Acute Kidney Injury: From Diagnosis to Prevention and Treatment Strategies
Abstract
:1. Introduction
2. Diagnosis of AKI
3. Risk factors for AKI
4. Causes and Assessment of AKI
5. Treatment of AKI
5.1. Fluid Therapy
5.2. Vasopressor Drugs
5.3. Diuretics
5.4. Drug Nephrotoxicity
5.5. Other Therapeutic Strategies
5.6. Renal Replacement Therapy
6. Prevention of AKI
7. Follow-Up after AKI
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Susantitaphong, P.; Cruz, D.N.; Cerda, J.; Abulfaraj, M.; Alqahtani, F.; Koulouridis, I.; Jaber, B.L. Acute Kidney Injury Advisory Group of the American Society of Nephrology. World Incidence of AKI: A Meta-Analysis. Clin. J. Am. Soc. Nephrol. 2013, 8, 1482–1493. [Google Scholar] [CrossRef] [Green Version]
- Lameire, N.; Van Biesen, W.; Vanholder, R. The changing epidemiology of acute renal failure. Nat. Clin. Pract. Nephrol. 2006, 2, 364–377. [Google Scholar] [CrossRef]
- Rodrigues, F.B.; Bruetto, R.G.; Torres, U.S.; Otaviano, A.P.; Zanetta, D.M.T.; Burdmann, E.A. Incidence and Mortality of Acute Kidney Injury after Myocardial Infarction: A Comparison between KDIGO and RIFLE Criteria. PLoS ONE 2013, 8, e69998. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Jiang, L.; Du, B.; Wen, Y.; Wang, M.; Xi, X. A comparison of different diagnostic criteria of acute kidney injury in critically ill patients. Crit. Care 2014, 18, R144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujii, T.; Uchino, S.; Takinami, M.; Bellomo, R. Validation of the Kidney Disease Improving Global Outcomes Criteria for AKI and Comparison of Three Criteria in Hospitalized Patients. Clin. J. Am. Soc. Nephrol. 2014, 9, 848–854. [Google Scholar] [CrossRef] [Green Version]
- Bagshaw, S.M.; George, C.; Bellomo, R. Changes in the incidence and outcome for early acute kidney injury in a cohort of Australian intensive care units. Crit. Care 2007, 11, R68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoste, E.A.J.; Kellum, J.A.; Selby, N.M.; Zarbock, A.; Palevsky, P.M.; Bagshaw, S.M.; Goldstein, S.L.; Cerdá, J.; Chawla, L.S. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 2018, 14, 607–625. [Google Scholar] [CrossRef] [PubMed]
- Chertow, G.M.; Burdick, E.; Honour, M.; Bonventre, J.V.; Bates, D.W. Acute Kidney Injury, Mortality, Length of Stay, and Costs in Hospitalized Patients. J. Am. Soc. Nephrol. 2005, 16, 3365–3370. [Google Scholar] [CrossRef] [Green Version]
- Hsu, R.K.; McCulloch, C.E.; Dudley, R.A.; Lo, L.J.; Hsu, C. Temporal Changes in Incidence of Dialysis-Requiring AKI. J. Am. Soc. Nephrol. 2012, 24, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Bellomo, R. The epidemiology of acute renal failure: 1975 versus 2005. Curr. Opin. Crit. Care 2006, 12, 557–560. [Google Scholar] [CrossRef]
- Cruz, D.N.; Ronco, C. Acute kidney injury in the intensive care unit: Current trends in incidence and outcome. Crit. Care 2007, 11, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagshaw, S.M.; George, C.; Bellomo, R. Early acute kidney injury and sepsis: A multicentre evaluation. Crit. Care 2008, 12, R47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khwaja, A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron 2012, 120, c179–c184. [Google Scholar] [CrossRef] [PubMed]
- Gameiro, J.; Agapito Fonseca, J.; Jorge, S.; Lopes, J.A. Acute Kidney Injury Definition and Diagnosis: A Narrative Review. J. Clin. Med. 2018, 7, 307. [Google Scholar] [CrossRef] [PubMed]
- Chawla, L.S.; Bellomo, R.; Bihorac, A.; Goldstein, S.L.; Siew, E.D.; Bagshaw, S.M.; Bittleman, D.; Cruz, D.; Endre, Z.; Fitzgerald, R.L.; et al. Acute kidney disease and renal recovery: Consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat. Rev. Nephrol. 2017, 13, 241–257. [Google Scholar] [CrossRef] [Green Version]
- Moledina, D.G.; Parikh, C.R. Phenotyping of Acute Kidney Injury: Beyond Serum Creatinine. Semin. Nephrol. 2018, 38, 3–11. [Google Scholar] [CrossRef]
- Waikar, S.S.; Betensky, R.A.; Emerson, S.C.; Bonventre, J.V. Imperfect Gold Standards for Kidney Injury Biomarker Evaluation. J. Am. Soc. Nephrol. 2011, 23, 13–21. [Google Scholar] [CrossRef]
- Thomas, M.E.; Blaine, C.; Dawnay, A.; Devonald, M.A.; Ftouh, S.; Laing, C.; Latchem, S.; Lewington, A.; Milford, D.V.; Ostermann, M. The definition of acute kidney injury and its use in practice. Kidney Int. 2015, 87, 62–73. [Google Scholar] [CrossRef]
- Macedo, E.; Malhotra, R.; Claure-Del Granado, R.; Fedullo, P.; Mehta, R.L. Defining urine output criterion for acute kidney injury in critically ill patients. Nephrol. Dial. Transplant. 2010, 26, 509–515. [Google Scholar] [CrossRef]
- Schinstock, C.A.; Semret, M.H.; Wagner, S.J.; Borland, T.M.; Bryant, S.C.; Kashani, K.B.; Larson, T.S.; Lieske, J.C. Urinalysis is more specific and urinary neutrophil gelatinase-associated lipocalin is more sensitive for early detection of acute kidney injury. Nephrol. Dial. Transplant. 2012, 28, 1175–1185. [Google Scholar] [CrossRef] [Green Version]
- Parikh, C.R.; Mishra, J.; Thiessen-Philbrook, H.; Dursun, B.; Ma, Q.; Kelly, C.; Dent, C.; Devarajan, P.; Edelstein, C.L. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006, 70, 199–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Somma, S.; Magrini, L.; De Berardinis, B.; Marino, R.; Ferri, E.; Moscatelli, P.; Ballarino, P.; Carpinteri, G.; Noto, P.; Gliozzo, B.; et al. Additive value of blood neutrophil gelatinase-associated lipocalin to clinical judgement in acute kidney injury diagnosis and mortality prediction in patients hospitalized from the emergency department. Crit. Care 2013, 17, R29. [Google Scholar] [CrossRef] [Green Version]
- Bennett, M.; Dent, C.L.; Ma, Q.; Dastrala, S.; Grenier, F.; Workman, R.; Syed, H.; Ali, S.; Barasch, J.; Devarajan, P. Urine NGAL Predicts Severity of Acute Kidney Injury After Cardiac Surgery: A Prospective Study. Clin. J. Am. Soc. Nephrol. 2008, 3, 665–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, I.E.; Yarlagadda, S.G.; Coca, S.G.; Wang, Z.; Doshi, M.; Devarajan, P.; Han, W.K.; Marcus, R.J.; Parikh, C.R. IL-18 and Urinary NGAL Predict Dialysis and Graft Recovery after Kidney Transplantation. J. Am. Soc. Nephrol. 2009, 21, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.-M.; Huang, L.-F.; Zheng, Y.; Li, W.-X. Diagnostic value of urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor binding protein 7 for acute kidney injury: A meta-analysis. Crit. Care 2017, 21. [Google Scholar] [CrossRef] [Green Version]
