial. AJNR Am. J. Neuroradiol. 2008, 29, 582–587. [Google Scholar] [CrossRef] [Green Version]
- Fiorelli, M.; Bastianello, S.; von Kummer, R.; del Zoppo, G.J.; Larrue, V.; Lesaffre, E.; Ringleb, A.P.; Lorenzano, S.; Manelfe, C.; Bozzao, L. Hemorrhagic transformation within 36 hours of a cerebral infarct: Relationships with early clinical deterioration and 3-month outcome in the European Cooperative Acute Stroke Study I (ECASS I) cohort. Stroke 1999, 30, 2280–2284. [Google Scholar] [CrossRef]
- Ehrlich, M.E.; Turner, H.L.; Currie, L.J.; Wintermark, M.; Worrall, B.B.; Southerland, A.M. Safety of Computed Tomographic Angiography in the Evaluation of Patients With Acute Stroke: A Single-Center Experience. Stroke 2016, 47, 2045–2050. [Google Scholar] [CrossRef] [Green Version]
- Rowe, A.S.; Hawkins, B.; Hamilton, L.A.; Ferrell, A.; Henry, J.; Wiseman, B.F.; Skovran, S.A.; Mosadegh, M.S.; Hare, M.E.; Kocak, M.; et al. Contrast-Induced Nephropathy in Ischemic Stroke Patients Undergoing Computed Tomography Angiography: CINISter Study. J. Stroke Cerebrovasc. Dis. 2019, 28, 649–654. [Google Scholar] [CrossRef]
- Fan, P.C.; Chen, T.H.; Lee, C.C.; Tsai, T.Y.; Chen, Y.C.; Chang, C.H. ADVANCIS Score Predicts Acute Kidney Injury After Percutaneous Coronary Intervention for Acute Coronary Syndrome. Int. J. Med. Sci. 2018, 15, 528–535. [Google Scholar] [CrossRef] [Green Version]
- Calvin, A.D.; Misra, S.; Pflueger, A. Contrast-induced acute kidney injury and diabetic nephropathy. Nat. Rev. Nephrol. 2010, 6, 679–688. [Google Scholar] [CrossRef]
- Frauchiger, B.; Nussbaumer, P.; Hugentobler, M.; Staub, D. Duplex sonographic registration of age and diabetes-related loss of renal vasodilatory response to nitroglycerine. Nephrol. Dial. Transplant. 2000, 15, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Epstein, F.H.; Veves, A.; Prasad, P.V. Effect of diabetes on renal medullary oxygenation during water diuresis. Diabetes Care 2002, 25, 575–578. [Google Scholar] [CrossRef] [Green Version]
- Laskey, W.K.; Jenkins, C.; Selzer, F.; Marroquin, O.C.; Wilensky, R.L.; Glaser, R.; Cohen, H.A.; Holmes, D.R., Jr. Volume-to-creatinine clearance ratio: A pharmacokinetically based risk factor for prediction of early creatinine increase after percutaneous coronary intervention. J. Am. Coll. Cardiol. 2007, 50, 584–590. [Google Scholar] [CrossRef] [Green Version]
- Marenzi, G.; Assanelli, E.; Campodonico, J.; Lauri, G.; Marana, I.; De Metrio, M.; Moltrasio, M.; Grazi, M.; Rubino, M.; Veglia, F.; et al. Contrast volume during primary percutaneous coronary intervention and subsequent contrast-induced nephropathy and mortality. Ann. Intern. Med. 2009, 150, 170–177. [Google Scholar] [CrossRef]
- McCullough, P.A.; Wolyn, R.; Rocher, L.L.; Levin, R.N.; O’Neill, W.W. Acute renal failure after coronary intervention: Incidence, risk factors, and relationship to mortality. Am. J. Med. 1997, 103, 368–375. [Google Scholar] [CrossRef]
