Dysregulation of microRNA Modulatory Network in Abdominal Aortic Aneurysm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants Characteristics
2.2. Study Material Preparation and Sequencing
2.3. Statistical and Bioinformatical Analysis
3. Results
3.1. Study Population Analysis
3.2. Primary Results
3.3. Differential Expression Analysis of miRNA
3.4. Differential Expression Analysis of Genes
3.5. Correlation Analysis
3.6. In Silico Identification of miRNA:Gene Interactions
3.7. Functional Analysis of miRNA Targets
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
Appendix A
Abdominal Aorta Aneurysm and Control Groups Construction
Appendix B
MiRNAs Reported in the Present Study as Upregulated in AAA | |
---|---|
miRNA | Remarks |
hsa-miR-21 | Function in atherogenesis [28,46,49] and AAA [48], targets PTEN [50,51,52]. |
hsa-miR-24 | Downregulated in plasma of AAA patients and murine AAA models [67]. |
hsa-miR-34a | Was deregulated in abdominal aorta tissue of AAA animal models [67]. |
hsa-miR-122 | Role in Alzheimer’s disease through regulation of genes involved in lipid metabolism [68]. |
hsa-miR-424 | Negative regulator of EGFR expression in tumor cells [60], targets Rictor (mTOR complex 2 signaling element), promotes tumor progression [69], affects MAPK and focal adhesion signaling pathways in esophageal squamous cell carcinoma [70]. |
hsa-miR-450b | Affects MAPK and focal adhesion signaling pathways in esophageal squamous cell carcinoma [70]. |
hsa-miR-454 | Directly targets PTEN [71], promotes cancer progression [71,72], inhibits Wnt/β-catenin signaling [72]. |
hsa-miR-503 | Targets Rictor (mTOR complex 2 signaling element), promotes tumor progression [69], promotes ESCC cell proliferation, migration, and invasion by targeting cyclin D1 [73], negative regulator of proliferation in primary human cells [74]. |
hsa-miR-542 | Upregulated in AAA patients [42]. |
hsa-miR-548d | Associated with schizophrenia [75]. |
hsa-miR-574 | Circulating marker of TAA [76], repressor of VEGFA [77], promotes VSMCs growth in CAD [78]. |
hsa-miR-3591 | Lower extremities arterial disease-associated miRNA [28]. |
MiRNAs reported in the present study as downregulated in AAA | |
hsa-let-7g | Increases viability of lung cancer and osteosarcoma cells via downregulation of HOXB1 and activation of NF-kB pathway [79,80]. |
hsa-miR-31 | Knockdown of this miRNA inhibits expression of Collagen I and III and Fibronectin in hypertrophic scar formation [81], regulator of senescence in cancer cells [82]. |
hsa-miR-99a | Significantly decreased in patients with AMI [83], regulates cell migration and cell proliferation by targeting PI3K/AKT and mTOR in wound healing model [84]. |
hsa-miR-125b | Associated with immune response of patients with ruptured intracranial aneurysms [85], upregulated in AAA subjects [44], suppresses bladder cancer development by targeting SIRT7 and MALAT1 [86]. |
hsa-miR-138 | Promotes glioma angiogenesis through miR-138/HIF-1α/VEGF axis [87], upregulated after the induction of myocardial infarction [88]. |
hsa-miR-150 | Inactivates VEGFA/VEGFR2 and the downstream Akt/mTOR signaling pathway in colorectal cancer [89], marker for early diagnosis of AMI [90], underexpression of this miRNA promotes proliferation and metastasis of gastric cancer [91]. |
hsa-miR-339 | Overexpression of this miRNA can inhibit HCC cell invasion [92]. |
hsa-miR-342 | Marker of T2D patients with high risk for developing CAD [93], in hUCMSCs enhances osteogenesis by targeting SUFU, induces TGF-β expression [94], regulates cell proliferation and apoptosis in hepatocellular carcinoma through Wnt/β-catenin signaling pathway [95]. |
hsa-miR-361 | Overexpression in cutaneous leishmaniosis lesions, impairs epidermal barrier function by filaggrin-2 repression [96]. |
hsa-miR-766 | Indirectly inhibits of NF-κB signaling causing anti-inflammatory response [97]. |
hsa-miR-769 | Expression is significantly correlated with the presence of pronounced coronary atherosclerosis [98], inhibits colorectal cancer cell proliferation and invasion by targeting HEY1 (downstream effector of NOTCH signaling pathway) [99], negatively correlated with EGFR expression [100]. |
hsa-miR-874 | Decreased expression was associated with poor overall survival of ESCC patients, targets STAT3 [101]. |
hsa-miR-5585 | Regulates cell cycle progression in human colorectal carcinoma cells, decreases expression of TGFβ-R1, TGFβ-R2, SMAD3, and SMAD4 [102]. |
Appendix C
Neurological Associations of Genes and miRNAs Involved in Abdominal Aortic Aneurysm (AAA) Pathology
Appendix D
miRNAs | Previous studies reported association with gender | Previous studies reported association with aging | Previous studies reported association with smoking |
miRNAs reported in the present study as upregulated in AAA | |||
---|---|---|---|
hsa-miR-21 | [105] | [106] | |
hsa-miR-24 | [106,107] | ||
hsa-miR-34a | [108] | ||
hsa-miR-122 | [106] | ||
hsa-miR-424 | [63,105] | [106] | |
hsa-miR-450b | |||
hsa-miR-454 | [63] | ||
hsa-miR-503 | [106] | ||
hsa-miR-542 | |||
hsa-miR-548d | [106] | ||
hsa-miR-574 | [109] | ||
hsa-miR-3591 | |||
miRNAs reported in the present study as downregulated in AAA | |||
hsa-let-7g | [106,107] | ||
hsa-miR-31 | |||
hsa-miR-99a | [63] | [110] | |
hsa-miR-125b | [106] | ||
hsa-miR-138 | [106,107] | [111] | |
hsa-miR-150 | [63,105] | ||
hsa-miR-339 | [63] | ||
hsa-miR-342 | [105] | ||
hsa-miR-361 | [63] | ||
hsa-miR-766 | [106] | [112] | |
hsa-miR-769 | [63] | ||
hsa-miR-874 | [106] | ||
hsa-miR-5585 |
Appendix E
No. | Gene Symbol | Association with Gender | Association with Smoking | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
[61] 1 | [62] | [113] 2 | [114] 3 | [115] 4 | [116] 5 | [117] 5 | [118] 5 | [119] | [120] | ||
Upregulated genes | |||||||||||
1 | CPT1A | no | no | no | no | no | no | no | no | no | no |
2 | GGT1 | no | no | no | no | no | no | no | no | no | no |
3 | UPF1 | yes, f | no | no | no | no | no | no | no | no | no |
4 | AC092620.2 | no | no | no | no | no | no | no | no | no | no |
5 | UBE4B | yes, f | no | no | no | no | no | no | no | no | no |
6 | HTT | no | no | no | no | no | no | no | no | no | no |
7 | NBEAL2 | no | no | no | no | no | no | no | no | no | no |
8 | GIT2 | no | no | no | no | no | no | no | no | no | no |
9 | THOC5 | no | no | no | no | no | no | no | no | no | no |
10 | ZZEF1 | no | no | no | no | no | no | no | no | no | no |
11 | ANKRD13D | no | no | no | no | no | no | no | no | no | no |
12 | SUFU | no | no | no | no | no | no | no | no | no | no |
13 | RN7SKP89 | no | no | no | no | no | no | no | no | no | no |
14 | ZSWIM8 | no | no | no | no | no | no | no | no | no | no |
Downregulated genes | |||||||||||
15 | SNORA60 | no | no | no | no | no | no | no | no | no | no |
16 | MIRLET7F2 | no | no | no | no | no | no | no | no | no | no |
17 | SNHG5 | no | no | no | no | no | no | no | no | no | no |
18 | SNORD20 | no | no | no | no | no | no | no | no | no | no |
19 | SNORA72 | no | no | no | no | no | no | no | no | no | no |
20 | SNORD117 | no | no | no | no | no | no | no | no | no | no |