- Bargnoux, A.-S.; Piéroni, L.; Cristol, J.-P. Analytical study of a new turbidimetric assay for urinary neutrophil gelatinase-associated lipocalin (NGAL) determination. Clin. Chem. Lab. Med. 2013, 51. [Google Scholar] [CrossRef]
- Westhoff, J.H.; Tönshoff, B.; Waldherr, S.; Pöschl, J.; Teufel, U.; Westhoff, T.H.; Fichtner, A. Urinary Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) • Insulin-Like Growth Factor-Binding Protein 7 (IGFBP7) Predicts Adverse Outcome in Pediatric Acute Kidney Injury. PLoS ONE 2015, 10, e0143628. [Google Scholar] [CrossRef]
- Lima, C.; Macedo, E. Urinary Biochemistry in the Diagnosis of Acute Kidney Injury. Dis. Markers 2018, 2018, 4907024. [Google Scholar] [CrossRef] [Green Version]
- Han, W.K.; Bailly, V.; Abichandani, R.; Thadhani, R.; Bonventre, J.V. Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int. 2002, 62, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Ostermann, M.; Philips, B.J.; Forni, L.G. Clinical review: Biomarkers of acute kidney injury: Where are we now? Crit. Care 2012, 16, 233. [Google Scholar] [CrossRef] [Green Version]
- Kashani, K.; Cheungpasitporn, W.; Ronco, C. Biomarkers of acute kidney injury: The pathway from discovery to clinical adoption. Clin. Chem. Lab. Med. 2017, 55, 1074–1089. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.J.; Brandtner, A.K.; Lehner, G.F.; Ulmer, H.; Bagshaw, S.M.; Wiedermann, C.J.; Joannidis, M. Biomarkers for prediction of renal replacement therapy in acute kidney injury: A systematic review and meta-analysis. Intensive Care Med. 2018, 44, 323–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanmassenhove, J.; Vanholder, R.; Nagler, E.; Van Biesen, W. Urinary and serum biomarkers for the diagnosis of acute kidney injury: An in-depth review of the literature*. Nephrol. Dial. Transplant. 2012, 28, 254–273. [Google Scholar] [CrossRef] [Green Version]
- Alge, J.L.; Arthur, J.M. Biomarkers of AKI: A Review of Mechanistic Relevance and Potential Therapeutic Implications. Clin. J. Am. Soc. Nephrol. 2014, 10, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Thongprayoon, C.; Hansrivijit, P.; Kovvuru, K.; Kanduri, S.R.; Torres-Ortiz, A.; Acharya, P.; Gonzalez-Suarez, M.L.; Kaewput, W.; Bathini, T.; Cheungpasitporn, W. Diagnostics, Risk Factors, Treatment and Outcomes of Acute Kidney Injury in a New Paradigm. J. Clin. Med. 2020, 9, 1104. [Google Scholar] [CrossRef] [Green Version]
- Ali, T.; Khan, I.; Simpson, W.; Prescott, G.; Townend, J.; Smith, W.; Macleod, A. Incidence and Outcomes in Acute Kidney Injury: A Comprehensive Population-Based Study. J. Am. Soc. Nephrol. 2007, 18, 1292–1298. [Google Scholar] [CrossRef] [Green Version]
- Lameire, N.H.; Bagga, A.; Cruz, D.; De Maeseneer, J.; Endre, Z.; Kellum, J.A.; Liu, K.D.; Mehta, R.L.; Pannu, N.; Van Biesen, W.; et al. Acute kidney injury: An increasing global concern. Lancet 2013, 382, 170–179. [Google Scholar] [CrossRef]
- Grams, M.E.; Sang, Y.; Ballew, S.H.; Gansevoort, R.T.; Kimm, H.; Kovesdy, C.P.; Naimark, D.; Oien, C.; Smith, D.H.; Coresh, J.; et al. A Meta-analysis of the Association of Estimated GFR, Albuminuria, Age, Race, and Sex With Acute Kidney Injury. Am. J. Kidney Dis. 2015, 66, 591–601. [Google Scholar] [CrossRef] [Green Version]
- De Zan, F.; Amigoni, A.; Pozzato, R.; Pettenazzo, A.; Murer, L.; Vidal, E. Acute Kidney Injury in Critically Ill Children: A Retrospective Analysis of Risk Factors. Blood Purif. 2020, 49, 1–7. [Google Scholar] [CrossRef]
- Nie, S.; Tang, L.; Zhang, W.; Feng, Z.; Chen, X. Are There Modifiable Risk Factors to Improve AKI? BioMed Res. Int. 2017, 2017, 5605634. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.; Eldadah, B.; Halter, J.B.; Hazzard, W.R.; Himmelfarb, J.; Horne, F.M.; Kimmel, P.L.; Molitoris, B.A.; Murthy, M.; O’Hare, A.M.; et al. Acute Kidney Injury in Older Adults. J. Am. Soc. Nephrol. 2011, 22, 28–38. [Google Scholar] [CrossRef]
- Chawla, L.S.; Eggers, P.W.; Star, R.A.; Kimmel, P.L. Acute Kidney Injury and Chronic Kidney Disease as Interconnected Syndromes. N. Engl. J. Med. 2014, 371, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Yang, L. How Acute Kidney Injury Contributes to Renal Fibrosis. In Renal Fibrosis: Mechanisms and Therapies; Springer: Singapore, 2019; pp. 117–142. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhao, C.; Xie, D.; Xu, D.; Bin, J.; Chen, P.; Liang, M.; Zhang, X.; Hou, F. Acute and acute-on-chronic kidney injury of patients with decompensated heart failure: Impact on outcomes. BMC Nephrol. 2012, 13, 51. [Google Scholar] [CrossRef] [Green Version]
- Nie, S.; Feng, Z.; Xia, L.; Bai, J.; Xiao, F.; Liu, J.; Tang, L.; Chen, X. Risk factors of prognosis after acute kidney injury in hospitalized patients. Front. Med. 2017, 11, 393–402. [Google Scholar] [CrossRef]
- Kane-Gill, S.L.; Sileanu, F.E.; Murugan, R.; Trietley, G.S.; Handler, S.M.; Kellum, J.A. Risk Factors for Acute Kidney Injury in Older Adults With Critical Illness: A Retrospective Cohort Study. Am. J. Kidney Dis. 2015, 65, 860–869. [Google Scholar] [CrossRef] [Green Version]
- Gameiro, J.; Agapito Fonseca, J.; Jorge, S.; Lopes, J.A. Acute kidney injury in HIV-infected patients: A critical review. HIV Med. 2019, 20. [Google Scholar] [CrossRef]
- Wyatt, C.M.; Arons, R.R.; Klotman, P.E.; Klotman, M.E. Acute renal failure in hospitalized patients with HIV: Risk factors and impact on in-hospital mortality. AIDS 2006, 20, 561–565. [Google Scholar] [CrossRef]
- Hoste, E.A.; Bagshaw, S.M.; Bellomo, R.; Cely, C.M.; Colman, R.; Cruz, D.N.; Edipidis, K.; Forni, L.G.; Gomersall, C.D.; Govil, D.; et al. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med. 2015, 41, 1411–1423. [Google Scholar] [CrossRef]
- Ejaz, A.A.; Beaver, T.M.; Shimada, M.; Sood, P.; Lingegowda, V.; Schold, J.D.; Kim, T.; Johnson, R.J. Uric Acid: A Novel Risk Factor for Acute Kidney Injury in High-Risk Cardiac Surgery Patients? Am. J. Nephrol. 2009, 30, 425–429. [Google Scholar] [CrossRef]
- Ejaz, A.A.; Kambhampati, G.; Ejaz, N.I.; Dass, B.; Lapsia, V.; Arif, A.A.; Asmar, A.; Shimada, M.; Alsabbagh, M.M.; Aiyer, R.; et al. Post-operative serum uric acid and acute kidney injury. J. Nephrol. 2012, 25, 497–505. [Google Scholar] [CrossRef]