- Finlayson, O.; Kapral, M.; Hall, R.; Asllani, E.; Selchen, D.; Saposnik, G. Risk factors, inpatient care, and outcomes of pneumonia after ischemic stroke. Neurology 2011, 77, 1338–1345. [Google Scholar] [CrossRef]
- Hassan, A.E.; Chaudhry, S.A.; Zacharatos, H.; Khatri, R.; Akbar, U.; Suri, M.F.; Qureshi, A.I. Increased rate of aspiration pneumonia and poor discharge outcome among acute ischemic stroke patients following intubation for endovascular treatment. Neurocrit. Care 2012, 16, 246–250. [Google Scholar] [CrossRef]
- Jensen, J.U.; Hein, L.; Lundgren, B.; Bestle, M.H.; Mohr, T.; Andersen, M.H.; Thornberg, K.J.; Loken, J.; Steensen, M.; Fox, Z.; et al. Kidney failure related to broad-spectrum antibiotics in critically ill patients: Secondary end point results from a 1200 patient randomised trial. BMJ Open 2012, 2, e000635. [Google Scholar] [CrossRef]
- Lin, S.Y.; Tang, S.C.; Tsai, L.K.; Yeh, S.J.; Shen, L.J.; Wu, F.L.; Jeng, J.S. Incidence and Risk Factors for Acute Kidney Injury Following Mannitol Infusion in Patients With Acute Stroke: A Retrospective Cohort Study. Medicine (Baltimore) 2015, 94, e2032. [Google Scholar] [CrossRef]
- Tsagalis, G.; Akrivos, T.; Alevizaki, M.; Manios, E.; Theodorakis, M.; Laggouranis, A.; Vemmos, K.N. Long-term prognosis of acute kidney injury after first acute stroke. Clin. J. Am. Soc. Nephrol. 2009, 4, 616–622. [Google Scholar] [CrossRef] [Green Version]
- Khatri, M.; Himmelfarb, J.; Adams, D.; Becker, K.; Longstreth, W.T.; Tirschwell, D.L. Acute kidney injury is associated with increased hospital mortality after stroke. J. Stroke Cerebrovasc. Dis. 2014, 23, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Krol, A.L.; Dzialowski, I.; Roy, J.; Puetz, V.; Subramaniam, S.; Coutts, S.B.; Demchuk, A.M. Incidence of radiocontrast nephropathy in patients undergoing acute stroke computed tomography angiography. Stroke 2007, 38, 2364–2366. [Google Scholar] [CrossRef] [Green Version]
- Brinjikji, W.; Demchuk, A.M.; Murad, M.H.; Rabinstein, A.A.; McDonald, R.J.; McDonald, J.S.; Kallmes, D.F. Neurons Over Nephrons: Systematic Review and Meta-Analysis of Contrast-Induced Nephropathy in Patients with Acute Stroke. Stroke 2017, 48, 1862–1868. [Google Scholar] [CrossRef]
- Demel, S.L.; Grossman, A.W.; Khoury, J.C.; Moomaw, C.J.; Alwell, K.; Kissela, B.M.; Woo, D.; Flaherty, M.L.; Ferioli, S.; Mackey, J.; et al. Association Between Acute Kidney Disease and Intravenous Dye Administration in Patients with Acute Stroke: A Population-Based Study. Stroke 2017, 48, 835–839. [Google Scholar] [CrossRef] [Green Version]
