State-Based Markers of Disordered Eating Symptom Severity
Abstract
:1. Introduction
1.1. Cognitive and Emotional Influences on ED Symptom Progression
1.2. State-Level Data Predicting Trait-Level ED Severity
1.3. The Present Study
2. Methods
2.1. Participants
2.2. Materials
2.2.1. Baseline Measures
BMI
Trait Disordered Eating Symptom Severity
2.2.2. State-Based Measures
Body Dissatisfaction
Negative Mood
Dietary Restraint
Appearance Comparison
2.3. Procedure
2.4. Data Analytical Plan
2.4.1. Extraction of State-Based Dynamics
2.4.2. State and Trait Associations
3. Results
3.1. Descriptive Statistics and Correlations
3.2. Regression Analyses
4. Discussion
Limitations and Future Research Directions
Author Contributions
Funding
Conflicts of Interest
References
- Hay, P.; Girosi, F.; Mond, J. Prevalence and sociodemographic correlates of DSM-5 eating disorders in the Australian population. J. Eat. Disord. 2015, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Stice, E.; Marti, N.; Rohde, P. Prevalence, incidence, impairment, and course of the proposed DSM-5 eating disorder diagnoses in an 8-year prospective community study of young women. J. Abnorm. Psychol. 2013, 122, 445–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Culbert, K.M.; Racine, S.E.; Klump, K.L. Research review: What we have learned about the causes of eating disorders—A synthesis of sociocultural, psychological, and biological research. J. Child. Psychol. Psychiatry 2015, 56, 1141–1164. [Google Scholar] [CrossRef] [PubMed]
- Fuller-Tyszkiewicz, M.; Dias, S.; Krug, I.; Richardson, B.; Fassnacht, B. Motive- and appearance awareness-based explanations for body (dis)satisfaction following exercise in daily life. Br. J. Health Psychol. 2018, 23, 982–999. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, S.E.; Cash, T.F.; Janda, L.H. Body image ups and downs: Prediction of intra-individual level and variability of women’s daily body image experiences. Body Image 2004, 1, 225–235. [Google Scholar] [CrossRef]
- Rudiger, J.A.; Cash, T.F.; Roehrig, M.; Thompson, J.K. Day-to-day body-image states: Prospective predictors of intra-individual level and variability. Body Image 2007, 4, 1–9. [Google Scholar] [CrossRef]
- Lavender, J.M.; Wonderlich, S.A.; Engel, S.G.; Gordon, K.H.; Kaye, W.H.; Mitchell, J.E. Dimensions of emotion dysregulation in anorexia nervosa and bulimia nervosa: A conceptual review of the empirical literature. Clin. Psychol. Rev. 2015, 40, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.E.; Mason, T.B.; Lavender, J.M. Rumination and eating disorder psychopathology: A meta-analysis. Clin. Psychol. Rev. 2018, 61, 9–23. [Google Scholar] [CrossRef]
- Williamson, D.A.; White, M.A.; York-Crowe, E.; Stewart, T.M. Cognitive-behavioral theories of eating disorders. Behav. Modif. 2004, 28, 711–738. [Google Scholar] [CrossRef]
- Rodgers, R.F.; DuBois, R.H. Cognitive biases to appearance-related stimuli in body dissatisfaction: A systematic review. Clin. Psychol. Rev. 2016, 46, 1–11. [Google Scholar] [CrossRef]
- Fuller-Tyszkiewicz, M. Body image states in everyday life: Evidence from ecological momentary assessment methodology. Body Image 2019, 31, 245–272. [Google Scholar] [CrossRef] [PubMed]
- Fuller-Tyszkiewicz, M.; Chhouk, J.; McCann, L.-A.; Urbina, G.; Vuong, H.; Krug, I.; Ricciardelli, L.; Linardon, J.; Broadbent, J.; Heron, K.; et al. Appearance comparison and other appearance-related influences on body dissatisfaction in everyday life. Body Image 2019, 28, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Fuller-Tyszkiewicz, M.; Richardson, B.; Lewis, V.; Smyth, J.; Krug, I. Do women with greater trait body dissatisfaction experience body dissatisfaction states differently? An experience sampling study. Body Image 2018, 25, 1–8. [Google Scholar] [CrossRef]
- LePage, M.L.; Crowther, J.H. The effects of exercise on body satisfaction and affect. Body Image 2010, 7, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Haedt-Matt, A.A.; Keel, P.K. Revisiting the affect regulation model of binge eating: A meta-analysis of studies using ecological momentary assessment. Psychol. Bull. 2011, 137, 660–681. [Google Scholar] [CrossRef] [Green Version]