- Lapsia, V.; Johnson, R.J.; Dass, B.; Shimada, M.; Kambhampati, G.; Ejaz, N.I.; Arif, A.A.; Ejaz, A.A. Elevated Uric Acid Increases the Risk for Acute Kidney Injury. Am. J. Med. 2012, 125, 302.e9–302.e17. [Google Scholar] [CrossRef]
- Guo, W.; Liu, Y.; Chen, J.-Y.; Chen, S.Q.; Li, H.L.; Duan, C.Y.; Liu, H.Y.; Tan, N. Hyperuricemia Is an Independent Predictor of Contrast-Induced Acute Kidney Injury and Mortality in Patients Undergoing Percutaneous Coronary Intervention. Angiology 2015, 66, 721–726. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef] [Green Version]
- Ostermann, M.; Liu, K. Pathophysiology of AKI. Best Pract. Res. Clin. Anaesthesiol. 2017, 31, 305–314. [Google Scholar] [CrossRef]
- Case, J.; Khan, S.; Khalid, R.; Khan, A. Epidemiology of Acute Kidney Injury in the Intensive Care Unit. Crit. Care Res. Pract. 2013, 2013, 479730. [Google Scholar] [CrossRef] [Green Version]
- Uchino, S.; Kellum, J.A.; Bellomo, R.; Doig, G.S.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; et al. Acute Renal Failure in Critically Ill Patients: A Multinational, Multicenter Study. JAMA 2005, 294, 813. [Google Scholar] [CrossRef] [Green Version]
- Akcay, A.; Nguyen, Q.; Edelstein, C.L. Mediators of Inflammation in Acute Kidney Injury. Mediat. Inflamm. 2009, 2019, 137072. [Google Scholar] [CrossRef]
- Basile, D.P.; Anderson, M.D.; Sutton, T.A. Pathophysiology of Acute Kidney Injury. In Comprehensive Physiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef] [Green Version]
- Devarajan, P. Update on Mechanisms of Ischemic Acute Kidney Injury. J. Am. Soc. Nephrol. 2006, 17, 1503–1520. [Google Scholar] [CrossRef] [Green Version]
- Harty, J. Prevention and management of acute kidney injury. Ulster Med. J. 2014, 83, 149–157. [Google Scholar]
- Moore, P.K.; Hsu, R.K.; Liu, K.D. Management of Acute Kidney Injury: Core Curriculum 2018. Am. J. Kidney Dis. 2018, 72, 136–148. [Google Scholar] [CrossRef]
- Ostermann, M.; Liu, K.; Kashani, K. Fluid Management in Acute Kidney Injury. Chest 2019, 156, 594–603. [Google Scholar] [CrossRef]
- Meersch, M.; Schmidt, C.; Hoffmeier, A.; Van Aken, H.; Wempe, C.; Gerss, J.; Zarbock, A. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: The PrevAKI randomized controlled trial. Intensive Care Med. 2017, 43, 1551–1561. [Google Scholar] [CrossRef] [Green Version]
- Bagshaw, S.M.; Lapinsky, S.; Dial, S.; Arabi, Y.; Dodek, P.; Wood, G.; Ellis, P.; Guzman, J.; Marshall, J.; Parrillo, J.E.; et al. Acute kidney injury in septic shock: Clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med. 2009, 35, 871–881. [Google Scholar] [CrossRef]
- Bouchard, J.; Soroko, S.B.; Chertow, G.M.; Himmelfarb, J.; Ikizler, T.A.; Paganini, E.P.; Mehta, R.L. Program to Improve Care in Acute Renal Disease (PICARD) Study Group. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009, 76, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Jiang, L.; Zhu, B.; Wen, Y.; Xi, X.-M. Fluid balance and mortality in critically ill patients with acute kidney injury: A multicenter prospective epidemiological study. Crit. Care 2015, 19, 371. [Google Scholar] [CrossRef] [Green Version]
- Vaara, S.T.; Korhonen, A.M.; Kaukonen, K.M.; Nisula, S.; Inkinen, O.; Hoppu, S.; Laurila, J.J.; Mildh, L.; Reinikainen, M.; Lund, V.; et al. Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: Data from the prospective FINNAKI study. Crit. Care 2012, 16, R197. [Google Scholar] [CrossRef] [Green Version]
- Bednarczyk, J.M.; Fridfinnson, J.A.; Kumar, A.; Blanchard, L.; Rabbani, R.; Bell, D.; Funk, D.; Turgeon, A.F.; Abou-Setta, A.M.; Zarychanski, R. Incorporating Dynamic Assessment of Fluid Responsiveness Into Goal-Directed Therapy. Crit. Care Med. 2017, 45, 1538–1545. [Google Scholar] [CrossRef]
- Saugel, B.; Vincent, J.-L.; Wagner, J.Y. Personalized hemodynamic management. Curr. Opin. Crit. Care 2017, 23, 334–341. [Google Scholar] [CrossRef]
- Varrier, M.; Ostermann, M. Fluid Composition and Clinical Effects. Crit. Care Clin. 2015, 31, 823–837. [Google Scholar] [CrossRef]
- Finfer, S.; Bellomo, R.; Boyce, N.; French, J.; Myburgh, J.; Norton, R. A Comparison of Albumin and Saline for Fluid Resuscitation in the Intensive Care Unit. N. Engl. J. Med. 2004, 350, 2247–2256. [Google Scholar] [CrossRef] [Green Version]
- Caironi, P.; Tognoni, G.; Masson, S.; Fumagalli, R.; Pesenti, A.; Romero, M.; Fanizza, C.; Caspani, L.; Faenza, S.; Grasselli, G.; et al. Albumin Replacement in Patients with Severe Sepsis or Septic Shock. N. Engl. J. Med. 2014, 370, 1412–1421. [Google Scholar] [CrossRef] [Green Version]
- The SAFE Study Investigators. Saline or Albumin for Fluid Resuscitation in Patients with Traumatic Brain Injury. N. Engl. J. Med. 2007, 357, 874–884. [Google Scholar] [CrossRef] [Green Version]
- Annane, D. Effects of Fluid Resuscitation With Colloids vs Crystalloids on Mortality in Critically Ill Patients Presenting With Hypovolemic Shock. JAMA 2013, 310, 1809. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef]
- Bayer, O.; Reinhart, K.; Kohl, M.; Kabisch, B.; Marshall, J.; Sakr, Y.; Bauer, M.; Hartog, C.; Schwarzkopf, D.; Riedemann, N. Effects of fluid resuscitation with synthetic colloids or crystalloids alone on shock reversal, fluid balance, and patient outcomes in patients with severe sepsis. Crit. Care Med. 2012, 40, 2543–2551. [Google Scholar] [CrossRef] [Green Version]
- Boyer, T.D.; Sanyal, A.J.; Wong, F.; Frederick, R.T.; Lake, J.R.; O’Leary, J.G.; Ganger, D.; Jamil, K.; Pappas, S.C.; REVERSE Study Investigators. Terlipressin Plus Albumin Is More Effective Than Albumin Alone in Improving Renal Function in Patients With Cirrhosis and Hepatorenal Syndrome Type 1. Gastroenterology 2016, 150, 1579–1589.e2. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.H.; Kim, W.J.; Kim, J.Y.; Chin, J.H.; Choi, D.K.; Sim, J.Y.; Choo, S.J.; Chung, C.H.; Lee, J.W.; Choi, I.C. Effect of Exogenous Albumin on the Incidence of Postoperative Acute Kidney Injury in Patients Undergoing Off-pump Coronary Artery Bypass Surgery with a Preoperative Albumin Level of Less Than 4.0 g/dl. Anesthesiology 2016, 124, 1001–1011. [Google Scholar] [CrossRef]