- McDonald, J.S.; McDonald, R.J.; Carter, R.E.; Katzberg, R.W.; Kallmes, D.F.; Williamson, E.E. Risk of intravenous contrast material-mediated acute kidney injury: A propensity score-matched study stratified by baseline-estimated glomerular filtration rate. Radiology 2014, 271, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Aulicky, P.; Mikulik, R.; Goldemund, D.; Reif, M.; Dufek, M.; Kubelka, T. Safety of performing CT angiography in stroke patients treated with intravenous thrombolysis. J. Neurol. Neurosurg. Psychiatry 2010, 81, 783–787. [Google Scholar] [CrossRef]
- Karlsberg, R.P.; Dohad, S.Y.; Sheng, R. Contrast medium-induced acute kidney injury: Comparison of intravenous and intraarterial administration of iodinated contrast medium. J. Vasc. Interv. Radiol. 2011, 22, 1159–1165. [Google Scholar] [CrossRef]
- Dong, M.; Jiao, Z.; Liu, T.; Guo, F.; Li, G. Effect of administration route on the renal safety of contrast agents: A meta-analysis of randomized controlled trials. J. Nephrol. 2012, 25, 290–301. [Google Scholar] [CrossRef]
- Aubry, P.; Brillet, G.; Catella, L.; Schmidt, A.; Benard, S. Outcomes, risk factors and health burden of contrast-induced acute kidney injury: An observational study of one million hospitalizations with image-guided cardiovascular procedures. BMC Nephrol. 2016, 17, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No Acute Kidney Injury (n = 542) | Acute Kidney Injury (n = 59) | p-Value | |
---|---|---|---|
Age, years | 67.9 ± 12.2 | 68.3 ± 11.8 | 0.827 |
Sex, men | 307 (56.6) | 26 (44.1) | 0.088 |
Risk factors | |||
Hypertension | 336 (62.0) | 45 (76.3) | 0.043 |
Diabetes mellitus | 139 (25.6) | 28 (47.5) | 0.001 |
Atrial fibrillation | 267 (49.3) | 31 (52.5) | 0.733 |
Dyslipidemia | 160 (29.5) | 20 (33.9) | 0.584 |
Smoking | 118 (21.8) | 10 (16.9) | 0.489 |
Previous stroke or history of TIA | 96 (17.7) | 11 (18.6) | >0.999 |
Medication prior to admission | |||
Antiplatelets | 145 (26.8) | 17 (28.8) | 0.854 |
Anticoagulants | 73 (13.5) | 6 (10.2) | 0.611 |
Statins | 26 (4.8) | 8 (13.6) | 0.013 |
Baseline renal function | 0.996 * | ||
eGFR ≥90 mL/min/1.73 m2 | 84 (15.5) | 14 (23.7) | |
eGFR 60–89 mL/min/1.73 m2 | 194 (35.8) | 17 (28.8) | |
eGFR 30–59 mL/min/1.73 m2 | 233 (43.0) | 19 (32.2) | |
eGFR <30 mL/min/1.73 m2 | 31 (5.7) | 9 (15.3) | |
CTA before EVT | 455 (83.9) | 55 (93.2) | 0.090 |
Contrast agent | 0.807 | ||
Iodixanol | 391 (72.1) | 44 (74.6) | |
Iopamidol | 151 (27.9) | 15 (25.4) | |
Contrast dose, mL | 69.1 ± 36.0 | 89.8 ± 42.9 | 0.001 |
Laboratory findings | |||
Hemoglobin, g/dL | 13.5 ± 1.8 | 12.8 ± 2.1 | 0.025 |
White blood cells, ×109/L | 8.7 ± 3.4 | 9.8 ± 4.2 | 0.063 |
Platelets, ×109/L | 221 ± 69 | 226 ± 75 | 0.645 |
Glucose, mmol/L | 7.7 ± 3.0 | 8.9 ± 3.8 | 0.029 |
Stroke-related factors | |||
NIHSS score on admission | 17 (13–21) | 19 (14.5–21.5) | 0.022 |
ASPECTS † | 7 (5–9) | 5 (3–8) | 0.004 |
Intravenous tPA | 279 (51.5) | 31 (52.5) | 0.985 |
Onset to puncture time, min | 270 (180–445) | 251 (189–402) | 0.614 |
Procedure time, min | 61.5 (43–90) | 65 (40–126) | 0.378 |
Unsuccessful reperfusion (mTICI 2a or less) | 126 (23.2) | 23 (39.0) | 0.012 |
