Low Ejection Fraction Predisposes to Contrast-Induced Nephropathy after the Second Step of Staged Coronary Revascularization for Acute Myocardial Infarction: A Retrospective Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Collection and Additional Calculations
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Comparison with Other Studies—Incidence of CIN
4.2. Comparison with Other Studies—Low EF as a Predictor of CIN
4.3. Mechanistic Considerations
4.4. Clinical Implications
4.5. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [PubMed] [Green Version]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on myocardial revascularization of the European Society of Cardiology (ESC) and European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef] [PubMed]
- Politi, L.; Sgura, F.; Rossi, R.; Monopoli, D.; Guerri, E.; Leuzzi, C.; Bursi, F.; Sangiorgi, G.M.; Modena, M.G. A randomised trial of target-vessel versus multi-vessel revascularisation in ST-elevation myocardial infarction: Major adverse cardiac events during long-term follow-up. Heart 2010, 96, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Engstrøm, T.; Kelbæk, H.; Helqvist, S.; Høfsten, D.E.; Kløvgaard, L.; Holmvang, L.; Jørgensen, E.; Pedersen, F.; Saunamäki, K.; Clemmensen, P.; et al. Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3—PRIMULTI): An open-label, randomised controlled trial. Lancet 2015, 386, 665–671. [Google Scholar] [CrossRef]
- Gershlick, A.H.; Khan, J.N.; Kelly, D.J.; Greenwood, J.P.; Sasikaran, T.; Curzen, N.; Blackman, D.J.; Dalby, M.; Fairbrother, K.L.; Banya, W.; et al. Randomized trial of complete versus lesion-only revascularization in patients undergoing primary percutaneous coronary intervention for STEMI and multivessel disease: The CvLPRIT trial. J. Am. Coll. Cardiol. 2015, 65, 963–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elgendy, I.Y.; Mahmoud, A.N.; Kumbhani, D.J.; Bhatt, D.L.; Bavry, A.A. Complete or culprit-only revascularization for patients with multivessel coronary artery disease undergoing percutaneous coronary intervention: A pairwise and network meta-analysis of randomized trials. JACC Cardiovasc. Interv. 2017, 10, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Vlaar, P.J.; Mahmoud, K.D.; Holmes, D.R.; van Valkenhoef, G.; Hillege, H.L.; van der Horst, I.C.; Zijlstra, F.; de Smet, B.J. Culprit vessel only versus multivessel and staged percutaneous coronary intervention for multivessel disease in patients presenting with ST-segment elevation myocardial infarction: A pairwise and network meta-analysis. J. Am. Coll. Cardiol. 2011, 58, 692–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kornowski, R.; Mehran, R.; Dangas, G.; Nikolsky, E.; Assali, A.; Claessen, B.E.; Gersh, B.J.; Wong, S.C.; Witzenbichler, B.; Guagliumi, G.; et al. Prognostic impact of staged versus “one-time” multivessel percutaneous intervention in acute myocardial infarction: Analysis from the HORIZONS-AMI (harmonizing outcomes with revascularization and stents in acute myocardial infarction) trial. J. Am. Coll. Cardiol. 2011, 58, 704–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardella, G.; Lucisano, L.; Garbo, R.; Pennacchi, M.; Cavallo, E.; Stio, R.E.; Calcagno, S.; Ugo, F.; Boccuzzi, G.; Fedele, F.; et al. Single-staged compared with multi-staged PCI in multivessel NSTEMI patients: The SMILE trial. J. Am. Coll. Cardiol. 2016, 67, 264–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for acute kidney injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar]