- Udeh, C.I.; You, J.; Wanek, M.R.; Dalton, J.; Udeh, B.L.; Demirjian, S.; Rahman, N.; Hata, J.S. Acute kidney injury in postoperative shock: Is hyperoncotic albumin administration an unrecognized resuscitation risk factor? Perioper Med. 2018, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Schortgen, F.; Girou, E.; Deye, N.; Brochard, L. The risk associated with hyperoncotic colloids in patients with shock. Intensive Care Med. 2008, 34, 2157–2168. [Google Scholar] [CrossRef]
- Myburgh, J.A.; Finfer, S.; Bellomo, R.; Billot, L.; Cass, A.; Gattas, D.; Glass, P.; Lipman, J.; Liu, B.; McArthur, C.; et al. Hydroxyethyl Starch or Saline for Fluid Resuscitation in Intensive Care. N. Engl. J. Med. 2012, 367, 1901–1911. [Google Scholar] [CrossRef] [Green Version]
- Perner, A.; Haase, N.; Guttormsen, A.B.; Tenhunen, J.; Klemenzson, G.; Åneman, A.; Madsen, K.R.; Møller, M.H.; Elkjær, J.M.; Poulsen, L.M.; et al. Hydroxyethyl Starch 130/0.42 versus Ringer’s Acetate in Severe Sepsis. N. Engl. J. Med. 2012, 367, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Moeller, C.; Fleischmann, C.; Thomas-Rueddel, D.; Vlasakov, V.; Rochwerg, B.; Theurer, P.; Gattinoni, L.; Reinhart, K.; Hartog, C.S. How safe is gelatin? A systematic review and meta-analysis of gelatin-containing plasma expanders vs crystalloids and albumin. J. Crit. Care 2016, 35, 75–83. [Google Scholar] [CrossRef]
- Semler, M.W.; Self, W.H.; Wanderer, J.P.; Ehrenfeld, J.M.; Wang, L.; Byrne, D.W.; Stollings, J.L.; Kumar, A.B.; Hughes, C.G.; Hernandez, A.; et al. Balanced Crystalloids versus Saline in Critically Ill Adults. N. Engl. J. Med. 2018, 378, 829–839. [Google Scholar] [CrossRef]
- McCluskey, S.A.; Karkouti, K.; Wijeysundera, D.; Minkovich, L.; Tait, G.; Beattie, W.S. Hyperchloremia After Noncardiac Surgery Is Independently Associated with Increased Morbidity and Mortality. Anesth Analg. 2013, 117, 412–421. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, A.H.; Cox, E.F.; Francis, S.T.; Lobo, D.N. A Randomized, Controlled, Double-Blind Crossover Study on the Effects of 2-L Infusions of 0.9% Saline and Plasma-Lyte® 148 on Renal Blood Flow Velocity and Renal Cortical Tissue Perfusion in Healthy Volunteers. Ann. Surg. 2012, 256, 18–24. [Google Scholar] [CrossRef]
- Yunos, N.M.; Bellomo, R.; Hegarty, C.; Story, D.; Ho, L.; Bailey, M. Association Between a Chloride-Liberal vs Chloride-Restrictive Intravenous Fluid Administration Strategy and Kidney Injury in Critically Ill Adults. JAMA 2012, 308, 1566. [Google Scholar] [CrossRef] [Green Version]
- Raghunathan, K.; Shaw, A.; Nathanson, B.; Stürmer, T.; Brookhart, A.; Stefan, M.S.; Setoguchi, S.; Beadles, C.; Lindenauer, P.K. Association Between the Choice of IV Crystalloid and In-Hospital Mortality Among Critically Ill Adults With Sepsis*. Crit. Care Med. 2014, 42, 1585–1591. [Google Scholar] [CrossRef]
- Reddy, S.K.; Bailey, M.J.; Beasley, R.W.; Bellomo, R.; Mackle, D.M.; Psirides, A.J.; Young, P.J. Effect of 0.9% Saline or Plasma-Lyte 148 as Crystalloid Fluid Therapy in the Intensive Care Unit on Blood Product Use and Postoperative Bleeding After Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2017, 31, 1630–1638. [Google Scholar] [CrossRef]
- Young, P.; Bailey, M.; Beasley, R.; Henderson, S.; Mackle, D.; McArthur, C.; McGuinness, S.; Mehrtens, J.; Myburgh, J.; Psirides, A.; et al. Effect of a Buffered Crystalloid Solution vs Saline on Acute Kidney Injury Among Patients in the Intensive Care Unit. JAMA 2015, 314, 1701. [Google Scholar] [CrossRef]
- Self, W.H.; Semler, M.W.; Wanderer, J.P.; Wang, L.; Byrne, D.W.; Collins, S.P.; Slovis, C.M.; Lindsell, C.J.; Ehrenfeld, J.M.; Siew, E.D.; et al. Balanced Crystalloids versus Saline in Noncritically Ill Adults. N. Engl. J. Med. 2018, 378, 819–828. [Google Scholar] [CrossRef]
- Sen, A.; Keener, C.M.; Sileanu, F.E.; Foldes, E.; Clermont, G.; Murugan, R.; Kellum, J.A. Chloride Content of Fluids Used for Large-Volume Resuscitation Is Associated With Reduced Survival. Crit. Care Med. 2017, 45, e146–e153. [Google Scholar] [CrossRef] [PubMed]
- Asfar, P.; Meziani, F.; Hamel, J.F.; Grelon, F.; Megarbane, B.; Anguel, N.; Mira, J.P.; Dequin, P.F.; Gergaud, S.; Weiss, N.; et al. High versus Low Blood-Pressure Target in Patients with Septic Shock. N. Engl. J. Med. 2014, 370, 1583–1593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, R.; Pinsky, M.R. Personalizing blood pressure management in septic shock. Ann. Intensive Care 2015, 5, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Futier, E.; Lefrant, J.Y.; Guinot, P.G.; Godet, T.; Lorne, E.; Cuvillon, P.; Bertran, S.; Leone, M.; Pastene, B.; Piriou, V.; et al. Effect of Individualized vs Standard Blood Pressure Management Strategies on Postoperative Organ Dysfunction Among High-Risk Patients Undergoing Major Surgery. JAMA 2017, 318, 1346. [Google Scholar] [CrossRef]
- De Backer, D.; Biston, P.; Devriendt, J.; Madl, C.; Chochrad, D.; Aldecoa, C.; Brasseur, A.; Defrance, P.; Gottignies, P.; Vincent, J.L.; et al. Comparison of Dopamine and Norepinephrine in the Treatment of Shock. N. Engl. J. Med. 2010, 362, 779–789. [Google Scholar] [CrossRef] [Green Version]
- Hernández, G.; Teboul, J.-L.; Bakker, J. Norepinephrine in septic shock. Intensive Care Med. 2019, 45, 687–689. [Google Scholar] [CrossRef]
- Leone, M.; Albanèse, J.; Delmas, A.; Chaabane, W.; Garnier, F.; Martin, C. TERLIPRESSIN IN CATECHOLAMINE-RESISTANT SEPTIC SHOCK PATIENTS. Shock 2004, 22, 314–319. [Google Scholar] [CrossRef]
- Albanèse, J.; Leone, M.; Delmas, A.; Martin, C. Terlipressin or norepinephrine in hyperdynamic septic shock: A prospective, randomized study*. Crit. Care Med. 2005, 33, 1897–1902. [Google Scholar] [CrossRef]
- Gordon, A.C.; Mason, A.J.; Thirunavukkarasu, N.; Perkins, G.D.; Cecconi, M.; Cepkova, M.; Pogson, D.G.; Aya, H.D.; Anjum, A.; Frazier, G.J.; et al. Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients With Septic Shock. JAMA 2016, 316, 509. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.A.; Walley, K.R.; Singer, J.; Gordon, A.C.; Hébert, P.C.; Cooper, D.J.; Holmes, C.L.; Mehta, S.; Granton, J.T.; Storms, M.M.; et al. Vasopressin versus Norepinephrine Infusion in Patients with Septic Shock. N. Engl. J. Med. 2008, 358, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Tumlin, J.A.; Murugan, R.; Deane, A.M.; Ostermann, M.; Busse, L.W.; Ham, K.R.; Kashani, K.; Szerlip, H.M.; Prowle, J.R.; Bihorac, A.; et al. Outcomes in Patients with Vasodilatory Shock and Renal Replacement Therapy Treated with Intravenous Angiotensin II. Crit. Care Med. 2018, 46, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Denton, M.D.; Chertow, G.M.; Brady, H.R. “Renal-dose” dopamine for the treatment of acute renal failure: Scientific rationale, experimental studies and clinical trials. Kidney Int. 1996, 50, 4–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedrich, J.O.; Adhikari, N.; Herridge, M.S.; Beyene, J. Meta-Analysis: Low-Dose Dopamine Increases Urine Output but Does Not Prevent Renal Dysfunction or Death. Ann. Intern Med. 2005, 142, 510. [Google Scholar] [CrossRef] [PubMed]