21 | SNORD82 | yes, m | no | no | no | no | no | no | no | no | no |
22 | SNORD94 | no | no | no | no | no | no | no | no | no | no |
23 | SNORD101 | no | no | no | no | no | no | no | no | no | no |
24 | RNA5SP355 | no | no | no | no | no | no | no | no | no | no |
25 | SNORD103C (SNORD85) | no | no | no | no | no | no | no | no | no | no |
26 | RPL3P9 | no | no | no | no | no | no | no | no | no | no |
27 | RP11-16F15.2 | no | no | no | no | no | no | no | no | no | no |
28 | RP11-302F12.1 | no | no | no | no | no | no | no | no | no | no |
29 | SNORA12 | no | no | no | no | no | no | no | no | no | no |
30 | SNORA33 | no | no | no | no | no | no | no | no | no | no |
31 | ZRANB2 | yes, m | no | no | no | no | no | no | no | no | no |
32 | SNORD91B | no | no | no | no | no | no | no | no | no | no |
33 | RP11-253E3.1 | no | no | no | no | no | no | no | no | no | no |
34 | SNORD103B | no | no | no | no | no | no | no | no | no | no |
35 | SNORD127 | no | no | no | no | no | no | no | no | no | no |
36 | SNORD103A | no | no | no | no | no | no | no | no | no | no |
37 | SCARNA13 | no | no | no | no | no | no | no | no | no | no |
38 | SNORA14B | no | no | no | no | no | no | no | no | no | no |
39 | KIAA1549L | no | no | no | no | no | no | no | no | no | no |
40 | SNORD119 | no | no | no | no | no | no | no | no | no | no |
41 | PDCD4 | yes, m | no | no | no | no | no | no | no | no | no |
42 | MIR181A1 | no | no | no | no | no | no | no | no | no | no |
43 | SCARNA9 | no | no | no | no | no | no | no | no | no | no |
44 | RP1-102E24.1 | no | no | no | no | no | no | no | no | no | no |
45 | PRDM13 | no | no | no | no | no | no | no | no | no | no |
46 | SNORD19 | no | no | no | no | no | no | no | no | no | no |
47 | SNORA26 | no | no | no | no | no | no | no | no | no | no |
48 | RNU2-36P | no | no | no | no | no | no | no | no | no | no |
49 | SNORA50A (SNORA50) | no | no | no | no | no | no | no | no | no | no |
50 | SNORA40 | no | no | no | no | no | no | no | no | no | no |
51 | SNORD1B | no | no | no | no | no | no | no | no | no | no |
Appendix F
No. | Gene Symbol | Associations with Aging: | |||||
---|---|---|---|---|---|---|---|
[121] 1 | [122] | [64] | [123] | [65] 1 | Remarks for [65] | ||
Upregulated Genes | |||||||
1 | CPT1A | no | no | no | no | yes | IMR90 IR, IMR90 Rep, HUVEC IR, HAEC IR, WI38 Onc |
2 | GGT1 | no | no | no | no | yes | WI38 IR, WI38 Onc, WI38 Dox, IMR90 IR, WI38 Rep, HUVEC IR |
3 | UPF1 | no | no | no | no | yes | IMR90 Rep, IMR90 IR, WI38 Onc, |
4 | AC092620.2 | no | no | no | no | yes | WI38 Onc |
5 | UBE4B | no | no | no | no | yes | IMR90 Rep, IMR90 IR |
6 | HTT | no | no | no | no | yes | IMR90 Rep, WI38 Onc, IMR90 IR |
7 | NBEAL2 | no | no | no | no | yes | WI38 Onc, HAEC IR, WI38 Dox |
8 | GIT2 | no | no | no | no | yes | IMR90 Rep, WI38 Dox, IMR90 IR, WI38 Onc |
9 | THOC5 | no | no | no | no | no | |
10 | ZZEF1 | no | no | no | no | no | |
11 | ANKRD13D | no | no | no | no | no | |
12 | SUFU | no | no | no | no | yes | HUVEC IR |
13 | RN7SKP89 | no | no | no | no | no | |
14 | ZSWIM8 | no | no | no | no | yes | HUVEC IR, IMR90 IR, IMR90 Rep |
Downregulated genes | |||||||
15 | SNORA60 | no | no | no | no | no | |
16 | MIRLET7F2 | no | no | no | no | no | |
17 | SNHG5 | no | no | no | no | yes | HUVEC IR |
18 | SNORD20 | no | no | no | no | no | |
19 | SNORA72 | no | no | no | no | no | |
20 | SNORD117 | no | no | no | no | no | |
21 | SNORD82 | no | no | no | no | no | |
22 | SNORD94 | no | no | no | no | yes | WI38 Dox |
23 | SNORD101 | no | no | no | no | yes | HAEC IR, WI38 Dox, WI38 Onc, HUVEC IR |
24 | RNA5SP355 | no | no | no | no | no | |
25 | SNORD103C (SNORD85) | no | no | no | no | no | |
26 | RPL3P9 | no | no | no | no | no | |
27 | RP11-16F15.2 | no | no | no | no | yes | WI38 Rep |
28 | RP11-302F12.1 | no | no | no | no | no | |
29 | SNORA12 | no | no | no | no | no | |
30 | SNORA33 | no | no | yes | no | no | |
31 | ZRANB2 | no | no | no | no | no | |
32 | SNORD91B | no | no | no | no | no | |
33 | RP11-253E3.1 | no | no | no | no | no | |
34 | SNORD103B | no | no | no | no | no | |
35 | SNORD127 | no | no | no | no | no | |
36 | SNORD103A | no | no | no | no | no | |
37 | SCARNA13 | no | no | no | no | no | |
38 | SNORA14B | no | no | no | no | yes | WI38 Dox, WI38 Onc |
39 | KIAA1549L | no | no | no | no | yes | WI38 Dox, IMR90 Rep, IMR90 IR, WI38 IR, WI38 Onc |
40 | SNORD119 | no | no | no | no | no | |
41 | PDCD4 | no | no | no | no | yes | WI38 Onc, HUVEC IR, HAEC IR, WI38 Dox, WI38 Rep |
42 | MIR181A1 | no | no | no | no | no | |
43 | SCARNA9 | no | no | no | no | yes | WI38 Onc, HUVEC IR, IMR90 Rep, IMR90 IR |
44 | RP1-102E24.1 | no | no | no | no | no | |
45 | PRDM13 | no | no | no | no | no | |
46 | SNORD19 | no | no | no | no | yes | WI38 Dox, WI38 Onc, HUVEC IR |
47 | SNORA26 | no | no | no | no | yes | WI38 Dox, IMR90 Rep |
48 | RNU2-36P | no | no | no | no | no | |
49 | SNORA50A (SNORA50) | no | no | no | no | no | |
50 | SNORA40 | no | no | no | no | no | |
51 | SNORD1B | no | no | no | no | no |
References
- Moll, F.L.; Powell, J.T.; Fraedrich, G.; Verzini, F.; Haulon, S.; Waltham, M.; van Herwaarden, J.A.; Holt, P.J.; van Keulen, J.W.; Rantner, B.; et al. European Society for Vascular Surgery. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur. J. Vasc. Endovasc. Surg. 2011, 41, S1–S58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaikof, E.L.; Dalman, R.L.; Eskandari, M.K.; Jackson, B.M.; Lee, W.A.; Mansour, M.A.; Mastracci, T.M.; Mell, M.; Murad, M.H.; Nguyen, L.L.; et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J. Vasc. Surg. 2018, 67, 2–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordon, I.M.; Hinchliffe, R.J.; Loftus, I.M.; Thompson, M.M. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat. Rev. Cardiol. 2011, 8, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.K.; Rayt, H.S.; Hussey, G.; Rafelt, S.; Nelson, C.P.; Sayers, R.D.; Naylor, A.R.; Nasim, A. Should Asian men be included in abdominal aortic aneurysm screening programmes? Eur. J. Vasc. Endovasc. Surg. 2009, 38, 748–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 385, 117–171. [Google Scholar] [CrossRef]
- Choke, E.; Vijaynagar, B.; Thompson, J.; Nasim, A.; Bown, M.J.; Sayers, R.D. Changing epidemiology of abdominal aortic aneurysms in England and Wales: Older and more benign? Circulation 2012, 125, 1617–1625. [Google Scholar] [CrossRef] [Green Version]
- Sidloff, D.; Stather, P.; Dattani, N.; Bown, M.; Thompson, J.; Sayers, R.; Choke, E. Aneurysm global epidemiology study: Public health measures can further reduce abdominal aortic aneurysm mortality. Circulation 2014, 129, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention, National Center for Health Statistics. Multiple Cause of Death 1999-2018 on CDC WONDER Online Database, released in 2020. Data are from the Multiple Cause of Death Files, 1999-2018, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. Available online: https://conifer.rhizome.org/DZal/cdc-wonder-aaa-mortality-in-usa/20200613060247/https://wonder.cdc.gov/controller/saved/D77/D86F192 (accessed on 13 June 2020).