- McCullough, P.A.; Choi, J.P.; Feghali, G.A.; Schussler, J.M.; Stoler, R.M.; Vallabahn, R.C.; Mehta, A. Contrast-induced acute kidney injury. J. Am. Coll. Cardiol. 2016, 68, 1465–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rear, R.; Bell, R.M.; Hausenloy, D.J. Contrast-induced nephropathy following angiography and cardiac interventions. Heart 2016, 102, 638–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomsen, H.S.; Morcos, S.K. Contrast media and the kidney: European Society of Urogenital Radiology (ESUR) guidelines. Br. J. Radiol. 2003, 76, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Silver, S.A.; Shah, P.M.; Chertow, G.M.; Harel, S.; Wald, R.; Harel, Z. Risk prediction models for contrast induced nephropathy: Systematic review. BMJ 2015, 351, h4395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, H.; Chen, X.R.; Chen, Y.Q.; Niu, T.S.; Liao, Y.M. Prevalence and predictors of contrast-induced nephropathy (CIN) in patients with ST-segment elevation myocardial infarction (STEMI) undergoing percutaneous coronary intervention (PCI): A meta-analysis. J. Interv. Cardiol. 2019, 2019, 2750173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehran, R.; Aymong, E.D.; Nikolsky, E.; Lasic, Z.; Iakovou, I.; Fahy, M.; Mintz, G.S.; Lansky, A.J.; Moses, J.W.; Stone, G.W.; et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: Development and initial validation. J. Am. Coll. Cardiol. 2004, 44, 1393–1399. [Google Scholar] [PubMed] [Green Version]
- Morcos, R.; Kucharik, M.; Bansal, P.; Al Taii, H.; Manam, R.; Casale, J.; Khalili, H.; Maini, B. Contrast-induced acute kidney injury: Review and practical update. Clin. Med. Insights Cardiol. 2019, 13, 1179546819878680. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Akin, I.; Sandri, M.; Fuernau, G.; de Waha, S.; Meyer-Saraei, R.; Nordbeck, P.; Geisler, T.; Landmesser, U.; Skurk, C.; et al. PCI strategies in patients with acute myocardial infarction and cardiogenic shock. N. Engl. J. Med. 2017, 377, 2419–2432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brar, S.S.; Aharonian, V.; Mansukhani, P.; Moore, N.; Shen, A.Y.; Jorgensen, M.; Dua, A.; Short, L.; Kane, K. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: The POSEIDON randomised controlled trial. Lancet 2014, 383, 1814–1823. [Google Scholar] [CrossRef]
- Lima, F.V.; Singh, S.; Parikh, P.B.; Gruberg, L. Left ventricular end diastolic pressure and contrast-induced acute kidney injury in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Cardiovasc. Revasc. Med. 2018, 19, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Caughey, M.C.; Smith, S.C.; Dai, X. Elevated left ventricular end diastolic pressure is associated with increased risk of contrast-induced acute kidney injury in patients undergoing percutaneous coronary intervention. Int. J. Cardiol. 2020, 306, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Bainey, K.R.; Rahim, S.; Etherington, K.; Rokoss, M.L.; Natarajan, M.K.; Velianou, J.L.; Brons, S.; Mehta, S.R. Effects of withdrawing vs. continuing renin-angiotensin blockers on incidence of acute kidney injury in patients with renal insufficiency undergoing cardiac catheterization: Results from the Angiotensin Converting Enzyme Inhibitor/Angiotensin Receptor Blocker and Contrast Induced Nephropathy in Patients Receiving Cardiac Catheterization (CAPTAIN) trial. Am. Heart J. 2015, 170, 110–116. [Google Scholar] [PubMed]
Characteristic | CIN after 2nd Intervention n = 10 | No CIN after 2nd Intervention n = 111 | p-Value |
---|---|---|---|
Age (years) | 68 ± 13 | 68 ± 11 | 0.9 |
Men/Women (%) | 50/50 | 65/35 | 0.5 |
Body-mass index (kg/m2) | 29.7 ± 5.0 | 28.3 ± 5.5 | 0.4 |
Hypertension (%) | 78 | 81 | 1 |
Diabetes mellitus (%) | 40 | 26 | 0.5 |
Smoking habit (%) | 30 | 30 | 1 |
Atrial fibrillation at admission (%) | 10 | 13 | 1 |
Killip class 2 at admission | 10 | 7 | 0.6 |
Angiographic CAD | |||
Culprit artery, LAD/LCx/RCA (%) | 5/2/3 | 42/26/32 | 0.9 |
Bifurcation procedure (%) | 10 | 13 | 1 |
Two-vessel CAD (%) | 80 | 72 | 0.7 |
Three-vessel CAD (%) | 20 | 28 | 0.7 |
Radial access route at 2nd intervention (%) | 90 | 86 | 1 |
Hemoglobin at admission (g/dL) | 13.8 ± 1.7 | 13.8 ± 2.0 | 0.9 |
LDL cholesterol at admission (mmol/L) | 3.9 ± 1.0 | 3.3 ± 1.3 | 0.2 |
HDL cholesterol at admission (mmol/L) | 1.2 ± 0.4 | 1.2 ± 0.3 | 0.6 |
eGFR at admission (mL/min per 1.73 m2) | 84 ± 21 | 76 ± 22 | 0.3 |
Creatinine at admission (µmol/L) | 76 ± 19 | 87 ± 27 | 0.2 |
Creatinine after 1st intervention (µmol/L) | 78 ± 18 | 87 ± 25 | 0.3 |
Creatinine after 2nd intervention (µmol/L) | 115 ± 35 | 87 ± 26 | 0.002 |
EF after 1st intervention (%) | 42 ± 13 | 46 ± 10 | 0.2 |