- Lauschke, A.; Teichgräber, U.K.M.; Frei, U.; Eckardt, K.-U. ‘Low-dose’ dopamine worsens renal perfusion in patients with acute renal failure. Kidney Int. 2006, 69, 1669–1674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schenarts, P.J.; Sagraves, S.G.; Bard, M.R.; Toschlog, E.; Coettler, C.; Newell, M.; Rotondo, M. Low-Dose Dopamine: A Physiologically Based Review. Curr. Surg. 2006, 63, 219–225. [Google Scholar] [CrossRef]
- Mathur, V.S.; Swan, S.K.; Lambrecht, L.J.; Anjum, S.; Fellmann, J.; McGuire, D.; Epstein, M.; Luther, R.R. The effects of fenoldopam, a selective dopamine receptor agonist, on systemic and renal hemodynamics in normotensive subjects. Crit. Care Med. 1999, 27, 1832–1837. [Google Scholar] [CrossRef]
- Landoni, G.; Biondi-Zoccai, G.G.L.; Tumlin, J.A.; Bov, T.; Luca, M.; Calabro, M.G.; Ranucci, M.; Zangrillo, A. Beneficial Impact of Fenoldopam in Critically Ill Patients with or at Risk for Acute Renal Failure: A Meta-Analysis of Randomized Clinical Trials. Am. J. Kidney Dis. 2007, 49, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Stone, G.W.; McCullough, P.A.; Tumlin, J.A.; Lepor, N.E.; Madyoon, H.; Murray, P.; Wang, A.; Chu, A.A.; Schaer, G.L.; Stevens, M.; et al. Fenoldopam Mesylate for the Prevention of Contrast-Induced Nephropathy. JAMA 2003, 290, 2284. [Google Scholar] [CrossRef] [Green Version]
- Allaqaband, S.; Tumuluri, R.; Malik, A.M.; Gupta, A.; Volkert, P.; Shalev, Y.; Bajwa, T. Prospective randomized study of N-acetylcysteine, fenoldopam, and saline for prevention of radiocontrast-induced nephropathy. Catheter. Cardiovasc. Interv. 2002, 57, 279–283. [Google Scholar] [CrossRef]
- Nigwekar, S.U.; Waikar, S.S. Diuretics in Acute Kidney Injury. Semin. Nephrol. 2011, 31, 523–534. [Google Scholar] [CrossRef]
- Ho, K.M. Meta-analysis of frusemide to prevent or treat acute renal failure. BMJ 2006, 333, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, K.M.; Power, B.M. Benefits and risks of furosemide in acute kidney injury. Anaesthesia 2010, 65, 283–293. [Google Scholar] [CrossRef]
- Uchino, S.; Doig, G.; Bellomo, R.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; Gibney, N.; et al. Diuretics and mortality in acute renal failure*. Crit. Care Med. 2004, 32, 1669–1677. [Google Scholar] [CrossRef]
- Mehta, R.L. Diuretics, Mortality, and Nonrecovery of Renal Function in Acute Renal Failure. JAMA 2002, 288, 2547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perazella, M.A. Drug use and nephrotoxicity in the intensive care unit. Kidney Int. 2012, 81, 1172–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales-Alvarez, M.C. Nephrotoxicity of Antimicrobials and Antibiotics. Adv. Chronic. Kidney Dis. 2020, 27, 31–37. [Google Scholar] [CrossRef]
- Pannu, N.; Nadim, M.K. An overview of drug-induced acute kidney injury. Crit. Care Med. 2008, 36, S216–S223. [Google Scholar] [CrossRef]
- Perazella, M.A. Renal Vulnerability to Drug Toxicity. Clin. J. Am. Soc. Nephrol. 2009, 4, 1275–1283. [Google Scholar] [CrossRef]
- Nolin, T.D.; Himmelfarb, J. Mechanisms of Drug-Induced Nephrotoxicity. In Adverse Drug Reactions; Springer: Berlin/Heidelberg, Germany, 2010; pp. 111–130. [Google Scholar] [CrossRef]
- Perazella, M.A.; Markowitz, G.S. Drug-induced acute interstitial nephritis. Nat. Rev. Nephrol. 2010, 6, 461–470. [Google Scholar] [CrossRef]
- Hausenloy, D.J.; Yellon, D.M. Remote ischaemic preconditioning: Underlying mechanisms and clinical application. Cardiovasc. Res. 2008, 79, 377–386. [Google Scholar] [CrossRef]
- Menting, T.P.; Wever, K.E.; Hendriks, E.J.; Van der Vliet, D.J.; Rovers, M.M.; Warle, M.C. Ischaemic preconditioning for the reduction of renal ischaemia reperfusion injury. In Cochrane Database of Systematic Reviews; Menting, T.P., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2013. [Google Scholar] [CrossRef]
- Ghaemian, A.; Yazdani, J.; Azizi, S.; Farsavian, A.A.; Nabati, M.; Malekrah, A.; Dabirian, M.; Espahbodi, F.; Mirjani, B.; Mohsenipouya, H.; et al. Remote Ischemic Preconditioning To Reduce Contrast-Induced Nephropathy: A Randomized Controlled Trial. Eur. J. Vasc. Endovasc. Surg. 2015, 50, 527–532. [Google Scholar] [CrossRef] [Green Version]
- Zarbock, A.; Schmidt, C.; Van Aken, H.; Wempe, C.; Martens, S.; Zahn, P.K.; Wolf, B.; Goebel, U.; Schwer, C.I.; Rosenberger, P.; et al. Effect of Remote Ischemic Preconditioning on Kidney Injury Among High-Risk Patients Undergoing Cardiac Surgery. JAMA 2015, 313, 2133. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, Y.; Dong, B.; Kong, W.; Zhang, J.; Xue, W.; Liu, D.; Huang, Y. Effect of remote ischaemic preconditioning on renal protection in patients undergoing laparoscopic partial nephrectomy: A ‘blinded’ randomised controlled trial. BJU Int. 2013, 112, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Liu, S.; Jia, P.; Xu, X.; Song, N.; Zhang, T.; Chen, R.; Ding, X. Protection of remote ischemic preconditioning against acute kidney injury: A systematic review and meta-analysis. Crit. Care 2016, 20, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieminen, M.S.; Pollesello, P.; Vajda, G.; Papp, Z. Effects of Levosimendan on the Energy Balance: Preclinical and Clinical Evidence. J. Cardiovasc. Pharmacol. 2009, 53, 302–310. [Google Scholar] [CrossRef]
- Faisal, S.A.; Apatov, D.A.; Ramakrishna, H.; Weiner, M.M. Levosimendan in Cardiac Surgery: Evaluating the Evidence. J. Cardiothorac. Vasc. Anesth. 2019, 33, 1146–1158. [Google Scholar] [CrossRef]