- Hernandez-Vaquero, D.; Silva, J.; Escalera, A.; Álvarez-Cabo, R.; Morales, C.; Díaz, R.; Avanzas, P.; Moris, C.; Pascual, I. Life Expectancy after Surgery for Ascending Aortic Aneurysm. J. Clin. Med. 2020, 9, 615. [Google Scholar] [CrossRef] [Green Version]
- Kent, K.C.; Zwolak, R.M.; Egorova, N.N.; Riles, T.S.; Manganaro, A.; Moskowitz, A.J.; Gelijns, A.C.; Greco, G. Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J. Vasc. Surg. 2010, 52, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, R.; Ghoorah, K.; Kunadian, V. Abdominal Aortic Aneurysms and Risk Factors for Adverse Events. Cardiol. Rev. 2016, 24, 88–93. [Google Scholar] [CrossRef]
- Rodríguez-Carrio, J.; Lindholt, J.S.; Canyelles, M.; Martínez-López, D.; Tondo, M.; Blanco-Colio, L.M.; Michel, J.-B.; Escolà-Gil, J.C.; Suárez, A.; Martín-Ventura, J.L. IgG Anti-High Density Lipoprotein Antibodies Are Elevated in Abdominal Aortic Aneurysm and Associated with Lipid Profile and Clinical Features. J. Clin. Med. 2020, 9, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golledge, J.; Kuivaniemi, H. Genetics of abdominal aortic aneurysm. Curr. Opin. Cardiol. 2013, 28, 290–296. [Google Scholar] [CrossRef]
- Bown, M.J. Genomic insights into abdominal aortic aneurysms. Ann. R. Coll. Surg. Engl. 2014, 96, 405–414. [Google Scholar] [CrossRef] [Green Version]
- Hong, E.P.; Kim, B.J.; Cho, S.S.; Yang, J.S.; Choi, H.J.; Kang, S.H.; Jeon, J.P. Genomic Variations in Susceptibility to Intracranial Aneurysm in the Korean Population. J. Clin. Med. 2019, 8, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, E.P.; Kim, B.J.; Jeon, J.P. Genome-Wide Association between the 2q33.1 Locus and Intracranial Aneurysm Susceptibility: An Updated Meta-Analysis Including 18,019 Individuals. J. Clin. Med. 2019, 8, 692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alamoudi, A.; Haque, S.; Srinivasan, S.; Mital, D.P. Diagnostic efficacy value in terms of sensitivity and specificity of imaging modalities in detecting the abdominal aortic aneurysm: A systematic review. IJMEI 2015, 7, 15. [Google Scholar] [CrossRef]
- Hellenthal, F.A.; Pulinx, B.; Welten, R.J.; Teijink, J.A.; van Dieijen-Visser, M.P.; Wodzig, W.K.; Schurink, G.W. Circulating biomarkers and abdominal aortic aneurysm size. J. Surg. Res. 2012, 176, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Moris, D.N.; Georgopoulos, S.E. Circulating biomarkers for abdominal aortic aneurysm: What did we learn in the last decade? Int. Angiol. 2013, 32, 266–280. [Google Scholar] [PubMed]
- Htun, N.M.; Peter, K. Biomarkers for AAA: Encouraging steps but clinical relevance still to be delivered. Proteom. Clin. Appl. 2014, 8, 732–734. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Sung, Y.M.; Park, J.; Kim, S.; Kim, J.; Park, J.; Ha, H.; Bae, J.Y.; Kim, S.; Baek, D. General rules for functional microRNA targeting. Nat. Genet. 2016, 48, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466, 835–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.S. Can microRNAs improve prediction of abdominal aortic aneurysm growth? Atherosclerosis 2017, 256, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Raffort, J.; Lareyre, F.; Clement, M.; Mallat, Z. Micro-RNAs in abdominal aortic aneurysms: Insights from animal models and relevance to human disease. Cardiovasc. Res. 2016, 110, 165–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyer, V.; Rowbotham, S.; Biros, E.; Bingley, J.; Golledge, J. A systematic review investigating the association of microRNAs with human abdominal aortic aneurysms. Atherosclerosis 2017, 261, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Boon, R.A.; Maegdefessel, L.; Dimmeler, S.; Jo, H. Role of Noncoding RNAs in the Pathogenesis of Abdominal Aortic Aneurysm. Circ. Res. 2019, 124, 619–630. [Google Scholar] [CrossRef]
- Bogucka-Kocka, A.; Zalewski, D.P.; Ruszel, K.P.; Stępniewski, A.; Gałkowski, D.; Bogucki, J.; Komsta, Ł.; Kołodziej, P.; Zubilewicz, T.; Feldo, M.; et al. Dysregulation of MicroRNA Regulatory Network in Lower Extremities Arterial Disease. Front. Genet. 2019, 10, 1200. [Google Scholar] [CrossRef] [Green Version]
- Zalewski, D.P.; Ruszel, K.P.; Stępniewski, A.; Gałkowski, D.; Bogucki, J.; Komsta, Ł.; Kołodziej, P.; Chmiel, P.; Zubilewicz, T.; Feldo, M.; et al. Dysregulations of MicroRNA and Gene Expression in Chronic Venous Disease. J. Clin. Med. 2020, 9, 1251. [Google Scholar] [CrossRef]
- Centner, V.; Massart, D.L.; de Noord, O.E.; de Jong, S.; Vandeginste, B.M.; Sterna, C. Elimination of uninformative variables for multivariate calibration. Anal. Chem. 1996, 68, 3851–3858. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Mehmood, T.; Hovde, K.H.; Liland Snipen, L.; Sæbø, S. A review of variable selection methods in Partial Least Squares Regression. Chemometr. Intell. Lab. Syst. 2012, 118, 62–69. [Google Scholar] [CrossRef]
- Chen, H.; Boutros, P.C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 2011, 12, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Finotello, F.; Mayer, C.; Plattner, C.; Laschober, G.; Rieder, D.; Hackl, H.; Krogsdam, A.; Loncova, Z.; Posch, W.; Wilflingseder, D.; et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 2019, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Becht, E.; Giraldo, N.A.; Lacroix, L.; Buttard, B.; Elarouci, N.; Petitprez, F.; Selves, J.; Laurent-Puig, P.; Sautès-Fridman, C.; Fridman, W.H.; et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016, 17, 218. [Google Scholar] [CrossRef] [PubMed]
- Sturm, G.; Finotello, F.; Petitprez, F.; Zhang, J.D.; Baumbach, J.; Fridman, W.H.; List, M.; Aneichyk, T. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics 2019, 35, i436–i445. [Google Scholar] [CrossRef]
- Ru, Y.; Kechris, K.J.; Tabakoff, B.; Hoffman, P.; Radcliffe, R.A.; Bowler, R.; Mahaffey, S.; Rossi, S.; Calin, G.A.; Bemis, L.; et al. The multiMiR R package and database: Integration of microRNA–target interactions along with their disease and drug associations. Nucleic Acids Res. 2014, 42, e133. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Araujo, N.N.F.; Lin-Wang, H.T.; Germano, J.F.; Farsky, P.S.; Feldman, A.; Rossi, F.H.; Izukawa, N.M.; Higuchi, M.L.; Savioli Neto, F.; Hirata, M.H.; et al. Dysregulation of microRNAs and target genes networks in human abdominal aortic aneurysm tissues. PLoS ONE. 2019, 14, e0222782. [Google Scholar] [CrossRef]
- Wanhainen, A.; Mani, K.; Vorkapic, E.; De Basso, R.; Björck, M.; Länne, T.; Wågsäter, D. Screening of circulating microRNA biomarkers for prevalence of abdominal aortic aneurysm and aneurysm growth. Atherosclerosis 2017, 256, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Stather, P.W.; Sylvius, N.; Sidloff, D.A.; Dattani, N.; Verissimo, A.; Wild, J.B.; Butt, H.Z.; Choke, E.; Sayers, R.D.; Bown, M.J. Identification of microRNAs associated with abdominal aortic aneurysms and peripheral arterial disease. Br. J. Surg. 2015, 102, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Shang, T.; Huang, C.; Yu, T.; Liu, C.; Qiao, T.; Huang, D.; Liu, Z.; Liu, C. Plasma microRNAs serve as potential biomarkers for abdominal aortic aneurysm. Clin. Biochem. 2015, 48, 988–992. [Google Scholar] [CrossRef] [PubMed]
- Pahl, M.C.; Derr, K.; Gäbel, G.; Hinterseher, I.; Elmore, J.R.; Schworer, C.M.; Peeler, T.C.; Franklin, D.P.; Gray, J.L.; Carey, D.J.; et al. MicroRNA expression signature in human abdominal aortic aneurysms. BMC Med. Genom. 2012, 5, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kin, K.; Miyagawa, S.; Fukushima, S.; Shirakawa, Y.; Torikai, K.; Shimamura, K.; Daimon, T.; Kawahara, Y.; Kuratani, T.; Sawa, Y. Tissue- and plasma-specific MicroRNA signatures for atherosclerotic abdominal aortic aneurysm. J. Am. Heart Assoc. 2012, 1, e000745. [Google Scholar] [CrossRef] [Green Version]