Outcomes | |||
Any hemorrhagic transformation | 167 (30.8) | 33 (55.9) | <0.001 |
Parenchymal hematoma | 70 (13.0) | 16 (27.1) | 0.006 |
Parenchymal hematoma, type 2 | 38 (7.0) | 7 (11.9) | 0.191 |
mRS at 3 months | 3 (1–4) | 5 (4–6) | <0.001 |
Good functional outcome (mRS 0–2) | 264 (48.7) | 7 (11.9) | <0.001 |
Mortality at 3 months | 57 (10.5) | 29 (49.2) | <0.001 |
Odds Ratio (95% Confidence Interval) | p-Value | |
---|---|---|
Age, years | 0.990 (0.961–1.022) | 0.541 |
Sex, men | 0.581 (0.316–1.057) | 0.077 |
Hypertension | 1.974 (0.978–4.201) | 0.066 |
Diabetes mellitus | 2.341 (1.283–4.269) | 0.005 |
Statin medication prior to admission | 1.734 (0.654–4.211) | 0.242 |
Baseline renal function | ||
eGFR ≥90 mL/min/1.73 m2 | Ref | |
eGFR 60–89 mL/min/1.73 m2 | 0.616 (0.270–1.424) | 0.249 |
eGFR 30–59 mL/min/1.73 m2 | 0.521 (0.211–1.309) | 0.160 |
eGFR <30 mL/min/1.73 m2 | 1.434 (0.432–4.697) | 0.551 |
CTA before EVT | 2.112 (0.786–7.406) | 0.181 |
Contrast dose, per 10 mL increase | 1.107 (1.032–1.187) | 0.004 |
NIHSS score on admission | 1.041 (0.993–1.092) | 0.095 |
Unsuccessful reperfusion | 1.909 (1.019–3.520) | 0.040 |
Model 1 | Model 2 | |||
---|---|---|---|---|
Odds Ratio (95% Confidence Interval) | p-Value | Odds Ratio (95% Confidence Interval) | p-Value | |
Age, years | 1.047 (1.025–1.071) | <0.001 | 1.047 (1.025–1.071) | <0.001 |
Sex, men | 0.755 (0.501–1.134) | 0.176 | 0.755 (0.501–1.135) | 0.177 |
Hypertension | 1.178 (0.769–1.805) | 0.450 | 1.187 (0.775–1.820) | 0.430 |
Diabetes mellitus | 1.465 (0.934–2.309) | 0.098 | 1.460 (0.929–2.303) | 0.102 |
Baseline renal function | ||||
eGFR ≥90 mL/min/1.73 m2 | Ref | Ref | ||
eGFR 60–89 mL/min/1.73 m2 | 1.260 (0.678–2.354) | 0.465 | 1.245 (0.670–2.324) | 0.490 |
eGFR 30–59 mL/min/1.73 m2 | 0.914 (0.456–1.824) | 0.798 | 0.894 (0.446–1.784) | 0.750 |
eGFR <30 mL/min/1.73 m2 | 1.145 (0.396–3.423) | 0.805 | 1.117 (0.385–3.346) | 0.840 |
Presence of acute kidney injury | 5.145 (2.177–13.850) | <0.001 | ||
Stage of acute kidney injury | ||||
No acute kidney injury | Ref | |||
Stage 1 | 2.938 (0.888–11.699) | 0.094 | ||
Stage 2 | 13.709 (2.108–280.187) | 0.022 | ||
Stage 3 | 6.028 (1.452–42.593) | 0.030 | ||
Contrast dose, per 10 mL increase | 1.080 (1.013–1.155) | 0.021 | 1.078 (1.011–1.153) | 0.025 |
White blood cell count | 1.076 (1.011–1.148) | 0.024 | 1.076 (1.011–1.149) | 0.024 |
NIHSS score on admission | 1.129 (1.089–1.174) | <0.001 | 1.130 (1.089–1.174) | <0.001 |
Onset to puncture time, min | 1.001 (1.0001–1.002) | 0.034 | 1.001 (1.0001–1.002) | 0.029 |
Procedure time, min | 1.012 (1.006–1.018) | <0.001 | 1.012 (1.006–1.018) | <0.001 |
Unsuccessful reperfusion | 2.686 (1.640–4.468) | <0.001 | 2.672 (1.630–4.445) | <0.001 |
Parenchymal hematoma, type 2 | 4.438 (1.792–12.877) | 0.003 | 4.510 (1.818–13.098) | 0.002 |
Model 1 | Model 2 | |||
---|---|---|---|---|