- Zhou, C.; Gong, J.; Chen, D.; Wang, W.; Liu, M.; Liu, B. Levosimendan for Prevention of Acute Kidney Injury after Cardiac Surgery: A Meta-analysis of Randomized Controlled Trials. Am. J. Kidney Dis. 2016, 67, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, G.; Tulapurkar, M.E.; Harris, K.M.; Arad, G.; Shirvan, A.; Shemesh, R.; Detolla, L.J.; Benazzi, C.; Opal, S.M.; Kaempfer, R.; et al. A Peptide Antagonist of CD28 Signaling Attenuates Toxic Shock and Necrotizing Soft-Tissue Infection Induced by Streptococcus pyogenes. J. Infect. Dis. 2013, 207, 1869–1877. [Google Scholar] [CrossRef] [PubMed]
- Bulger, E.M.; Maier, R.V.; Sperry, J.; Joshi, M.; Henry, S.; Moore, F.A.; Moldawer, L.L.; Demetriades, D.; Talving, P.; Schreiber, M.; et al. A Novel Drug for Treatment of Necrotizing Soft-Tissue Infections. JAMA Surg. 2014, 149, 528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holick, M.F. Vitamin D Deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Amrein, K.; Christopher, K.B.; McNally, J.D. Understanding vitamin D deficiency in intensive care patients. Intensive Care Med. 2015, 41, 1961–1964. [Google Scholar] [CrossRef] [PubMed]
- De Haan, K.; Groeneveld, A.J.; de Geus, H.R.; Egal, M.; Struijs, A. Vitamin D deficiency as a risk factor for infection, sepsis and mortality in the critically ill: Systematic review and meta-analysis. Crit. Care 2014, 18, 660. [Google Scholar] [CrossRef] [Green Version]
- Ala-Kokko, T.I.; Mutt, S.J.; Nisula, S.; Koskenkari, J.; Liisanantti, J.; Ohtonen, P.; Poukkanen, M.; Laurila, J.J.; Pettilä, V.; Herzig, K.H.; et al. Vitamin D deficiency at admission is not associated with 90-day mortality in patients with severe sepsis or septic shock: Observational FINNAKI cohort study. Ann. Med. 2016, 48, 67–75. [Google Scholar] [CrossRef]
- Wolf, M.; Betancourt, J.; Chang, Y.; Shah, A.; Teng, M.; Tamez, H.; Gutierrez, O.; Camargo, C.A., Jr.; Melamed, M.; Norris, K.; et al. Impact of Activated Vitamin D and Race on Survival among Hemodialysis Patients. J. Am. Soc. Nephrol. 2008, 19, 1379–1388. [Google Scholar] [CrossRef] [Green Version]
- Lai, L.; Qian, J.; Yang, Y.; Xie, Q.; You, H.; Zhou, Y.; Ma, S.; Hao, C.; Gu, Y.; Ding, F. Is the Serum Vitamin D Level at the Time of Hospital-Acquired Acute Kidney Injury Diagnosis Associated with Prognosis? PLoS ONE 2013, 8, e64964. [Google Scholar] [CrossRef] [PubMed]
- Cameron, L.K.; Lei, K.; Smith, S.; Doyle, N.L.; Doyle, J.F.; Flynn, K.; Purchase, N.; Smith, J.; Chan, K.; Kamara, F.; et al. Vitamin D levels in critically ill patients with acute kidney injury: A protocol for a prospective cohort study (VID-AKI). BMJ Open 2017, 7, e016486. [Google Scholar] [CrossRef] [Green Version]
- Peters, E.; Masereeuw, R.; Pickkers, P. The Potential of Alkaline Phosphatase as a Treatment for Sepsis-Associated Acute Kidney Injury. Nephron Clin. Pract. 2014, 127, 144–148. [Google Scholar] [CrossRef]
- Peters, E.; Geraci, S.; Heemskerk, S.; Wilmer, M.J.; Bilos, A.; Kraenzlin, B.; Gretz, N.; Pickkers, P.; Masereeuw, R. Alkaline phosphatase protects against renal inflammation through dephosphorylation of lipopolysaccharide and adenosine triphosphate. Br. J. Pharmacol. 2015, 172, 4932–4945. [Google Scholar] [CrossRef]
- Peters, E.; Heemskerk, S.; Masereeuw, R.; Pickkers, P. Alkaline Phosphatase: A Possible Treatment for Sepsis-Associated Acute Kidney Injury in Critically Ill Patients. Am. J. Kidney Dis. 2014, 63, 1038–1048. [Google Scholar] [CrossRef] [Green Version]
- Pickkers, P.; Heemskerk, S.; Schouten, J.; Laterre, P.F.; Vincent, J.L.; Beishuizen, A.; Jorens, P.G.; Spapen, H.; Bulitta, M.; Peters, W.H.; et al. Alkaline phosphatase for treatment of sepsis-induced acute kidney injury: A prospective randomized double-blind placebo-controlled trial. Crit. Care 2012, 16, R14. [Google Scholar] [CrossRef] [Green Version]
- Molitoris, B.A.; Dagher, P.C.; Sandoval, R.M.; Campos, S.B.; Ashush, H.; Fridman, E.; Brafman, A.; Faerman, A.; Atkinson, S.J.; Thompson, J.D.; et al. siRNA Targeted to p53 Attenuates Ischemic and Cisplatin-Induced Acute Kidney Injury. J. Am. Soc. Nephrol. 2009, 20, 1754–1764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirjian, S.; Ailawadi, G.; Polinsky, M.; Bitran, D.; Silberman, S.; Shernan, S.K.; Burnier, M.; Hamilton, M.; Squiers, E.; Erlich, S.; et al. Safety and Tolerability Study of an Intravenously Administered Small Interfering Ribonucleic Acid (siRNA) Post On-Pump Cardiothoracic Surgery in Patients at Risk of Acute Kidney Injury. Kidney Int. Rep. 2017, 2, 836–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagshaw, S.M.; Wald, R. Strategies for the optimal timing to start renal replacement therapy in critically ill patients with acute kidney injury. Kidney Int. 2017, 91, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Ostermann, M.; Joannidis, M.; Pani, A.; Floris, M.; De Rosa, S.; Kellum, J.A.; Ronco, C. 17th Acute Disease Quality Initiative (ADQI) Consensus Group. Patient Selection and Timing of Continuous Renal Replacement Therapy. Blood Purif. 2016, 42, 224–237. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Y.; Bellomo, R. Renal replacement therapy in the ICU. Curr. Opin. Crit. Care 2018, 24, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Wald, R.; Shariff, S.Z.; Adhikari, N.K.; Bagshaw, S.M.; Burns, K.E.; Friedrich, J.O.; Garg, A.X.; Harel, Z.; Kitchlu, A.; Ray, J.G. The Association Between Renal Replacement Therapy Modality and Long-Term Outcomes Among Critically Ill Adults With Acute Kidney Injury. Crit. Care Med. 2014, 42, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.V.; Sileanu, F.E.; Clermont, G.; Murugan, R.; Pike, F.; Palevsky, P.M.; Kellum, J.A. Modality of RRT and Recovery of Kidney Function after AKI in Patients Surviving to Hospital Discharge. Clin. J. Am. Soc. Nephrol. 2016, 11, 30–38. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; Wald, R. Indications and Timing of Continuous Renal Replacement Therapy Application. In 40 Years of Continuous Renal Replacement Therapy; Karger Publishers: Basel, Switzerland, 2018; pp. 25–37. [Google Scholar] [CrossRef]
- Clark, E.; Wald, R.; Levin, A.; Bouchard, J.; Adhikari, N.K.; Hladunewich, M.; Richardson, R.M.; James, M.T.; Walsh, M.W.; House, A.A.; et al. Timing the initiation of renal replacement therapy for acute kidney injury in Canadian intensive care units: A multicentre observational study. Can. J. Anesth./J. Can. d’anesthésie 2012, 59, 861–870. [Google Scholar] [CrossRef]