- Busch, A.; Busch, M.; Scholz, C.J.; Kellersmann, R.; Otto, C.; Chernogubova, E.; Maegdefessel, L.; Zernecke, A.; Lorenz, U. Aneurysm miRNA Signature Differs, Depending on Disease Localization and Morphology. Int. J. Mol. Sci. 2016, 17, 81. [Google Scholar] [CrossRef] [Green Version]
- Canfrán-Duque, A.; Rotllan, N.; Zhang, X.; Fernández-Fuertes, M.; Ramírez-Hidalgo, C.; Araldi, E.; Daimiel, L.; Busto, R.; Fernández-Hernando, C.; Suárez, Y. Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis. EMBO Mol. Med. 2017, 9, 1244–1262. [Google Scholar] [CrossRef]
- Maegdefessel, L.; Azuma, J.; Toh, R.; Deng, A.; Merk, D.R.; Raiesdana, A.; Leeper, N.J.; Raaz, U.; Schoelmerich, A.M.; McConnell, M.V.; et al. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci. Transl. Med. 2012, 4, 122ra22. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Cheng, Y.; Yang, J.; Krall, T.J.; Huo, Y.; Zhang, C. An essential role of PDCD4 in vascular smooth muscle cell apoptosis and proliferation: Implications for vascular disease. Am. J. Physiol. Cell. Physiol. 2010, 298, C1481–C1488. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, X.; Zhang, S.; Lin, Y.; Yang, J.; Zhang, C. MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4. J. Mol. Cell. Cardiol. 2009, 47, 5–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Li, H.; Zhou, Y.; Lv, H.; Chen, Y. PDCD4 expression in coronary atherosclerosis rat models and its mechanism. Exp. Ther. Med. 2019, 17, 3150–3154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenk, G.M.; Tromp, G.; Weinsheimer, S.; Gatalica, Z.; Berguer, R.; Kuivaniemi, H. Whole genome expression profiling reveals a significant role for immune function in human abdominal aortic aneurysms. BMC Genom. 2007, 8, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choke, E.; Cockerill, G.W.; Laing, K.; Dawson, J.; Wilson, W.R.; Loftus, I.M.; Thompson, M.M. Whole genome-expression profiling reveals a role for immune and inflammatory response in abdominal aortic aneurysm rupture. Eur. J. Vasc. Endovas. Surg. 2009, 37, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Giusti, B.; Rossi, L.; Lapini, I.; Magi, A.; Pratesi, G.; Lavitrano, M.; Biasi, G.M.; Pulli, R.; Pratesi, C.; Abbate, R. Gene expression profiling of peripheral blood in patients with abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 2009, 38, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Butt, H.Z.; Sylvius, N.; Salem, M.K.; Wild, J.B.; Dattani, N.; Sayers, R.D.; Bown, M.J. Microarray-based Gene Expression Profiling of Abdominal Aortic Aneurysm. Eur. J. Vasc. Endovasc. Surg. 2016, 52, 47–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirisaengtaksin, N.; Gireud, M.; Yan, Q.; Kubota, Y.; Meza, D.; Waymire, J.C.; Zage, P.E.; Bean, A.J. UBE4B protein couples ubiquitination and sorting machineries to enable epidermal growth factor receptor (EGFR) degradation. J. Biol. Chem. 2014, 289, 3026–3039. [Google Scholar] [CrossRef] [Green Version]
- Tomas, A.; Futter, C.E.; Eden, E.R. EGF receptor trafficking: Consequences for signaling and cancer. Trends Cell Biol. 2014, 24, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.T.; Lin, W.Y.; Chang, Y.H.; Lin, P.Y.; Chen, W.C.; Chen, M.F. DNMT1-dependent suppression of microRNA424 regulates tumor progression in human bladder cancer. Oncotarget 2015, 6, 24119–24131. [Google Scholar] [CrossRef] [Green Version]
- Deegan, D.F.; Karbalaei, R.; Madzo, J.; Kulathinal, R.J.; Engel, N. The developmental origins of sex-biased expression in cardiac development. Biol. Sex Differ. 2019, 10, 46. [Google Scholar] [CrossRef]
- Naqvi, S.; Godfrey, A.K.; Hughes, J.F.; Goodheart, M.L.; Mitchell, R.N.; Page, D.C. Conservation, acquisition, and functional impact of sex-biased gene expression in mammals. Science 2019, 365, eaaw7317. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Yang, W.; Shi, J.; Zhou, Y.; Yang, J.; Cui, Q.; Zhou, Y. Identification and Analysis of Human Sex-biased MicroRNAs. Genom. Proteom. Bioinform. 2018, 16, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Calabria, E.; Mazza, E.M.; Dyar, K.A.; Pogliaghi, S.; Bruseghini, P.; Morandi, C.; Salvagno, G.L.; Gelati, M.; Guidi, G.C.; Bicciato, S.; et al. Aging: A portrait from gene expression profile in blood cells. Aging 2016, 8, 1802–1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casella, G.; Munk, R.; Kim, K.M.; Piao, Y.; De, S.; Abdelmohsen, K.; Gorospe, M. Transcriptome signature of cellular senescence. Nucleic Acids Res. 2019, 47, 7294–7305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, G.; Begum, R.; Thota, S.; Batra, S. A systematic review of smoking-related epigenetic alterations. Arch. Toxicol. 2019, 93, 2715–2740. [Google Scholar] [CrossRef] [PubMed]
- Maegdefessel, L.; Spin, J.M.; Raaz, U.; Eken, S.M.; Toh, R.; Azuma, J.; Adam, M.; Nakagami, F.; Heymann, H.M.; Chernogubova, E.; et al. miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development. Nat. Commun. 2014, 5, 214. [Google Scholar] [CrossRef] [Green Version]
- Rotllan, N.; Fernández-Hernando, C. MicroRNA Regulation of Cholesterol Metabolism. Cholesterol 2012, 2012, 847849. [Google Scholar] [CrossRef]
- Oneyama, C.; Kito, Y.; Asai, R.; Ikeda, J.; Yoshida, T.; Okuzaki, D.; Kokuda, R.; Kakumoto, K.; Takayama, K.; Inoue, S.; et al. MiR-424/503-mediated Rictor upregulation promotes tumor progression. PLoS ONE 2013, 8, e80300. [Google Scholar] [CrossRef] [Green Version]
- Dai, F.; Mei, L.; Meng, S.; Ma, Z.; Guo, W.; Zhou, J.; Zhang, J. The global expression profiling in esophageal squamous cell carcinoma. Genomics 2017, 109, 241–250. [Google Scholar] [CrossRef]
- Zhu, D.Y.; Li, X.N.; Qi, Y.; Liu, D.L.; Yang, Y.; Zhao, J.; Zhang, C.Y.; Wu, K.; Zhao, S. MiR-454 promotes the progression of human non-small cell lung cancer and directly targets PTEN. Biomed. Pharmacother. 2016, 81, 79–85. [Google Scholar] [CrossRef]
- Ren, L.; Chen, H.; Song, J.; Chen, X.; Lin, C.; Zhang, X.; Hou, N.; Pan, J.; Zhou, Z.; Wang, L.; et al. MiR-454-3p-Mediated Wnt/β-catenin Signaling Antagonists Suppression Promotes Breast Cancer Metastasis. Theranostics 2019, 9, 449–465. [Google Scholar] [CrossRef]
- Jiang, L.; Zhao, Z.; Zheng, L.; Xue, L.; Zhan, Q.; Song, Y. Downregulation of miR-503 Promotes ESCC Cell Proliferation, Migration, and Invasion by Targeting Cyclin D1. Genom. Proteom. Bioinform. 2017, 15, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Polioudakis, D.; Abell, N.S.; Iyer, V.R. miR-503 represses human cell proliferation and directly targets the oncogene DDHD2 by non-canonical target pairing. BMC Genom. 2015, 16, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, C.Y.; Lee, S.Y.; Scarr, E.; Yu, Y.H.; Lin, Y.T.; Liu, C.M.; Hwang, T.J.; Hsieh, M.H.; Liu, C.C.; Chien, Y.L.; et al. Aberrant expression of microRNAs as biomarker for schizophrenia: From acute state to partial remission, and from peripheral blood to cortical tissue. Transl. Psychiatry 2016, 6, e717. [Google Scholar] [CrossRef] [PubMed]
- Boileau, A.; Lino Cardenas, C.L.; Courtois, A.; Zhang, L.; Rodosthenous, R.S.; Das, S.; Sakalihasan, N.; Michel, J.B.; Lindsay, M.E.; Devaux, Y. MiR-574-5p: A Circulating Marker of Thoracic Aortic Aneurysm. Int. J. Mol. Sci. 2019, 20, 3924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, P.; Wu, J.; Lindner, D.; Fox, P.L. Interplay between miR-574-3p and hnRNP L regulates VEGFA mRNA translation and tumorigenesis. Nucleic Acids Res. 2017, 45, 7950–7964. [Google Scholar] [CrossRef] [Green Version]
- Lai, Z.; Lin, P.; Weng, X.; Su, J.; Chen, Y.; He, Y.; Wu, G.; Wang, J.; Yu, Y.; Zhang, L. MicroRNA-574-5p promotes cell growth of vascular smooth muscle cells in the progression of coronary artery disease. Biomed. Pharmacother. 2018, 97, 162–167. [Google Scholar] [CrossRef]