- Selby, E.A.; Joiner, T.E. Cascades of emotion: The emergence of borderline personality disorder from emotional and behavioural dysregulation. Rev. General Psychol. 2009, 13, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Smyth, J.; Wonderlich, S.A.; Heron, K.; Sliwinski, M.; Crosby, R.D.; Mitchell, J.E.; Engel, S.G. Daily and momentary mood and stress predict binge eating and vomiting in bulimia nervosa patients in the natural environment. J. Consult. Clin. Psychol. 2007, 74, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Rogers, A.; Fuller-Tyszkiewicz, M.; Lewis, V.; Krug, I.; Richardson, B. A person-by-situation account of why some people more frequently engage in upward appearance comparison behaviours in everyday life. Behav. Ther. 2017, 48, 19–28. [Google Scholar] [CrossRef]
- Chia, J.L.; Fuller-Tyszkiewicz, M.; Buck, K.; Charmari, K.; Richardson, B.; Krug, I. An ecological momentary assessment of the effect of fasting during Ramadan on disordered eating behaviors. Appetite 2018, 127, 44–51. [Google Scholar] [CrossRef]
- Holmes, M.; Fuller-Tyszkiewicz, M.; Skouteris, H.; Broadbent, J. Tests of an extension of the dual pathway model of bulimic symptoms to the state-based level. Eat. Behav. 2014, 15, 280–285. [Google Scholar] [CrossRef]
- de Young, K.P.; Lavender, J.M.; Crosby, R.D.; Wonderlich, S.A.; Engel, S.G.; Mitchell, J.E.; Crow, S.J.; Peterson, C.B.; le Grange, D. Bidirectional associations between binge eating and restriction in anorexia nervosa. An ecological momentary assessment study. Appetite 2014, 83, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuller-Tyszkiewicz, M.; Vuong, H.; Linardon, J.; Krug, I.; Broadbent, J.; Rodgers, R.F. Body image in and out of the lab: Correspondence between lab-based attentional bias data and body shape dissatisfaction experiences in daily life. Body Image 2020, 32, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Drutschinin, K.; Fuller-Tyszkiewicz, M.; de Paoli, T.; Lewis, V.; Krug, I. The daily frequency, type, and effects of appearance comparisons on disordered eating. Psychol. Women Q. 2017, 42, 151–161. [Google Scholar] [CrossRef]
- Smyth, J.; Wonderlich, S.; Sliwinski, M.; Crosby, R.; Mitchell, J.; Engel, S.; Calogero, R. Ecological momentary assessment of affect, stress, and binge-purge behaviors: Day of week and time of day effects in the natural environment. Int. J. Eat. Disord. 2009, 42, 429–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, S.; Stefanovski, A. Thinspiration and fitspiration in everyday life: An experience sampling study. Body Image 2019, 30, 135–144. [Google Scholar] [CrossRef]
- Garner, D.M.; Olmstead, M.P.; Bohr, Y.; Garfinkel, P.E. The eating attitudes test: Psychometric features and clinical correlates. Psychol. Med. 1982, 12, 871–878. [Google Scholar] [CrossRef]
- Mann, A.H.; Wakeling, A.; Wood, K.; Monck, E.; Dobbs, R.; Szmukler, G. Screening for abnormal eating attitudes and psychiatric morbidity in an unselected population of 15-year-old schoolgirls. Psychol. Med. 1983, 13, 573–580. [Google Scholar] [CrossRef]
- Orbitello, B.; Ciano, R.; Corsaro, M.; Rocco, P.L.; Taboga, C.; Tonutti, L.; Armellini, M.; Balestrieri, M. The EAT-26 as screening instrument for clinical nutrition unit attenders. Int. J. Obes. 2006, 30, 977–981. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.; Holt, N.; Krug, I.; Ling, M.; Klettke, B.; Linardon, J.; Baxter, K.; Hemmings, S.; Howard, D.; Hughes, E.; et al. Trait body image flexibility as a predictor of body image states in everyday life of young Australian women. Body Image 2019, 30, 212–220. [Google Scholar] [CrossRef]
- Heron, K.E.; Scott, S.B.; Sliwinski, M.J.; Smyth, J.M. Eating behaviors and negative affect in college women’s everyday lives. Int. J. Eat. Disord. 2014, 47, 853–859. [Google Scholar] [CrossRef] [Green Version]
- Richardson, B. Instant Survey (iOS Version 2.3) [Mobile Application Software]. 2015. Available online: https://itunes.apple.com/us/app/instant-survey/id955226674?mt=8 (accessed on 10 June 2020).