Odds Ratio (95% Confidence Interval) | p-Value | Odds Ratio (95% Confidence Interval) | p-Value | |
Age, years | 1.006 (0.978–1.036) | 0.675 | 1.006 (0.978–1.037) | 0.667 |
Sex, men | 1.377 (0.785–2.450) | 0.269 | 1.300 (0.733–2.330) | 0.372 |
Diabetes mellitus | 1.212 (0.663–2.168) | 0.524 | 1.247 (0.676–2.252) | 0.471 |
Statin medication prior to admission | 1.776 (0.624–4.809) | 0.267 | 1.705 (0.580–4.751) | 0.317 |
Baseline renal function | ||||
eGFR ≥90 mL/min/1.73 m2 | Ref | Ref | ||
eGFR 60–89 mL/min/1.73 m2 | 2.515 (0.988–6.916) | 0.062 | 2.438 (0.936–6.868) | 0.078 |
eGFR 30–59 mL/min/1.73 m2 | 4.264 (1.598–12.361) | 0.005 | 4.012 (1.465–11.935) | 0.009 |
eGFR <30 mL/min/1.73 m2 | 3.949 (1.048–15.280) | 0.043 | 3.609 (0.904–14.548) | 0.068 |
Presence of acute kidney injury | 8.164 (4.046–16.709) | <0.001 | ||
Stage of acute kidney injury | ||||
No acute kidney injury | Ref | |||
Stage 1 | 2.355 (0.660–7.265) | 0.155 | ||
Stage 2 | 20.845 (5.907–82.054) | <0.001 | ||
Stage 3 | 13.670 (4.740–41.925) | <0.001 | ||
Contrast dose, per 10 mL increase | 1.039 (0.958–1.125) | 0.345 | 1.027 (0.944–1.113) | 0.530 |
White blood cells | 0.968 (0.891–1.047) | 0.433 | 0.969 (0.889–1.050) | 0.452 |
Platelets | 1.008 (1.004–1.013) | <0.001 | 1.008 (1.004–1.012) | <0.001 |
NIHSS score on admission | 1.115 (1.063–1.172) | <0.001 | 1.116 (1.063–1.173) | <0.001 |
Procedure time, min | 1.004 (0.998–1.010) | 0.193 | 1.005 (0.999–1.011) | 0.085 |
Unsuccessful reperfusion | 2.383 (1.294–4.377) | 0.005 | 2.475 (1.332–4.586) | 0.004 |
Parenchymal hematoma, type 2 | 5.176 (2.450–10.836) | <0.001 | 5.212 (2.422–11.074) | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, J.; Hong, J.-H.; Lee, S.-J.; Kim, Y.-W.; Hong, J.M.; Kim, C.-H.; Choi, J.W.; Kang, D.-H.; Kim, Y.-S.; Hwang, Y.-H.; et al. Acute Kidney Injury after Endovascular Treatment in Patients with Acute Ischemic Stroke. J. Clin. Med. 2020, 9, 1471. https://doi.org/10.3390/jcm9051471
Yoo J, Hong J-H, Lee S-J, Kim Y-W, Hong JM, Kim C-H, Choi JW, Kang D-H, Kim Y-S, Hwang Y-H, et al. Acute Kidney Injury after Endovascular Treatment in Patients with Acute Ischemic Stroke. Journal of Clinical Medicine. 2020; 9(5):1471. https://doi.org/10.3390/jcm9051471
Chicago/Turabian StyleYoo, Joonsang, Jeong-Ho Hong, Seong-Joon Lee, Yong-Won Kim, Ji Man Hong, Chang-Hyun Kim, Jin Wook Choi, Dong-Hun Kang, Yong-Sun Kim, Yang-Ha Hwang, and et al. 2020. "Acute Kidney Injury after Endovascular Treatment in Patients with Acute Ischemic Stroke" Journal of Clinical Medicine 9, no. 5: 1471. https://doi.org/10.3390/jcm9051471
APA StyleYoo, J., Hong, J. -H., Lee, S. -J., Kim, Y. -W., Hong, J. M., Kim, C. -H., Choi, J. W., Kang, D. -H., Kim, Y. -S., Hwang, Y. -H., Lee, J. S., & Sohn, S. -I. (2020). Acute Kidney Injury after Endovascular Treatment in Patients with Acute Ischemic Stroke. Journal of Clinical Medicine, 9(5), 1471. https://doi.org/10.3390/jcm9051471