- Cui, F.; Zhou, Q.; Xiao, K.; Ma, S. The MicroRNA hsa-let-7g Promotes Proliferation and Inhibits Apoptosis in Lung Cancer by Targeting HOXB1. YMJ 2020, 61, 210–217. [Google Scholar] [CrossRef]
- Zhou, J.L.; Deng, S.; Fang, H.S.; Yu, G.; Peng, H. Hsa-let-7g promotes osteosarcoma by reducing HOXB1 to activate NF-kB pathway. Biomed. Pharmacother. 2019, 109, 2335–2341. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Jiang, B.H.; Zhang, Q.; Zhou, R.P.; Zhang, L.; Wang, C. Study on the role of Hsa-miR-31-5p in hypertrophic scar formation and the mechanism. Exp. Cell Res. 2017, 361, 201–209. [Google Scholar] [CrossRef]
- Cho, J.H.; Dimri, M.; Dimri, G.P. MicroRNA-31 is a transcriptional target of histone deacetylase inhibitors and a regulator of cellular senescence. J. Biol. Chem. 2015, 290, 10555–10567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.Y.; Wang, Y.Q.; Gao, H.M.; Wang, B.; He, Q. The clinical value of circulating miR-99a in plasma of patients with acute myocardial infarction. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 5193–5197. [Google Scholar] [PubMed]
- Jin, Y.; Tymen, S.D.; Chen, D.; Fang, Z.J.; Zhao, Y.; Dragas, D.; Dai, Y.; Marucha, P.T.; Zhou, X. MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing. PLoS ONE 2013, 8, e64434. [Google Scholar] [CrossRef] [PubMed]
- Bo, L.; Wei, B.; Wang, Z.; Kong, D.; Gao, Z.; Miao, Z. Screening of Critical Genes and MicroRNAs in Blood Samples of Patients with Ruptured Intracranial Aneurysms by Bioinformatic Analysis of Gene Expression Data. Med. Sci. Monit. 2017, 23, 4518–4525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Liu, Y.; Zhang, H.; Wang, T.; Diao, R.; Jiang, Z.; Gui, Y.; Cai, Z. Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long non-coding RNA MALAT1. FEBS Lett. 2013, 587, 3875–3882. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Tian, Y.F.; Wu, H.; Ouyang, S.Y.; Kuang, W.L. LncRNA H19 promotes glioma angiogenesis through miR-138/HIF-1α/VEGF axis. Neoplasma 2020, 67, 111–118. [Google Scholar] [CrossRef]
- Wang, C.; Sun, X.; Qiu, Z.; Chen, A. MiR-138-5p exacerbates hypoxia/reperfusion-induced heart injury through the inactivation of SIRT1-PGC-1α. Inflamm. Res. 2019, 68, 867–876. [Google Scholar] [CrossRef]
- Chen, X.; Xu, X.; Pan, B.; Zeng, K.; Xu, M.; Liu, X.; He, B.; Pan, Y.; Sun, H.; Wang, S. miR-150-5p suppresses tumor progression by targeting VEGFA in colorectal cancer. Aging 2018, 10, 3421–3437. [Google Scholar] [CrossRef]
- Li, H.; Zhang, P.; Li, F.; Yuan, G.; Wang, X.; Zhang, A.; Li, F. Plasma miR-22-5p, miR-132-5p, and miR-150-3p Are Associated with Acute Myocardial Infarction. BioMed Res. Int. 2019, 2019, 5012648. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Tang, D.; Wang, W.; Yang, Y.; Wu, X.; Wang, L.; Wang, D. circLMTK2 acts as a sponge of miR-150-5p and promotes proliferation and metastasis in gastric cancer. Mol. Cancer. 2019, 18, 162. [Google Scholar] [CrossRef]
- Wang, Y.L.; Chen, C.M.; Wang, X.M.; Wang, L. Effects of miR-339-5p on invasion and prognosis of hepatocellular carcinoma. Clin. Res. Hepatol. Gastroenterol. 2016, 40, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Seleem, M.; Shabayek, M.; Ewida, H.A. MicroRNAs 342 and 450 together with NOX-4 activity and their association with coronary artery disease in diabetes. Diabetes Metab. Res. Rev. 2019, 35, e3130. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Huang, M.; Cao, Y.; Du, T.; Song, K. Effects of miRNA-342-3p in modulating Hedgehog signaling pathway of human umbilical cord mesenchymal stem cells by down-regulating Sufu. Oral Dis. 2019, 25, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Jia, S.; Zhao, S.; Shao, X. MiR-342 regulates cell proliferation and apoptosis in hepatocellular carcinoma through Wnt/β-catenin signaling pathway. Cancer Biomark. 2019, 25, 115–126. [Google Scholar] [CrossRef]
- Lago, T.S.; Silva, J.A.; Lago, E.L.; Carvalho, E.M.; Zanette, D.L.; Castellucci, L.C. The miRNA 361-3p, a Regulator of GZMB and TNF Is Associated with Therapeutic Failure and Longer Time Healing of Cutaneous Leishmaniasis Caused by L. (viannia) braziliensis. Front. Immunol. 2018, 9, 2621. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, K.; Kawasaki, M.; Hirai, T.; Yoshida, Y.; Tsushima, H.; Fujishiro, M.; Ikeda, K.; Morimoto, S.; Takamori, K.; Sekigawa, I. MicroRNA-766-3p Contributes to Anti-Inflammatory Responses through the Indirect Inhibition of NF-κB Signaling. Int. J. Mol Sci. 2019, 20, 809. [Google Scholar] [CrossRef] [Green Version]
- Freedman, J.E.; Ercan, B.; Morin, K.M.; Liu, C.T.; Tamer, L.; Ayaz, L.; Kanadasi, M.; Cicek, D.; Seyhan, A.I.; Akilli, R.E.; et al. The distribution of circulating microRNA and their relation to coronary disease. F1000Research 2012, 1, 50. [Google Scholar] [CrossRef]
- Han, C.; Song, Y.; Lian, C. MiR-769 Inhibits Colorectal Cancer Cell Proliferation and Invasion by Targeting HEY1. Med. Sci. Monit. 2018, 24, 9232–9239. [Google Scholar] [CrossRef]
- Ma, G.; Zhu, J.; Liu, F.; Yang, Y. Long Noncoding RNA LINC00460 Promotes the Gefitinib Resistance of Nonsmall Cell Lung Cancer Through Epidermal Growth Factor Receptor by Sponging miR-769-5p. DNA Cell Biol. 2019, 38, 176–183. [Google Scholar] [CrossRef]
- Yuan, R.B.; Zhang, S.H.; He, Y.; Zhang, X.Y.; Zhang, Y.B. MiR-874-3p is an independent prognostic factor and functions as an anti-oncomir in esophageal squamous cell carcinoma via targeting STAT3. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7265–7273. [Google Scholar] [CrossRef]
- Bakhshmand, E.A.; Mohammad Soltani, B.M.; Fasihi, A.; Mowla, S.J. Hsa-miR-5582-3P regulatory effect on TGFβ signaling through targeting of TGFβ-R1, TGFβ-R2, SMAD3, and SMAD4 transcripts. J. Cell Biochem. 2018, 119, 9921–9930. [Google Scholar] [CrossRef] [PubMed]
- Schipper, H.M.; Maes, O.C.; Chertkow, H.M.; Wang, E. MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul. Syst. Biol. 2007, 1, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Delavar, M.; Baghi, M.; Safaeinejad, Z.; Kiani-Esfahani, A.; Ghaedi, K.; Nasr-Esfahani, M.H. Differential expression of miR-34a, miR-141, and miR-9 in MPP+-treated differentiated PC12 cells as a model of Parkinson’s disease. Gene 2018, 662, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Ameling, S.; Kacprowski, T.; Chilukoti, R.K.; Malsch, C.; Liebscher, V.; Suhre, K.; Pietzner, M.; Friedrich, N.; Homuth, G.; Hammer, E.; et al. Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study. BMC Med. Genom 2015, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Dhahbi, J.M.; Atamna, H.; Boffelli, D.; Magis, W.; Spindler, S.R.; Martin, D.I. Deep sequencing reveals novel microRNAs and regulation of microRNA expression during cell senescence. PLoS ONE 2011, 6, e20509. [Google Scholar] [CrossRef]
- Suh, N. MicroRNA controls of cellular senescence. BMB Rep. 2018, 51, 493–499. [Google Scholar] [CrossRef] [Green Version]
- Owczarz, M.; Budzinska, M.; Domaszewska-Szostek, A.; Borkowska, J.; Polosak, J.; Gewartowska, M.; Slusarczyk, P.; Puzianowska-Kuznicka, M. miR-34a and miR-9 are overexpressed and SIRT genes are downregulated in peripheral blood mononuclear cells of aging humans. Exp. Biol. Med. 2017, 242, 1453–1461. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.; Gao, H.; Zhang, T.; Cui, Q. Analysis of plasma microRNA expression profiles revealed different cancer susceptibility in healthy young adult smokers and middle-aged smokers. Oncotarget 2016, 7, 21676–21685. [Google Scholar] [CrossRef]
- Budzinska, M.; Owczarz, M.; Pawlik-Pachucka, E.; Roszkowska-Gancarz, M.; Slusarczyk, P.; Puzianowska-Kuznicka, M. miR-96, miR-145 and miR-9 expression increases, and IGF-1R and FOXO1 expression decreases in peripheral blood mononuclear cells of aging humans. BMC Geriatr. 2016, 16, 200. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Wang, R.; Strulovici-Barel, Y.; Salit, J.; Staudt, M.R.; Ahmed, J.; Tilley, A.E.; Yee-Levin, J.; Hollmann, C.; Harvey, B.G.; et al. Persistence of smoking-induced dysregulation of miRNA expression in the small airway epithelium despite smoking cessation. PLoS ONE 2015, 10, e0120824. [Google Scholar] [CrossRef]