- Richardson, B. Instant Survey (Android Version 2.3) [Mobile Application Software]. 2015. Available online: https://play.google.com/store/apps/details?id=au.edu.deakin.psychology.surveyframework (accessed on 10 June 2020).
- Pennessi, J.-L.; Wade, T.D. A systematic review of the existing models of disordered eating: Do they inform the development of effective interventions? Clin. Psychol. Rev. 2016, 43, 175–192. [Google Scholar] [CrossRef] [PubMed]
- Treasure, J.; Duarte, T.A.; Schdmit, U. Eating disorders. Lancet 2020, 395, 899–911. [Google Scholar] [CrossRef]
- Corstorphine, E.; Mountford, V.; Tomlinson, S.; Waller, G.; Meyer, C. Distress tolerance in the eating disorders. Eat. Behav. 2007, 8, 91–97. [Google Scholar] [CrossRef]
- McElroy, E.; Napoleone, E.; Wolpert, M.; Patalay, P. Structure and connectivity of depressive symptom networks corresponding to early treatment response. EClinicalMedicine 2019, 8, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stice, E. Interactive and mediational etiologic models of eating disorder onset: Evidence from prospective studies. Annu. Rev. Clin. Psychol. 2016, 12, 359–381. [Google Scholar] [CrossRef] [PubMed]
- Treasure, J.; Stein, D.; Maguire, S. Has the time come for a staging model to map the course of eating disorders from high risk to severe enduring illness? An examination of the evidence. Early Interv. Psychiatry 2015, 9, 173–184. [Google Scholar] [CrossRef]
- Hamaker, E.L. Why researchers should think “within-person”: A paradigmatic rationale. In Handbook of Research Methods for Studying Daily Life; Mehl, M.R., Conner, T.S., Eds.; Guilford Press: New York, NY, USA, 2012. [Google Scholar]
- Wichers, M. The dynamic nature of depression: A new micro-level perspective of mental disorder that meets current challenges. Psychol. Med. 2014, 44, 1349–1360. [Google Scholar] [CrossRef]
- Sliwinsky, M.J. Measurement-burst designs for social health research. Soc. Personal. Psychol. Compass 2008, 2, 245–261. [Google Scholar] [CrossRef]
- Smyth, J.; Juth, V.; Ma, J.; Sliwinski, M. A slice of life: Ecologically valid methods for research on social relationships and health across the life span. Soc. Personal. Psychol. Compass 2017, 11, e12356. [Google Scholar] [CrossRef]
- Levinson, C.; Christian, C.; Ram, S.; Brosof, L.C.; Williams, B. Sensor technology implementation for research, treatment, and assessment of eating disorders. Int. J. Eat. Disord. 2019, 52, 1176–1180. [Google Scholar] [CrossRef]
- Ebner-Priemer, U.W.; Trull, T.J. Ecological momentary assessment of mood disorders and mood dysregulation. Psychol. Assess. 2009, 21, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Shiffman, S. Ecological momentary assessment (EMA) in studies of substance use. Psychol. Assess. 2009, 21, 486–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yim, S.J.; Lui, L.M.W.; Lee, Y.; Rosenblat, J.D.; Ragguett, R.-M.; Park, C.; Subramaniapillai, M.; Cao, B.; Zhou, A.; Rong, C.; et al. The utility of smartphone-based, ecological momentary assessment for depressive symptoms. J. Affect. Disord. 2020, 274, 602–609. [Google Scholar] [CrossRef]
Variable | M | SD | n | % |
---|---|---|---|---|
Age | 22.03 | 5.80 | ||
BMI | 22.51 | 4.57 | ||
Education | ||||
High school | 164 | 63.6% | ||
Diploma | 25 | 9.7% | ||
Bachelor’s degree | 53 | 20.5% | ||
Postgraduate degree | 16 | 6.2% | ||
Ethnicity | ||||
Asian | 167 | 64.7% | ||
Caucasian | 69 | 26.7% | ||
