Dynamics of Platelet Counts in Major Trauma: The Impact of Haemostatic Resuscitation and Effects of Platelet Transfusion—A Sub-Study of the Randomized Controlled RETIC Trial
Abstract
:1. Introduction
2. Experimental Section
2.1. The Present Sub-Study
2.2. Outcomes
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Spahn, D.R.; Bouillon, B.; Cerny, V.; Coats, T.J.; Duranteau, J.; Fernández-Mondéjar, E.; Filipescu, D.; Hunt, B.J.; Komadina, R.; Nardi, G.; et al. The European guideline on management of major bleeding and coagulopathy following trauma: Fifth edition. Crit. Care 2019, 23, 98. [Google Scholar] [CrossRef] [Green Version]
- MacLeod, J.B.; Lynn, M.; McKenney, M.G.; Cohn, S.D.; Murtha, M. Early coagulopathy predicts mortality in trauma. J. Trauma 2003, 55, 39–44. [Google Scholar] [CrossRef]
- Hess, J.R.; Lindell, A.L.; Stansbury, L.G.; Dutton, R.P.; Scalea, T.M. The prevalence of abnormal results of conventional coagulation tests on admission to a trauma center. Transfusion 2009, 49, 34–39. [Google Scholar] [CrossRef]
- Brown, L.M.; Call, M.S.; Knudson, M.M.; Cohen, M.J.; The Trauma Outcomes Group. A normal platelet count may not be enough: The impact of admission platelet count on mortality and transfusion in severely injured trauma patients. J. Trauma 2011, 71, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Tauber, H.; Innerhofer, P.; Breitkopf, R.; Westermann, I.; Beer, R.; El Attal, R.; Strasak, A.; Mittermayr, M. Prevalence and impact of abnormal ROTEM® assays in severe blunt trauma: Results of the ‘Diagnosis and Treatment of Trauma-Induced Coagulopathy (DIA-TRE-TIC) study’. Br. J. Anaesth. 2011, 107, 378–387. [Google Scholar] [CrossRef] [Green Version]
- Stansbury, L.G.; Hess, A.S.; Thompson, K.; Kramer, B.; Scalea, T.M.; Hess, J.R. The clinical significance of platelet counts in the first 24 h after severe injury. Transfusion 2013, 53, 783–789. [Google Scholar] [CrossRef]
- Vulliamy, P.; Gillespie, S.; Gall, L.S.; Green, L.; Brohi, K.; Davenport, R.A. Platelet transfusions reduce fibrinolysis but do not restore platelet function during trauma hemorrhage. J. Trauma Acute Care Surg. 2017, 83, 388–397. [Google Scholar] [CrossRef]
- Schöchl, H.; Nienaber, U.; Maegele, M.; Hochleitner, G.; Primavesi, F.; Steitz, B.; Arndt, C.; Hanke, A.; Voelckel, W.; Solomon, C. Transfusion in trauma: Thromboelastometry-guided coagulation factor concentrate-based therapy versus standard fresh frozen plasma-based therapy. Crit. Care 2011, 15, R83. [Google Scholar] [CrossRef] [Green Version]
- Innerhofer, P.; Westermann, I.; Tauber, H.; Breitkopf, R.; Fries, D.; Kastenberger, T.; El Attal, R.; Strasak, A.; Mittermayr, M. The exclusive use of coagulation factor concentrates enables reversal of coagulopathy and decreases transfusion rates in patients with major blunt trauma. Injury 2013, 44, 209–216. [Google Scholar] [CrossRef]
- Nienaber, U.; Innerhofer, P.; Westermann, I.; Schöchl, H.; Attal, R.; Breitkopf, R.; Maegele, M. The impact of fresh frozen plasma vs coagulation factor concentrates on morbidity and mortality in trauma-associated haemorrhage and massive transfusion. Injury 2011, 42, 697–701. [Google Scholar] [CrossRef]
- Innerhofer, P.; Fries, D.; Mittermayr, M.; Innerhofer, N.; von Langen, D.; Hell, T.; Gruber, G.; Schmid, S.; Friesenecker, B.; Lorenz, I.H.; et al. Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): A single-centre, parallel-group, open-label, randomised trial. Lancet Haematol. 2017, 4, e258–e271. [Google Scholar] [CrossRef]
- Ioannou, A.; Kannan, L.; Tsokos, G.C. Platelets, complement and tissue inflammation. Autoimmunity 2013, 46, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Pitchford, S.; Panb, D.; Welch, H. Platelets in neutrophil recruitment to sites of inflammation. Curr. Opin. Hematol. 2017, 24, 23–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tariket, S.; Guerrero, J.A.; Garraud, O.; Ghevaert, C.; Cognasse, F. Plate let α-granules modulate the inflammatory response under systemic lipopolysaccharide injection in mice. Transfusion 2019, 59, 32–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauaia, A.; Mooore, F.A.; Moore, E.E. Postinjury Inflammation and organ dysfunction. Crit. Care Clin. 2017, 33, 167–191. [Google Scholar] [CrossRef] [Green Version]