- Su, M.W.; Yu, S.L.; Lin, W.C.; Tsai, C.H.; Chen, P.H.; Lee, Y.L. Smoking-related microRNAs and mRNAs in human peripheral blood mononuclear cells. Toxicol. Appl. Pharmacol. 2016, 305, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Berrandou, T.; Mulot, C.; Cordina-Duverger, E.; Arveux, P.; Laurent-Puig, P.; Truong, T.; Guénel, P. Association of breast cancer risk with polymorphisms in genes involved in the metabolism of xenobiotics and interaction with tobacco smoking: A gene-set analysis. Int. J. Cancer 2019, 144, 1896–1908. [Google Scholar] [CrossRef] [PubMed]
- Joehanes, R.; Just, A.C.; Marioni, R.E.; Pilling, L.C.; Reynolds, L.M.; Mandaviya, P.R.; Guan, W.; Xu, T.; Elks, C.E.; Aslibekyan, S.; et al. Epigenetic Signatures of Cigarette Smoking. Circ. Cardiovasc. Genet. 2016, 9, 436–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obeidat, M.; Zhou, G.; Li, X.; Hansel, N.N.; Rafaels, N.; Mathias, R.; Ruczinski, I.; Beaty, T.H.; Barnes, K.C.; Paré, P.D.; et al. The genetics of smoking in individuals with chronic obstructive pulmonary disease. Respir. Res. 2018, 19, 59. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.M.; Chase, R.P.; Lamb, A.; Reyes, A.; Saferali, A.; Yun, J.H.; Himes, B.E.; Silverman, E.K.; Hersh, C.P.; Castaldi, P.J. RNA sequencing identifies novel non-coding RNA and exon-specific effects associated with cigarette smoking. BMC Med. Genom 2017, 10, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sridhar, S.; Schembri, F.; Zeskind, J.; Shah, V.; Gustafson, A.M.; Steiling, K.; Liu, G.; Dumas, Y.M.; Zhang, X.; Brody, J.S.; et al. Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium. BMC Genom 2008, 9, 259. [Google Scholar] [CrossRef] [Green Version]
- Su, D.; Wang, X.; Campbell, M.R.; Porter, D.K.; Pittman, G.S.; Bennett, B.D.; Wan, M.; Englert, N.A.; Crowl, C.L.; Gimple, R.N.; et al. Distinct Epigenetic Effects of Tobacco Smoking in Whole Blood and among Leukocyte Subtypes. PLoS ONE 2016, 11, e0166486. [Google Scholar] [CrossRef]
- Huan, T.; Joehanes, R.; Schurmann, C.; Schramm, K.; Pilling, L.C.; Peters, M.J.; Mägi, R.; DeMeo, D.; O’Connor, G.T.; Ferrucci, L.; et al. A whole-blood transcriptome meta-analysis identifies gene expression signatures of cigarette smoking. Hum. Mol. Genet. 2016, 25, 4611–4623. [Google Scholar] [CrossRef] [Green Version]
- Arimilli, S.; Madahian, B.; Chen, P.; Marano, K.; Prasad, G.L. Gene expression profiles associated with cigarette smoking and moist snuff consumption. BMC Genom. 2017, 18, 156. [Google Scholar] [CrossRef] [Green Version]
- Whiting, C.C.; Siebert, J.; Newman, A.M.; Du, H.W.; Alizadeh, A.A.; Goronzy, J.; Weyand, C.M.; Krishnan, E.; Fathman, C.G.; Maecker, H.T. Large-Scale and Comprehensive Immune Profiling and Functional Analysis of Normal Human Aging. PLoS ONE 2015, 10, e0133627. [Google Scholar] [CrossRef]
- de Magalhães, J.P.; Curado, J.; Church, G.M. Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics 2009, 25, 875–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, M.J.; Joehanes, R.; Pilling, L.C.; Schurmann, C.; Conneely, K.N.; Powell, J.; Reinmaa, E.; Sutphin, G.L.; Zhernakova, A.; Schramm, K.; et al. The transcriptional landscape of age in human peripheral blood. Nat. Commun. 2015, 6, 8570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | AAA Population (n = 28) | Control Population (n = 19) | p |
---|---|---|---|
Age | 66.39 ± 4.52 1 57–76 2 | 36.58 ± 9.97 1 24–55 2 | 8.30 × 10−9 |
Body Mass Index | 25.08 ± 3.30 1 18.03–31.25 2 | 23.12 ± 3.93 1 19.33–32.6 2 | 4.05 × 10−2 |
Current smoking | 9 (32.1%) | 0 (0%) | 6.69 × 10−3 |
Sex: Male | 25 (89.3%) | 9 (47%) | 2.63 × 10−3 |
Sex: Female | 3 (10.7%) | 10 (53%) | |
Abdominal aneurysm measurements | |||
Maximum aneurysm diameter (cm) | 6.389 ± 0.633 1 5.6–7.8 2 | NA | |
Thrombus volume (cm3) | 9.782 ± 3.296 1 2.9–16.5 2 | NA | |
Aneurysm neck length (cm) | 0.925 ± 0.219 1 0.5–1.3 2 | NA | |
Risk factors and cardiovascular comorbidities | |||
Coronary artery disease | 7 (25.0%) | NA | |
Diabetes type 2 | 6 (21.4%) | NA | |
Hypertension | 19 (67.9%) | NA | |
Clinical parameters | |||
Red blood cells (M/µL) | 4.94 ± 0.21 1 4.56–5.50 2 | NA | |
White blood cells (K/µL) | 5.66 ± 0.70 1 4.44–6.90 2 | NA | |
Platelets (K/µL) | 419.93 ± 123.98 1 211 – 756 2 | NA | |
Hemoglobin (g/dL) | 14.02 ± 0.51 1 13.34–15.00 2 | NA | |
Hematocrit (%) | 40.75 ± 1.30 1 38–43 2 | NA | |
Creatinine (mmol/L) | 54.18 ±11.53 1 39–87 2 | NA | |
Urea (mmol/L) | 4.66 ± 0.67 1 3.45–5.88 2 | NA | |
Medication | |||
Statins | 13 (46.4%) | NA | |
Acetylsalicylic acid | 27 (96.4%) | NA | |
Clopidogrel | 3 (10.7%) | NA | |
Beta-adrenergic blockers | 16 (57.1%) | NA | |
Angiotensin Converting Enzyme Inhibitor | 4 (14.3%) | NA | |
Ca2+ channel blockers | 2 (7.14%) | NA | |
Fibrates | 2 (7.14%) | NA | |
Metformin | 3 (10.7%) | NA | |
Gliclazide | 4 (14.3%) | NA | |
Treatment | |||
Open surgery | 2 (7.14%) | NA | |
Stent graft | 26 (92.9%) | NA |
No. | miRNA Transcript | miRNA ID* | p | Fold Change | PLS Coefficient | ROC-AUC |
---|---|---|---|---|---|---|
Upregulated miRNA transcripts | ||||||
1 | hsa-mir-21_hsa-miR-21-5p | hsa-miR-21-5p | 9.19 × 10−12 | 1.356 | 1.61 × 10−2 | 0.953 |
2 | hsa-mir-21_hsa-miR-21-3p | hsa-miR-21-3p | 1.73 × 10−9 | 1.704 | 2.77 × 10−2 | 0.919 |
3 | hsa-mir-34a_hsa-miR-34a-5p | hsa-miR-34a-5p | 5.61 × 10−9 | 2.188 | 4.04 × 10−2 | 0.927 |
4 | hsa-mir-454_hsa-miR-454-3p | hsa-miR-454-3p | 2.74 × 10−8 | 1.216 | 1.15 × 10−2 | 0.940 |
5 | hsa-mir-574_hsa-miR-574-5p | hsa-miR-574-5p | 1.13 × 10−6 | 1.364 | 1.65 × 10−2 | 0.898 |
6 | hsa-mir-424_hsa-miR-424-3p | hsa-miR-424-3p | 2.03 × 10−6 | 1.872 | 2.61 × 10−2 | 0.861 |
7 | hsa-mir-450b_hsa-miR-450b-5p | hsa-miR-450b-5p | 2.76 × 10−6 | 1.834 | 2.54 × 10−2 | 0.872 |
8 | hsa-mir-24-2_hsa-miR-24-3p | hsa-miR-24-3p | 8.59 × 10−6 | 1.143 | 6.77 × 10−3 | 0.874 |
9 | hsa-mir-34a_hsa-miR-34a-3p | hsa-miR-34a-3p | 1.42 × 10−5 | 2.357 | 2.42 × 10−2 | 0.867 |
10 | hsa-mir-542_hsa-miR-542-3p | hsa-miR-542-3p | 4.14 × 10−5 | 1.666 | 1.86 × 10−2 | 0.852 |
11 | hsa-mir-503_hsa-miR-503-5p | hsa-miR-503-5p | 6.92 × 10−5 | 1.781 | 1.99 × 10−2 | 0.821 |
12 | hsa-mir-7847_hsa-miR-7847-3p | hsa-miR-7847-3p | 7.00 × 10−5 | 2.270 | 2.45 × 10−2 | 0.861 |
13 | hsa-mir-548d-1_hsa-miR-548d-3p | hsa-miR-548d-3p | 7.10 × 10−5 | 1.493 | 9.31 × 10−3 | 0.848 |
14 | hsa-mir-122_hsa-miR-122-5p | hsa-miR-122-5p | 7.94 × 10−5 | 1.790 | 1.88 × 10−2 | 0.795 |
15 | hsa-mir-3591_hsa-miR-3591-3p | hsa-miR-3591-3p | 7.94 × 10−5 | 1.789 | 1.88 × 10−2 | 0.795 |
16 | hsa-mir-424_hsa-miR-424-5p | hsa-miR-424-5p | 9.56 × 10−5 | 1.579 | 1.79 × 10−2 | 0.810 |
Downregulated miRNA transcripts | ||||||
17 | hsa-mir-31_hsa-miR-31-5p | hsa-miR-31-5p | 4.18 × 10−12 | 0.344 | −4.97 × 10−2 | 0.981 |
18 | hsa-mir-31_hsa-miR-31-3p | hsa-miR-31-3p | 4.18 × 10−12 | 0.329 | −5.27 × 10−2 | 0.970 |
19 | hsa-mir-874_hsa-miR-874-5p | hsa-miR-874-5p | 7.39 × 10−11 | 0.429 | −3.33 × 10−2 | 0.934 |
20 | hsa-mir-361_hsa-miR-361-3p | hsa-miR-361-3p | 8.26 × 10−10 | 0.683 | −1.81 × 10−2 | 0.945 |
21 | hsa-mir-342_hsa-miR-342-3p | hsa-miR-342-3p | 1.22 × 10−7 | 0.592 | −1.94 × 10−2 | 0.923 |
22 | hsa-mir-138-1_hsa-miR-138-5p | hsa-miR-138-5p | 3.65 × 10−7 | 0.368 | −4.28 × 10−2 | 0.852 |
23 | hsa-mir-125b-2_hsa-miR-125b-5p | hsa-miR-125b-5p | 1.32 × 10−6 | 0.552 | −2.56 × 10−2 | 0.868 |
24 | hsa-mir-150_hsa-miR-150-5p | hsa-miR-150-5p | 1.88 × 10−6 | 0.581 | −2.04 × 10−2 | 0.906 |