Other | 22 | 8.5% | ||
Paid employment (yes) | 135 | 52.3% |
Variable | M | SD | % |
---|---|---|---|
ED severity^ | 10.00 | 10.39 | |
Average state body dissatisfaction | 4.28 | 1.84 | |
Average state negative mood | 3.90 | 1.56 | |
Frequency of state dietary restraint reports | 12.1 | ||
Frequency of state upward comparisons | 26.3 | ||
Persistence of state body dissatisfaction | −1.42 | 0.87 | |
Persistence of state negative mood | −1.65 | 0.69 | |
State body dissatisfaction → upward comparisons | 0.07 | 0.02 | |
State body dissatisfaction → dietary restraint | 0.06 | 0.03 | |
State negative mood → dietary restraint | 0.19 | 0.11 | |
State dietary restraint → body dissatisfaction | −0.15 | 0.21 | |
State dietary restraint → negative mood | −0.08 | 0.16 | |
State upward comparison → body dissatisfaction | 0.36 | 0.30 |
ED Severity Continuum | ED Group (>11) | ED Group (>20) | ||||
---|---|---|---|---|---|---|
Predictors | ß [95% CIs] | p | OR [95% CIs] | p | OR [95% CIs] | p |
Ave. state BD | 0.42 [0.23, 0.61] | <0.001 | 3.35 [1.78, 6.30] | <0.001 | 4.18 [1.65, 10.60] | 0.003 |
Ave. state neg mood | −0.17 [−0.36, 0.02] | 0.083 | 0.48 [0.27, 0.87] | 0.016 | 0.38 [0.17, 0.86] | 0.020 |
Freq. dietary restraint | 0.15 [−0.007, 0.37] | 0.172 | 1.31 [0.59, 2.92] | 0.513 | 1.25 [0.66, 2.37] | 0.502 |
Freq. comparisons | 0.41 [−0.16, 0.98] | 0.159 | 2.25 [0.40, 12.59] | 0.355 | 1.58 [0.21, 11.63] | 0.653 |
Persistence of state BD | −0.10 [−0.29, 0.09] | 0.323 | 0.63 [0.33, 1.17] | 0.145 | 0.83 [0.30, 2.31] | 0.716 |
Persistence of neg mood | −0.01 [−0.18, 0.16] | 0.929 | 1.06 [0.60, 1.87] | 0.837 | 1.47 [0.61 3.54] | 0.391 |
BD → comparisons | −0.06 [−0.62, 0.50] | 0.827 | 0.75 [0.15, 3.73] | 0.722 | 1.01 [0.14, 7.36] | 0.994 |
BD → restraint | −0.16 [−0.52, 0.20] | 0.365 | 0.63 [0.21, 1.86] | 0.399 | 0.17 [0.05, 0.61] | 0.006 |
Neg mood → restraint | 0.10 [−0.31, 0.03] | 0.968 | 0.86 [0.32, 2.32] | 0.764 | 3.72 [1.30, 10.65] | 0.015 |
Restraint → BD | −0.09 [−0.21, 0.03] | 0.179 | 1.15 [0.80, 1.66] | 0.457 | 0.74 [0.49, 1.10] | 0.142 |
Restraint → neg mood | −0.05 [−0.19, 0.09] | 0.486 | 0.77 [0.52, 1.14] | 0.202 | 0.99 [0.69, 1.42] | 0.952 |
Comparisons → BD | 0.03 [−0.16, 0.22] | 0.758 | 0.63 [0.33, 1.20] | 0.160 | 1.61 [0.89, 2.92] | 0.114 |
R2 | 0.34 | 0.39 | 0.43 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuller-Tyszkiewicz, M.; Krug, I.; Smyth, J.M.; Fernandez-Aranda, F.; Treasure, J.; Linardon, J.; Vasa, R.; Shatte, A. State-Based Markers of Disordered Eating Symptom Severity. J. Clin. Med. 2020, 9, 1948. https://doi.org/10.3390/jcm9061948
Fuller-Tyszkiewicz M, Krug I, Smyth JM, Fernandez-Aranda F, Treasure J, Linardon J, Vasa R, Shatte A. State-Based Markers of Disordered Eating Symptom Severity. Journal of Clinical Medicine. 2020; 9(6):1948. https://doi.org/10.3390/jcm9061948
Chicago/Turabian StyleFuller-Tyszkiewicz, Matthew, Isabel Krug, Joshua M. Smyth, Fernando Fernandez-Aranda, Janet Treasure, Jake Linardon, Rajesh Vasa, and Adrian Shatte. 2020. "State-Based Markers of Disordered Eating Symptom Severity" Journal of Clinical Medicine 9, no. 6: 1948. https://doi.org/10.3390/jcm9061948
APA StyleFuller-Tyszkiewicz, M., Krug, I., Smyth, J. M., Fernandez-Aranda, F., Treasure, J., Linardon, J., Vasa, R., & Shatte, A. (2020). State-Based Markers of Disordered Eating Symptom Severity. Journal of Clinical Medicine, 9(6), 1948. https://doi.org/10.3390/jcm9061948