- Karvellas, C.J.; Farhat, M.R.; Sajjad, I.; Mogensen, S.S.; Leung, A.A.; Wald, R.; Bagshaw, S.M. A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: A systematic review and meta-analysis. Crit. Care 2011, 15, R72. [Google Scholar] [CrossRef] [Green Version]
- Clec’h, C.; Darmon, M.; Lautrette, A.; Chemouni, F.; Azoulay, E.; Schwebel, C.; Dumenil, A.S.; Garrouste-Orgeas, M.; Goldgran-Toledano, D.; Cohen, Y.; et al. Efficacy of renal replacement therapy in critically ill patients: A propensity analysis. Crit. Care 2012, 16, R236. [Google Scholar] [CrossRef] [Green Version]
- Elseviers, M.M.; Lins, R.L.; Van der Niepen, P.; Hoste, E.; Malbrain, M.L.; Damas, P.; Devriendt, J. SHARF investigators. Renal replacement therapy is an independent risk factor for mortality in critically ill patients with acute kidney injury. Crit. Care 2010, 14, R221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarbock, A.; Kellum, J.A.; Schmidt, C.; Van Aken, H.; Wempe, C.; Pavenstädt, H.; Boanta, A.; Gerß, J.; Meersch, M. Effect of Early vs Delayed Initiation of Renal Replacement Therapy on Mortality in Critically Ill Patients With Acute Kidney Injury. JAMA 2016, 315, 2190. [Google Scholar] [CrossRef] [Green Version]
- Gaudry, S.; Hajage, D.; Schortgen, F.; Martin-Lefevre, L.; Pons, B.; Boulet, E.; Boyer, A.; Chevrel, G.; Lerolle, N.; Carpentier, D.; et al. Initiation Strategies for Renal-Replacement Therapy in the Intensive Care Unit. N. Engl. J. Med. 2016, 375, 122–133. [Google Scholar] [CrossRef]
- Barbar, S.D.; Clere-Jehl, R.; Bourredjem, A.; Hernu, R.; Montini, F.; Bruyère, R.; Lebert, C.; Bohé, J.; Badie, J.; Eraldi, J.P.; et al. Timing of Renal-Replacement Therapy in Patients with Acute Kidney Injury and Sepsis. N. Engl. J. Med. 2018, 379, 1431–1442. [Google Scholar] [CrossRef] [PubMed]
- STARRT-AKI Investigators. STandard versus Accelerated initiation of Renal Replacement Therapy in Acute Kidney Injury: Study Protocol for a Multi-National, Multi-Center, Randomized Controlled Trial. Can. J. Kidney Health Dis. 2019, 6, 205435811985293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaudry, S.; Hajage, D.; Martin-Lefevre, L.; Louis, G.; Moschietto, S.; Titeca-Beauport, D.; La Combe, B.; Pons, B.; de Prost, N.; Besset, S.; et al. The Artificial Kidney Initiation in Kidney Injury 2 (AKIKI2): Study protocol for a randomized controlled trial. Trials 2019, 20, 726. [Google Scholar] [CrossRef]
- Combes, A.; Bréchot, N.; Amour, J.; Cozic, N.; Lebreton, G.; Guidon, C.; Zogheib, E.; Thiranos, J.C.; Rigal, J.C.; Bastien, O.; et al. Early High-Volume Hemofiltration versus Standard Care for Post–Cardiac Surgery Shock. The HEROICS Study. Am. J. Respir. Crit. Care Med. 2015, 192, 1179–1190. [Google Scholar] [CrossRef]
- Karakala, N.; Tolwani, A.J. Timing of Renal Replacement Therapy for Acute Kidney Injury. J. Intensive Care Med. 2019, 34, 94–103. [Google Scholar] [CrossRef]
- Srisawat, N.; Sileanu, F.E.; Murugan, R.; Bellomod, R.; Calzavacca, P.; Cartin-Ceba, R.; Cruz, D.; Finn, J.; Hoste, E.E.; Kashani, K.; et al. Variation in Risk and Mortality of Acute Kidney Injury in Critically Ill Patients: A Multicenter Study. Am. J. Nephrol. 2015, 41, 81–88. [Google Scholar] [CrossRef]
- Park, S.; Cho, H.; Park, S.; Lee, S.; Kim, K.; Yoon, H.J.; Park, J.; Choi, Y.; Lee, S.; Kim, J.H.; et al. Simple Postoperative AKI Risk (SPARK) Classification before Noncardiac Surgery: A Prediction Index Development Study with External Validation. J. Am. Soc. Nephrol. 2019, 30, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Bedford, M.; Stevens, P.; Coulton, S.; Billings, J.; Farr, M.; Wheeler, T.; Kalli, M.; Mottishaw, T.; Farmer, C. Development of risk models for the prediction of new or worsening acute kidney injury on or during hospital admission: A cohort and nested study. Health Serv. Deliv. Res. 2016, 4, 1–160. [Google Scholar] [CrossRef] [Green Version]
- Kashani, K.; Rosner, M.H.; Haase, M.; Lewington, A.J.P.; O’Donoghue, D.J.; Wilson, F.P.; Nadim, M.K.; Silver, S.A.; Zarbock, A.; Ostermann, M.; et al. Quality Improvement Goals for Acute Kidney Injury. Clin. J. Am. Soc. Nephrol. 2019, 14, 941–953. [Google Scholar] [CrossRef] [PubMed]
- Jha, V.; Parameswaran, S. Community-acquired acute kidney injury in tropical countries. Nat. Rev. Nephrol. 2013, 9, 278–290. [Google Scholar] [CrossRef] [PubMed]
- Sawhney, S.; Fluck, N.; Fraser, S.D.; Marks, A.; Prescott, G.J.; Roderick, P.J.; Black, C. KDIGO-based acute kidney injury criteria operate differently in hospitals and the community—Findings from a large population cohort. Nephrol. Dial. Transplant. 2016, 31, 922–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, J.; Su, T.; Qu, Z.; Zhao, M.; Yang, L. ISN AKF 0by25 China Consortium. Community-Acquired Acute Kidney Injury: A Nationwide Survey in China. Am. J. Kidney Dis. 2017, 69, 647–657. [Google Scholar] [CrossRef]
- Emmett, L.; Tollitt, J.; McCorkindale, S.; Sinha, S.; Poulikakos, D. The Evidence of Acute Kidney Injury in the Community and for Primary Care Interventions. Nephron 2017, 136, 202–210. [Google Scholar] [CrossRef]
- Malhotra, R.; Kashani, K.B.; Macedo, E.; Kim, J.; Bouchard, J.; Wynn, S.; Li, G.; Ohno-Machado, L.; Mehta, R. A risk prediction score for acute kidney injury in the intensive care unit. Nephrol. Dial. Transplant. 2017, 32, 814–822. [Google Scholar] [CrossRef] [Green Version]
- Göcze, I.; Jauch, D.; Götz, M.; Kennedy, P.; Jung, B.; Zeman, F.; Gnewuch, C.; Graf, B.M.; Gnann, W.; Banas, B.; et al. Biomarker-guided Intervention to Prevent Acute Kidney Injury After Major Surgery. Ann. Surg. 2018, 267, 1013–1020. [Google Scholar] [CrossRef]
- Joannidis, M.; Druml, W.; Forni, L.G.; Groeneveld, A.B.J.; Honore, P.M.; Hoste, E.; Ostermann, M.; Oudemans-van Straaten, H.M.; Schetz, M. Prevention of acute kidney injury and protection of renal function in the intensive care unit: Update 2017. Intensive Care Med. 2017, 43, 730–749. [Google Scholar] [CrossRef]
- Hodgson, L.E.; Selby, N.; Huang, T.-M.; Forni, L.G. The Role of Risk Prediction Models in Prevention and Management of AKI. Semin. Nephrol. 2019, 39, 421–430. [Google Scholar] [CrossRef]