25 | hsa-mir-3607_hsa-miR-3607-5p | hsa-miR-3607-5p | 2.03 × 10−6 | 0.532 | −2.86 × 10−2 | 0.880 |
26 | hsa-mir-769_hsa-miR-769-5p | hsa-miR-769-5p | 5.36 × 10−6 | 0.813 | −9.44 × 10−3 | 0.874 |
27 | hsa-let-7g_hsa-let-7g-3p | hsa-let-7g-3p | 7.34 × 10−6 | 0.750 | −1.16 × 10−2 | 0.887 |
28 | hsa-mir-125b-1_hsa-miR-125b-5p | hsa-miR-125b-5p | 7.34 × 10−6 | 0.560 | −2.35 × 10−2 | 0.857 |
29 | hsa-mir-138-2_hsa-miR-138-5p | hsa-miR-138-5p | 2.47 × 10−5 | 0.397 | −3.78 × 10−2 | 0.863 |
30 | hsa-mir-339_hsa-miR-339-3p | hsa-miR-339-3p | 4.31 × 10−5 | 0.770 | −1.00 × 10−2 | 0.868 |
31 | hsa-mir-5585_hsa-miR-5585-3p | hsa-miR-5585-3p | 4.64 × 10−5 | 0.396 | −1.91 × 10−2 | 0.801 |
32 | hsa-mir-99a_hsa-miR-99a-3p | hsa-miR-99a-3p | 6.92 × 10−5 | 0.481 | −2.38 × 10−2 | 0.853 |
33 | hsa-mir-766_hsa-miR-766-3p | hsa-miR-766-3p | 8.72 × 10−5 | 0.808 | −1.63 × 10−2 | 0.852 |
No. | Gene Symbol | Gene Name | P | Fold Change | PLS Coefficient | ROC-AUC |
---|---|---|---|---|---|---|
Upregulated Genes | ||||||
1 | CPT1A | carnitine palmitoyltransferase 1A | 1.70 × 10−10 | 2.487 | 1.567 × 10−3 | 1.000 |
2 | GGT1 | gamma-glutamyltransferase 1 | 1.11 × 10−8 | 1.973 | 9.424 × 10−4 | 1.000 |
3 | UPF1 | UPF1 RNA helicase and ATPase | 2.43 × 10−8 | 1.321 | 4.369 × 10−4 | 1.000 |
4 | AC092620.2 | Unmatched | 8.85 × 10−7 | 2.867 | 1.239 × 10−3 | 1.000 |
5 | UBE4B | ubiquitination factor E4B | 5.72 × 10−6 | 1.300 | 3.839 × 10−4 | 1.000 |
6 | HTT | huntingtin | 1.12 × 10−5 | 1.388 | 4.526 × 10−4 | 1.000 |
7 | NBEAL2 | neurobeachin like 2 | 1.38 × 10−5 | 1.517 | 5.590 × 10−4 | 1.000 |
8 | GIT2 | GIT ArfGAP 2 | 2.08 × 10−5 | 1.449 | 5.331 × 10−4 | 1.000 |
9 | THOC5 | THO complex 5 | 2.72 × 10−5 | 1.319 | 4.027 × 10−4 | 1.000 |
10 | ZZEF1 | zinc finger ZZ-type and EF-hand domain containing 1 | 2.82 × 10−5 | 1.291 | 3.325 × 10−4 | 1.000 |
11 | ANKRD13D | ankyrin repeat domain 13D | 3.01 × 10−5 | 1.428 | 4.791 × 10−4 | 1.000 |
12 | SUFU | SUFU negative regulator of hedgehog signaling | 4.11 × 10−5 | 1.482 | 5.397 × 10−4 | 1.000 |
13 | RN7SKP89 | RN7SK pseudogene 89 | 4.45 × 10−5 | 2.764 | 8.740 × 10−4 | 0.980 |
14 | ZSWIM8 | zinc finger SWIM-type containing 8 | 5.52 × 10−5 | 1.355 | 4.127 × 10−4 | 1.000 |
Downregulated genes | ||||||
15 | SNORA60 | small nucleolar RNA, H/ACA box 60 | 1.19 × 10−11 | 0.547 | −1.082 × 10−3 | 1.000 |
16 | MIRLET7F2 | microRNA let-7f-2 | 4.89 × 10−10 | 0.285 | −1.620 × 10−3 | 1.000 |
17 | SNHG5 | small nucleolar RNA host gene 5 | 5.05 × 10−10 | 0.433 | −1.296 × 10−3 | 1.000 |
18 | SNORD20 | small nucleolar RNA, C/D box 20 | 7.75 × 10−10 | 0.235 | −2.069 × 10−3 | 1.000 |
19 | SNORA72 | small nucleolar RNA, H/ACA box 72 | 3.72 × 10−9 | 0.358 | −1.464 × 10−3 | 1.000 |
20 | SNORD117 | small nucleolar RNA, C/D box 117 | 1.11 × 10−8 | 0.457 | −1.228 × 10−3 | 1.000 |
21 | SNORD82 | small nucleolar RNA, C/D box 82 | 1.17 × 10−8 | 0.357 | −1.448 × 10−3 | 1.000 |
22 | SNORD94 | small nucleolar RNA, C/D box 94 | 5.10 × 10−8 | 0.387 | −1.642 × 10−3 | 1.000 |
23 | SNORD101 | small nucleolar RNA, C/D box 101 | 5.43 × 10−8 | 0.330 | −1.558 × 10−3 | 1.000 |
24 | RNA5SP355 | RNA, 5S ribosomal pseudogene 355 | 8.24 × 10−8 | 0.053 | −1.178 × 10−3 | 1.000 |
25 | SNORD103C (SNORD85) | small nucleolar RNA, C/D box 103C | 1.34 × 10−7 | 0.342 | −1.352 × 10−3 | 0.980 |
26 | RPL3P9 | ribosomal protein L3 pseudogene 9 | 1.87 × 10−7 | 0.260 | −1.237 × 10−3 | 0.980 |
27 | RP11-16F15.2 | Unmatched | 2.06 × 10−7 | 0.344 | −1.054 × 10−3 | 1.000 |
28 | RP11-302F12.1 | Unmatched | 2.25 × 10−7 | 0.194 | −1.588 × 10−3 | 1.000 |
29 | SNORA12 | small nucleolar RNA, H/ACA box 12 | 4.92 × 10−7 | 0.631 | −7.161 × 10−4 | 1.000 |
30 | SNORA33 | small nucleolar RNA, H/ACA box 33 | 6.82 × 10−7 | 0.633 | −7.151 × 10−4 | 1.000 |
31 | ZRANB2 | zinc finger RANBP2-type containing 2 | 7.81 × 10−7 | 0.710 | −5.094 × 10−4 | 1.000 |
32 | SNORD91B | small nucleolar RNA, C/D box 91B | 9.72 × 10−7 | 0.324 | −1.497 × 10−3 | 1.000 |
33 | RP11-253E3.1 | Unmatched | 1.32 × 10−6 | 0.315 | −1.007 × 10−3 | 1.000 |
34 | SNORD103B | small nucleolar RNA, C/D box 103B | 2.34 × 10−6 | 0.338 | −1.417 × 10−3 | 1.000 |
35 | SNORD127 | small nucleolar RNA, C/D box 127 | 3.36 × 10−6 | 0.511 | −1.002 × 10−3 | 1.000 |
36 | SNORD103A | small nucleolar RNA, C/D box 103A | 4.06 × 10−6 | 0.354 | −1.379 × 10−3 | 1.000 |
37 | SCARNA13 | small Cajal body-specific RNA 13 | 4.13 × 10−6 | 0.689 | −4.895 × 10−4 | 1.000 |
38 | SNORA14B | small nucleolar RNA, H/ACA box 14B | 4.66 × 10−6 | 0.592 | −7.310 × 10−4 | 1.000 |
39 | KIAA1549L | KIAA1549 like | 5.44 × 10−6 | 0.178 | −1.223 × 10−3 | 0.980 |
40 | SNORD119 | small nucleolar RNA, C/D box 119 | 5.58 × 10−6 | 0.427 | −1.048 × 10−3 | 1.000 |
41 | PDCD4 | programmed cell death 4 | 9.40 × 10−6 | 0.654 | −5.442 × 10−4 | 1.000 |
42 | MIR181A1 | microRNA 181a-1 | 9.42 × 10−6 | 0.112 | −1.680 × 10−3 | 0.980 |
43 | SCARNA9 | small Cajal body-specific RNA 9 | 1.14 × 10−5 | 0.539 | −8.278 × 10−4 | 1.000 |
44 | RP1-102E24.1 | Unmatched | 1.19 × 10−5 | 0.315 | -1.006 × 10−3 | 0.939 |
45 | PRDM13 | PR/SET domain 13 | 2.46 × 10−5 | 0.140 | −1.674 × 10−3 | 0.959 |
46 | SNORD19 | small nucleolar RNA, C/D box 19 | 3.45 × 10−5 | 0.541 | −7.859 × 10−4 | 1.000 |
47 | SNORA26 | small nucleolar RNA, H/ACA box 26 | 3.67 × 10−5 | 0.425 | −1.156 × 10−3 | 1.000 |
48 | RNU2-36P | RNA, U2 small nuclear 36, pseudogene | 4.80 × 10−5 | 0.401 | −9.650 × 10−4 | 0.959 |
49 | SNORA50A (SNORA50) | small nucleolar RNA, H/ACA box 50A | 4.84 × 10−5 | 0.475 | −9.165 × 10−4 | 0.959 |
50 | SNORA40 | small nucleolar RNA, H/ACA box 40 | 5.31 × 10−5 | 0.394 | −1.075 × 10−3 | 0.959 |
51 | SNORD1B | small nucleolar RNA, C/D box 1B | 8.82 × 10−5 | 0.333 | −1.285 × 10−3 | 0.959 |
miRNA Transcript/Gene | Maximum Aneurysm Diameter | Thrombus Volume | Aneurysm Neck Length | Age | BMI | |||||
---|---|---|---|---|---|---|---|---|---|---|
R | p | R | p | R | p | R | p | R | p | |
hsa-mir-122_hsa-miR-122-5p | 0.10 | 0.619 | 0.27 | 0.160 | −0.05 | 0.782 | 0.10 | 0.618 | −0.38 1 | 0.045 |
hsa-mir-125b-1_hsa-miR-125b-5p | 0.02 | 0.926 | −0.19 | 0.341 | 0.45 1 | 0.015 | 0.08 | 0.692 | −0.01 | 0.954 |
hsa-mir-125b-2_hsa-miR-125b-5p | 0.12 | 0.560 | −0.08 | 0.686 | 0.40 1 | 0.037 | 0.09 | 0.662 | 0.02 | 0.901 |
hsa-mir-34a_hsa-miR-34a-5p | 0.47 1 | 0.011 | 0.32 | 0.096 | −0.04 | 0.852 | 0.26 | 0.183 | -0.01 | 0.961 |
hsa-mir-3591_hsa-miR-3591-3p | 0.10 | 0.616 | 0.27 | 0.160 | −0.05 | 0.781 | 0.10 | 0.617 | −0.38 1 | 0.045 |
hsa-mir-574_hsa-miR-574-5p | 0.16 | 0.421 | 0.49 1 | 0.007 | −0.03 | 0.896 | 0.26 | 0.180 | 0.16 | 0.414 |
hsa-mir-769_hsa-miR-769-5p | −0.22 | 0.252 | −0.04 | 0.832 | 0.36 | 0.061 | −0.41 1 | 0.032 | 0.01 | 0.973 |
hsa-mir-7847_hsa-miR-7847-3p | 0.33 | 0.089 | −0.01 | 0.944 | 0.13 | 0.521 | 0.53 1 | 0.003 | -0.03 | 0.884 |
AC092620.2 | 0.32 | 0.482 | −0.39 | 0.389 | 0.69 | 0.085 | 0.81 1 | 0.028 | 0.19 | 0.688 |
GIT2 | 0.20 | 0.666 | −0.37 | 0.415 | 0.64 | 0.120 | 0.27 | 0.563 | 0.81 1 | 0.027 |
PDCD4 | −0.14 | 0.768 | 0.03 | 0.945 | −0.07 | 0.885 | −0.81 1 | 0.026 | −0.18 | 0.699 |
RP1-102E24.1 | 0.30 | 0.508 | 0.38 | 0.396 | 0.08 | 0.864 | −0.18 | 0.703 | −0.78 1 | 0.039 |
RPL3P9 | 0.05 | 0.911 | 0.14 | 0.757 | −0.42 | 0.344 | −0.17 | 0.713 | −0.76 1 | 0.046 |
SNHG5 | −0.01 | 0.976 | 0.32 | 0.490 | −0.22 | 0.633 | −0.80 1 | 0.030 | −0.19 | 0.685 |
SUFU | 0.48 | 0.278 | −0.24 | 0.597 | 0.48 | 0.274 | 0.77 1 | 0.041 | 0.41 | 0.357 |
ZRANB2 | −0.35 | 0.448 | −0.19 | 0.679 | −0.21 | 0.649 | −0.79 1 | 0.036 | 0.08 | 0.857 |
Functional Analysis of 12 Upregulated Genes (ANKRD13D, CPT1A, GGT1, GIT2, HTT, NBEAL2, SUFU, THOC5, UBE4B, UPF1, ZSWIM8, and ZZEF1) | |
---|---|
KEGG, Reactome, GAD and GAD Class | |
ANKRD13D | GAD: Type 2 Diabetes|edema|rosiglitazone GAD Class: pharmacogenomic |