EF ≤35% after 1st intervention (%) | 50 | 12 | 0.007 |
Hemoglobin after 1st intervention (g/dL) | 13.2 ± 2.7 | 13.7 ± 2.1 | 0.5 |
Hemoglobin after 2nd intervention (g/dL) | 12.1 ± 1.9 | 12.7 ± 2.2 | 0.4 |
ACEI or ARB prior to admission (%) | 56 | 44 | 0.5 |
In-hospital medication (%) | |||
Aspirin | 100 | 100 | 1 |
Clopidogrel | 60 | 47 | 0.5 |
Ticagrelor | 40 | 53 | 0.5 |
Statin | 100 | 96 | 1 |
ACEI or ARB | 70 | 90 | 0.09 |
Beta-blocker | 100 | 96 | 1 |
Insulin | 10 | 12 | 1 |
Characteristic | EF ≤35% (Mean EF: 28 ± 7%) | EF >35% (Mean EF: 49 ± 7%) | p-Value |
---|---|---|---|
Creatinine at admission (µmol/L) | 97 ± 33 | 85 ± 25 | 0.12 |
Creatinine after 1st intervention (µmol/L) | 95 ± 32 | 84 ± 22 | 0.16 |
Creatinine after 2nd intervention (µmol/L) | 111 ± 34 | 86 ± 25 | 0.007 |
Creatinine change after 1st intervention (%) | −1 ± 14 | 2 ± 13 | 0.4 |
Creatinine change after 2nd intervention (%) | 18 ± 29 | 2 ± 16 | 0.03 |
CIN incidence after 1st intervention (%) | 0 | 3 | 1 |
CIN incidence after 2nd intervention (%) | 28 | 5 | 0.007 |
Predictor | Odds Ratio (95% Confidence Interval) | p-Value |
---|---|---|
Age, per 10-year increase | 0.7 (0.2‒2.3) | 0.6 |
Gender, men vs. women | 0.4 (0.05‒4.2) | 0.5 |
Hypertension | 0.4 (0.03‒4.2) | 0.4 |
Diabetes mellitus | 5.4 (0.6‒52.3) | 0.15 |
ACEI or ARB prior to admission | 6.7 (0.6‒71.1) | 0.1 |
eGFR, per decrement by 10 mL/min per 1.73 m2 | 0.8 (0.4‒1.5) | 0.5 |
Hemoglobin, per 1-g/dL decrease | 0.9 (0.5‒1.5) | 0.6 |
EF after 1st intervention ≤ 35% | 13.8 (1.5‒125.7) | 0.02 |
Predictor | Odds Ratio (95% Confidence Interval) | p-Value |
---|---|---|
Age, per 10-year increase | 0.8 (0.3‒2.4) | 0.7 |
Gender, men vs. women | 0.6 (0.07‒5.1) | 0.6 |
Hypertension | 0.4 (0.04‒3.5) | 0.4 |
Diabetes mellitus | 4.0 (0.5‒32.8) | 0.2 |
ACEI or ARB prior to admission | 5.3 (0.6‒44.2) | 0.13 |
eGFR, per decrement by 10 mL/min per 1.73 m2 | 0.8 (0.4‒1.4) | 0.4 |
Hemoglobin, per 1-g/dL decrease | 0.9 (0.5‒1.5) | 0.7 |
EF after 1st intervention, per decrement by 5% | 1.3 (0.9‒2.0) | 0.15 |
Predictor | Non-Standardized Regression Coefficient ± SEM | p-Value |
---|---|---|
Age, per 10-year increase | 3.8 ± 1.5 | 0.01 |
Gender, men vs. women | −3.7 ± 3.1 | 0.2 |
Hypertension | 8.4 ± 3.5 | 0.02 |
Diabetes mellitus | −5.9 ± 2.9 | 0.05 |
ACEI or ARB prior to admission | 0.6 ± 2.8 | 0.8 |
eGFR, per decrement by 10 mL/min per 1.73 m2 | −3.0 ± 0.7 | <0.001 |
Hemoglobin, per 1-g/dL decrease | 0.9 ± 0.8 | 0.3 |
EF after 1st intervention ≤ 35% | −1.1 ± 3.7 | 0.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chyrchel, M.; Hałubiec, P.; Łazarczyk, A.; Duchnevič, O.; Okarski, M.; Gębska, M.; Surdacki, A. Low Ejection Fraction Predisposes to Contrast-Induced Nephropathy after the Second Step of Staged Coronary Revascularization for Acute Myocardial Infarction: A Retrospective Observational Study. J. Clin. Med. 2020, 9, 1812. https://doi.org/10.3390/jcm9061812
Chyrchel M, Hałubiec P, Łazarczyk A, Duchnevič O, Okarski M, Gębska M, Surdacki A. Low Ejection Fraction Predisposes to Contrast-Induced Nephropathy after the Second Step of Staged Coronary Revascularization for Acute Myocardial Infarction: A Retrospective Observational Study. Journal of Clinical Medicine. 2020; 9(6):1812. https://doi.org/10.3390/jcm9061812
Chicago/Turabian StyleChyrchel, Michał, Przemysław Hałubiec, Agnieszka Łazarczyk, Olgerd Duchnevič, Michał Okarski, Monika Gębska, and Andrzej Surdacki. 2020. "Low Ejection Fraction Predisposes to Contrast-Induced Nephropathy after the Second Step of Staged Coronary Revascularization for Acute Myocardial Infarction: A Retrospective Observational Study" Journal of Clinical Medicine 9, no. 6: 1812. https://doi.org/10.3390/jcm9061812
APA StyleChyrchel, M., Hałubiec, P., Łazarczyk, A., Duchnevič, O., Okarski, M., Gębska, M., & Surdacki, A. (2020). Low Ejection Fraction Predisposes to Contrast-Induced Nephropathy after the Second Step of Staged Coronary Revascularization for Acute Myocardial Infarction: A Retrospective Observational Study. Journal of Clinical Medicine, 9(6), 1812. https://doi.org/10.3390/jcm9061812