- Chambers, L.A.; Chow, S.J.; Shaffer, L.E. Frequency and characteristics in trauma patients treated with a low or high plasma content massive transfusion protocol. Am. J. Clin. Pathol. 2011, 136, 364–370. [Google Scholar] [CrossRef] [Green Version]
- Hedin, A.; Hahn, R.G. Volume expansion and plasma protein clearance during intravenous infusion of 5% albumin and autologous plasma. Clin. Sci. 2005, 108, 217–224. [Google Scholar] [CrossRef]
- Hagemo, J.S.; Christiaans, S.C.; Stanworth, S.J.; Brohi, K.; Johansson, P.I.; Goslings, J.C.; Naess, P.A.; Gaarder, C. Detection of acute traumatic coagulopathy and massive transfusion requirements by means of rotational thromboelastometry: An international prospective validation study. Crit. Care 2015, 19, 97. [Google Scholar] [CrossRef] [Green Version]
- Hagemo, J.S.; Stanworth, S.; Juffermans, N.; Brohi, K.; Cohen, M.J.; Johansson, P.I.; Røislien, J.; Eken, T.; Næss, P.A.; Gaarder, C. Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: A multicenter observational study. Crit. Care 2014, 18, R52. [Google Scholar] [CrossRef] [Green Version]
- Winearls, J.; Campbella, D.; Hurnc, C.; Furyk, J.; Ryan, G.; Trout, M.; Walsham, J.; Holley, A.; Shuttleworth, M.; Dyer, W.; et al. Fibrinogen in traumatic haemorrhage: A narrative review. Injury 2017, 48, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Velik-Salchner, C.; Haas, T.; Innerhofer, P.; Streif, W.; Nussbaumer, W.; Klingler, A.; Klima, G.; Martinowitz, U.; Fries, D. The effect of fibrinogen concentrate on thrombocytopenia. J. Thromb. Haemost. 2007, 5, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, M.; Baryshnikova, E.; Ranucci, M.; Simona, S.; Surgical and Clinical Outcome Research (SCORE) Group. Fibrinogen levels compensation of thrombocytopenia-induced bleeding following cardiac surgery. Int. J. Cardiol. 2017, 249, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Schenk, B.; Lindner, A.K.; Treichl, B.; Bachler, M.; Hermann, M.; Larsen, O.H.; Fenger-Eriksen, C.; Wally, D.; Tauber, H.; Velik-Salchner, C.; et al. Fibrinogen supplementation ex vivo increases clot firmness comparable to platelet transfusion in thrombocytopenia. Br. J. Anaesth. 2016, 117, 576–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, T.; Johannig, K.; Metzler, H.; Piepenbrock, S.; Solomon, C.; Rahe-Meyer, N.; Tanaka, K.A. The Effects of Fibrinogen Levels on Thromboelastometric Variables in the Presence of Thrombocytopenia. Anesth. Analg. 2009, 108, 75–78. [Google Scholar] [CrossRef]
- Levy, J.H.; Roissant, R.; Zacharowski, K.; Spahn, D.R. What is the evidence for platelet transfusion in perioperative settings? Vox Sang. 2017, 112, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Thachil, J.; Warkentin, T.E. How do we approach thrombocytopenia in critically ill patients? Br. J. Haematol. 2017, 177, 27–38. [Google Scholar] [CrossRef]
- Kornblith, L.Z.; Decker, A.; Conroy, A.S.; Hendrickson, C.M.; Fields, A.T.; Robles, A.J.; Callcut, R.A.; Cohen, M.J. It’s about Time: Transfusion effects on postinjury platelet aggregation over time. J. Trauma Acute Care Surg. 2019, 87, 1042–1051. [Google Scholar] [CrossRef]
- Stanworth, S.J.; Estcourt, L.J.; Powter, G.; Kahan, B.C.; Dyer, C.; Choo, L.; Bakrania, L.; Llewelyn, C.; Littlewood, T.; Soutar, R.; et al. A No-Prophylaxis Platelet-Transfusion Strategy for Hematologic Cancers. NEJM 2013, 368, 1771–1780. [Google Scholar] [CrossRef] [Green Version]
- Holcomb, J.B.; Tilley, B.C.; Baraniuk, S.; Fox, E.E.; Wade, C.E.; Podbielski, J.M.; del Junco, D.J.; Brasel, K.J.; Bulger, E.M.; Callcut, R.A.; et al. Transfusion of Plasma, Platelets, and Red Blood Cells in a 1:1:1 vs a 1:1:2 Ratio and Mortality in Patients with Severe Trauma the PROPPR Randomized Clinical Trial. JAMA. 2015, 313, 471–482. [Google Scholar] [CrossRef]