CPT1A | KEGG: fatty acid degradation, fatty acid metabolism, PPAR signaling pathway, AMPK signaling pathway, adipocytokine signaling pathway, glucagon signaling pathway, insulin resistance Reactome: RORA activates gene expression, PPARA activates gene expression, import of palmitoyl-CoA into the mitochondrial matrix, signaling by retinoic acid GAD: acquired immunodeficiency syndrome|disease progression, Alzheimer’s disease, atherosclerosis, BMI–Edema rosiglitazone or pioglitazone, diabetes, type 2 hepatic lipid content insulin, hepatitis C, chronic, hypercholesterolemia|LDLC levels, left ventricular hypertrophy, lipid metabolism, inborn errors|sudden infant death, obesity, tunica media, type 2 diabetes|edema|rosiglitazone GAD Class: cardiovascular, infection, metabolic, neurological, pharmacogenomic, unknown |
GGT1 | KEGG: taurine and hypotaurine metabolism, cyan amino acid metabolism, glutathione metabolism, arachidonic acid metabolism, metabolic pathways Reactome: glutathione synthesis and recycling, synthesis of leukotrienes (LT) and eoxins (EX), aflatoxin activation and detoxification, defective GGT1 causes glutathionuria (GLUTH) GAD: aging/ telomere length, alkaline phosphatase, arsenic exposure, cognitive trait, fatty liver|metabolic syndrome X, gamma-glutamyltransferase, liver enzymes, normal variation, pancreatic neoplasm|pancreatic neoplasms, plasma levels of liver enzymes, protein quantitative trait loci, sleep apnea, obstructive GAD class: cardiovascular |
GIT2 | KEGG: endocytosis GAD: cholesterol, HDL, E-selectin GAD Class: metabolic |
HTT | KEGG: Huntington’s disease GAD: atrophy|Huntington’s disease, chronic progressive chorea|, cognitive ability, cognitive function, Huntington’s disease; ataxia (SCA), myotonic dystrophy type 1, null, Parkinson’s disease, prostatic neoplasms, psychiatric disorders, schizophrenia, sleep disorders; Tourette syndrome, suicide GAD Class: cancer, neurological, other, psych, unknown |
NBEAL2 | GAD: Schizophrenia GAD Class: psych |
SUFU | KEGG: hedgehog signaling pathway, pathways in cancer, Basal cell carcinoma Reactome: degradation of GLI1 by the proteasome, Degradation of GLI2 by the proteasome, GLI3 is processed to GLI3R by the proteasome, hedgehog ‘off’ state, hedgehog ‘on’ state GAD: Alzheimer’s disease, head and neck neoplasms|neoplasm recurrence, local|neoplasms, second primary GAD Class: cancer, neurological |
THOC5 | KEGG: RNA transport Reactome: transport of mature mRNA derived from an intron-containing transcript, mRNA 3’-end processing GAD: carotid atherosclerosis in HIV infection GAD Class: cardiovascular |
UBE4B | KEGG: ubiquitin mediated proteolysis, protein processing in endoplasmic reticulum GAD: arteries, carcinoma, hepatocellular|hepatitis B, chronic|LCC—liver cell carcinoma|liver neoplasms GAD Class: cancer, cardiovascular |
UPF1 | KEGG: RNA transport, mRNA surveillance pathway Reactome: nonsense mediated decay (NMD) independent of the exon junction complex (EJC), nonsense mediated decay (NMD) enhanced by the exon junction complex (EJC) |
ZSWIM8 | GAD: Alzheimer’s disease GAD Class: neurological |
ZZEF1 | GAD: tobacco use disorder GAD Class: chemdependency |
Gene Ontology terms associated with EASE score < 0.05 | |
GO Biological Process | Cellular catabolic process, regulation of cellular catabolic process, organic substance catabolic process, catabolic process, regulation of catabolic process, intracellular transport, positive regulation of cellular catabolic process, establishment of localization in cell, positive regulation of catabolic process, cellular response to stimulus, positive regulation of lipid catabolic process, nucleocytoplasmic transport, nuclear transport, cellular localization, cellular developmental process, regulation of lipid catabolic process, behavior, response to stimulus, single-organism intracellular transport, nitrogen compound transport, animal organ development, mRNA-containing ribonucleoprotein complex export from nucleus, mRNA export from nucleus |
GO Cellular Compartment | Membrane-bounded organelle, nucleoplasm |
Functional analysis of 6 downregulated gene (KIAA1549L, PDCD4, PRDM13, SNORA60, SNORD94, and ZRANB2) | |
KEGG, Reactome, GAD and GAD Class | |
KIAA1549L | GAD: alcoholism, body height, creatinine, heart rate, suicide, attempted GAD Class: cardiovascular, chemdependency, developmental, metabolic, psych |
PDCD4 | KEGG: proteoglycans in cancer, microRNAs in cancer GAD: Alzheimer’s disease, longevity GAD Class: aging, neurological |
PRDM13 | GAD: menarche, Parkinson’s disease GAD Class: neurological, reproduction |
SNORA60 | No information |
SNORD94 | No information |
ZRANB2 | No information |
Gene Ontology terms associated with EASE score <0.05 | |
GO Biological Process | Regulation of transcription, DNA-templated, regulation of nucleic acid-templated transcription, regulation of RNA biosynthetic process, regulation of RNA metabolic process, nucleic acid-templated transcription, RNA biosynthetic process, regulation of cellular macromolecule biosynthetic process, regulation of nucleobase-containing compound metabolic process, regulation of macromolecule biosynthetic process, regulation of cellular biosynthetic process, regulation of biosynthetic process, regulation of gene expression, nucleobase-containing compound biosynthetic process, regulation of nitrogen compound metabolic process, heterocycle biosynthetic process, aromatic compound biosynthetic process, organic cyclic compound biosynthetic process, RNA metabolic process, cellular nitrogen compound biosynthetic process, cellular macromolecule biosynthetic process, nucleic acid metabolic process, macromolecule biosynthetic process, gene expression |
GO Molecular Function | Nucleic acid binding |
Ref. | Cases vs Controls | Material | Method (Number of Differentially Expressed miRNAs) | MiRNAs Overlapping with miRNA Biomarkers Proposed in the Current Study |
---|---|---|---|---|
[42] | 6 AAA subjects vs 6 controls | Abdominal aorta tissues | qPCR (59) | let-7g-3p, miR-454-3p, -24-3p, -31-5p, -125b-5p, -150-5p, -99a-3p |
[43] | 169 AAA subjects vs 48 controls | Plasma | qPCR (103) | miR-454-3p, -122-5p, -424-5p, -766-3p |
[44] | 15 AAA subjects vs 10 non-AAA controls | Whole blood samples | qPCR (29) | miR-125b-5p, -138-5p |
[45] | 10 AAA subjects vs 10 controls | Plasma | Microarray (151) | miR-21-5p, -574-5p, -24-3p, -122-5p, -31-5p, -342-3p, -150-5p, -125b-5p, -339-3p |
[46] | 5 AAA subjects vs 5 controls | Infrarenal aortic tissues | Microarray (8) | miR-21-5p |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalewski, D.P.; Ruszel, K.P.; Stępniewski, A.; Gałkowski, D.; Bogucki, J.; Komsta, Ł.; Kołodziej, P.; Chmiel, P.; Zubilewicz, T.; Feldo, M.; et al. Dysregulation of microRNA Modulatory Network in Abdominal Aortic Aneurysm. J. Clin. Med. 2020, 9, 1974. https://doi.org/10.3390/jcm9061974
Zalewski DP, Ruszel KP, Stępniewski A, Gałkowski D, Bogucki J, Komsta Ł, Kołodziej P, Chmiel P, Zubilewicz T, Feldo M, et al. Dysregulation of microRNA Modulatory Network in Abdominal Aortic Aneurysm. Journal of Clinical Medicine. 2020; 9(6):1974. https://doi.org/10.3390/jcm9061974
Chicago/Turabian StyleZalewski, Daniel P., Karol P. Ruszel, Andrzej Stępniewski, Dariusz Gałkowski, Jacek Bogucki, Łukasz Komsta, Przemysław Kołodziej, Paulina Chmiel, Tomasz Zubilewicz, Marcin Feldo, and et al. 2020. "Dysregulation of microRNA Modulatory Network in Abdominal Aortic Aneurysm" Journal of Clinical Medicine 9, no. 6: 1974. https://doi.org/10.3390/jcm9061974
APA StyleZalewski, D. P., Ruszel, K. P., Stępniewski, A., Gałkowski, D., Bogucki, J., Komsta, Ł., Kołodziej, P., Chmiel, P., Zubilewicz, T., Feldo, M., Kocki, J., & Bogucka-Kocka, A. (2020). Dysregulation of microRNA Modulatory Network in Abdominal Aortic Aneurysm. Journal of Clinical Medicine, 9(6), 1974. https://doi.org/10.3390/jcm9061974