- Karsanji, D.J.; Pannu, N.; Manns, B.J.; Hemmelgarn, B.R.; Tan, Z.; Jindal, K.; Scott-Douglas, N.; James, M.T. Disparity between Nephrologists’ Opinions and Contemporary Practices for Community Follow-Up after AKI Hospitalization. Clin. J. Am. Soc. Nephrol. 2017, 12, 1753–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silver, S.A.; Siew, E.D. Follow-up Care in Acute Kidney Injury: Lost in Transition. Adv. Chronic Kidney Dis. 2017, 24, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Saran, R.; Li, Y.; Robinson, B.; Abbott, K.C.; Agodoa, L.Y.; Ayanian, J.; Bragg-Gresham, J.; Balkrishnan, R.; Chen, J.L.; Cope, E.; et al. US Renal Data System 2015 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2016, 67, A7–A8. [Google Scholar] [CrossRef] [PubMed]
- Siew, E.D.; Peterson, J.F.; Eden, S.K.; Hung, A.M.; Speroff, T.; Ikizler, T.A.; Matheny, M.E. Outpatient Nephrology Referral Rates after Acute Kidney Injury. J. Am. Soc. Nephrol. 2012, 23, 305–312. [Google Scholar] [CrossRef]
- Harel, Z.; Wald, R.; Bargman, J.M.; Mamdani, M.; Etchells, E.; Garg, A.X.; Ray, J.G.; Luo, J.; Li, P.; Quinn, R.R.; et al. Nephrologist follow-up improves all-cause mortality of severe acute kidney injury survivors. Kidney Int. 2013, 83, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Fortrie, G.; de Geus, H.R.H.; Betjes, M.G.H. The aftermath of acute kidney injury: A narrative review of long-term mortality and renal function. Crit. Care 2019, 23, 24. [Google Scholar] [CrossRef] [Green Version]
Stage | SCr | UO |
---|---|---|
1 | Increase in SCr ≥ 0.3 mg/dL (≥26.5 μmol/L) or increase in SCr ≥ 150% to 200% (1.5 to 1.9X) | <0.5 mL/kg/h (>6 h) |
2 | Increase in SCr > 200% to 300% (>2 to 2.9X) | <0.5 mL/kg/h (>12 h) |
3 | Increase in SCr > 300% (≥3X) or Increase in SCr to ≥4 mg/dL (≥353.6 μmol/L) or initiation of renal replacement therapy | <0.3 mL/kg/h (24 h) or anuria (12 h) |
AKI Risk Factors | |
---|---|
Older age | Shock |
Diabetes | Sepsis |
Hypertension | Nephrotoxins |
Chronic kidney disease | (NSAIDs, ARB, ACEi, contrast) |
Cardiovascular disease | Surgery |
Chronic liver disease | Hyperuricemia |
Chronic obstructive pulmonary disease | Hypoalbuminemia |
HIV infection | Hyperglycemia |
Obesity | Anemia |
Causes of AKI | ||
---|---|---|
Pre-renal | Intrinsic | Post-renal |
- Hypovolemia Hemorrhage Volume depletion Renal fluid loss (over-diuresis) Third space (burns, peritonitis, muscle trauma | - Tubular Renal ischemia (shock, surgery, hemorrhage, trauma, bacteremia, pancreatitis, pregnancy) Nephrotoxic drugs (antibiotics, antineoplastic drugs, contrast media, organic solvents, anesthetic drugs, heavy metals) Endogenous toxins (myoglobin, hemoglobin, uric acid) | - Extrarenal obstruction Prostate hypertrophy Improperly placed catheter Bladder, prostate or cervical cancer Retroperitoneal fibrosis |
- Impaired cardiac function Congestive heart failure Acute myocardial infarction Massive pulmonary embolism | - Glomerular Post-infectious glomerulonephritis Lupus nephritis IgA glomerulonephritis Infective endocarditis Goodpasture syndrome Wegener disease | |
- Systemic vasodilatation Anti-hypertensive medications Gram negative bacteremia Cirrhosis Anaphylaxis | - Interstitial Infections (bacterial, viral) Medications(antibiotics, diuretics, NSAIDs, anti-ulcer agents) | - Intrarenal obstruction Nephrolithiasis Blood clots Papillary necrosis Drugs (acyclovir, methotrexate) |
- Increased vascular resistance Anesthesia Surgery Hepatorenal syndrome NSAID medications Drugs that cause renal vasoconstriction (cyclosporine, ARB, ACEi) | - Vascular Large vessels (bilateral renal artery stenosis, bilateral renal vein thrombosis) Small vessels (vasculitis, malignant hypertension, atherosclerotic or thrombotic emboli, hemolytic uremic syndrome, thrombotic thrombocytopenic purpura) |
Prevention of Acute Kidney Injury | |
Identify high-risk patients | |
Kidney health assessment in high risk patients | CKD history |
blood pressure assessment | |
SCr level | |
urine dipstick | |
medication list | |
Every 12 months | |
30 days before exposure to AKI risk | |
2–3 days after exposure to AKI risk | |
Discontinue and/or avoid nephrotoxins Optimize hemodynamic and volume status | |
Treatment of Acute Kidney Injury | |
Correction of Hypovolemia | Individualized fluid therapy |
Avoid positive fluid balance | |
Isotonic Saline | |
Albumin | |
Vasopressor support (MAP > 65 mmHg) | Noradrenaline |
Vasopressin | |
Terlipressin | |
Discontinue nephrotoxins and Adjust drugs to renal function | NSAIDs |
ARBs, ACEis | |
Contrast | |
Metformin | |
Aminoglycosides | |
Vancomycin | |
Absolute indications for RRT | Severe/refractory hyperkalemia |
Severe/refractory, metabolic acidosis | |
Refractory volume overload | |
Clinical complications of uremia (encephalopathy, pericarditis or neuropathy) | |
Investigate and Treat Acute Kidney Injury Cause | |
SCr, Urea, Electrolytes | ANCA antibodies, anti-GBM antibodies, ANA antibodies, anti-dsDNA antibodies |
Complete blood count, Liver function tests, Glucose level, Bone profile | complement factors, rheumatoid factor, ASOT, cryoglobulins |
Urine analysis and microscopic examination | serum electrophoresis, immunoglobulins, serum free light chains |
Renal ultrasound | hepatitis and HIV serology |
Chest X-ray | |
Follow-up after Acute Kidney Injury | |
Nephrology referral within 3 months after AKI episode | SCr, urea, and proteinuria |
Medication reconciliation | |
Education on nephrotoxic avoidance | |
Strategies to prevent CKD progression |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gameiro, J.; Fonseca, J.A.; Outerelo, C.; Lopes, J.A. Acute Kidney Injury: From Diagnosis to Prevention and Treatment Strategies. J. Clin. Med. 2020, 9, 1704. https://doi.org/10.3390/jcm9061704
Gameiro J, Fonseca JA, Outerelo C, Lopes JA. Acute Kidney Injury: From Diagnosis to Prevention and Treatment Strategies. Journal of Clinical Medicine. 2020; 9(6):1704. https://doi.org/10.3390/jcm9061704
Chicago/Turabian StyleGameiro, Joana, José Agapito Fonseca, Cristina Outerelo, and José António Lopes. 2020. "Acute Kidney Injury: From Diagnosis to Prevention and Treatment Strategies" Journal of Clinical Medicine 9, no. 6: 1704. https://doi.org/10.3390/jcm9061704
APA StyleGameiro, J., Fonseca, J. A., Outerelo, C., & Lopes, J. A. (2020). Acute Kidney Injury: From Diagnosis to Prevention and Treatment Strategies. Journal of Clinical Medicine, 9(6), 1704. https://doi.org/10.3390/jcm9061704