- Khan, S.; Brohi, K.; Chana, M.; Raza, I.; Stanworth, S.; Gaarder, C.; Davenport, R. Hemostatic resuscitation is neither hemostatic nor resuscitative in trauma hemorrhage. J. Trauma Acute Care Surg. 2014, 76, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Malm, C.J.; Ramström, S.; Hesse, C.; Jeppsson, A. Adrenaline enhances in vitro platelet activation and aggregation in blood samples from ticagrelor-treated patients. Res. Pract. Thromb. Haemost. 2018, 2, 718–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, R.T.; Christiaans, S.C.; Nice, T.R.; Banks, M.; Mortellaro, V.E.; Morgan, C.; Duhachek-Stapelman, A.; Lisco, S.J.; Kerby, J.D.; Wagener, B.M.; et al. Histone-complexed DNA fragments levels are associated with coagulopathy, endothelial cell damage, and increased mortality after severe pediatric trauma. Shock 2018, 49, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Simmon, J.D.; Lee, Y.L.; Mulekar, S.; Kuck, J.L.; Brevard, S.B.; Gonzalez, R.P.; Gillespie, M.N.; Richards, W.O. Elevated Levels of Plasma Mitochondrial DNA DAMPs Are Linked to Clinical Outcome in Severely Injured Human Subjects. Ann. Surg. 2013, 258, 591–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oikonomopoulou, K.; Ricklin, D.; Ward, P.A.; Lambris, J.D. Interactions between coagulation and complement their role in inflammation. Semin Immunopathol. 2012, 34, 151–165. [Google Scholar] [CrossRef] [Green Version]
- Yasui, K.; Matsuyama, N.; Kuroishi, A.; Tani, Y.; Furuta, R.A.; Hirayama, F. Mitochondrial damage-associated molecular patterns as potential proinflammatory mediators in post–platelet transfusion adverse effects. Transfusion 2016, 56, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.E.; Henrichs, K.F.; Kirkley, S.A.; Refaai, M.A.; Blumberg, N. Prophylactic Preprocedure Platelet Transfusion Is Associated with Increased Risk of Thrombosis and Mortality. Am. J. Clin. Pathol. 2018, 149, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Warner, M.A.; Jia, Q.; Clifford, L.; Wilson, G.; Brown, M.J.; Hanson, A.C.; Schroeder, D.R.; Kor, D.J. Preoperative platelet transfusions and perioperative red blood cell requirements in patients with thrombocytopenia undergoing noncardiac surgery. Transfusion 2016, 56, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Pereboom, I.A.; de Boer, M.T.; Haagsam, E.B.; Hendriks, H.G.; Porte, R.J. Platelet Transfusion during Liver Transplantation Is Associated with Increased Postoperative Mortality Due to Acute Lung Injury. Anesth. Analg. 2009, 108, 1083–1091. [Google Scholar] [CrossRef] [Green Version]
- Bishop, J.F.; Matthews, J.P.; McGrath, K.; Yuen, K.; Wolf, M.M.; Szer, J. Factors influencing 20-h increments after platelet transfusion. Transfusion 1991, 31, 392–396. [Google Scholar] [CrossRef]
Demographics | Unmatched Population | Matched Population | ||||||
---|---|---|---|---|---|---|---|---|
No PC (n = 60) | PC (n = 34) | Estimate with 95% CI | p Value | No PC (n = 43) | PC (n = 19) | Estimate with 95% CI | p Value | |
Age (years) | 40.5 (25.75–51.25) | 47.5 (26.25–58.75) | −3 (−10 to 4) | 0.3952 | 44 (30.5–51.5) | 54 (30–62) | −8 (−18 to 3) | 0.1343 |
Male Sex | 49/60 (81.7%) | 21/34 (61.8%) | 0.37 (0.13 to 1.05) | 0.0484 | 33/43 (76.7%) | 13/19 (68.4%) | 0.66 (0.17 to 2.69) | 0.5378 |
Time to ED (min) | 61.5 (40–90) | 59 (45.25–78.25) | 3.15 (−10 to 20) | 0.6508 | 58 (40–86) | 60 (42–76.5) | 0 (−18 to 20) | 0.9756 |
ISS (pts) | 29 (24–36.5) | 42.5 (33.25–57) | −12 (−18 to −7) | <0.0001 | 34 (29–39.5) | 34 (29–38) | 0 (−5 to 4) | 0.8841 |
AIS brain > 2 | 16/60 (26.7%) | 13/34 (38.2%) | 1.69 (0.63 to 4.57) | 0.2556 | 15/43 (34.9%) | 6/19 (31.6%) | 0.86 (0.22 to 3.08) | 1 |
Systolic BP (mmHg) | 118 (93.75–140) | 90 (70.5–127.5) | 20 (2 to 34) | 0.0181 | 120 (100–135) | 120 (90.5–139.5) | 0 (−20 to 15) | 0.7827 |
Heart rate (bts/min) | 92.5 (80.75–108.25) | 110 (85–116) | −10 (−20 to 1) | 0.0688 | 93 (82–108.5) | 100 (72–110) | 4 (−10 to 17) | 0.6349 |
Blood pH | 7.33 (7.27–7.37) | 7.31 (7.17–7.36) | 0.04 (0 to 0.09) | 0.0679 | 7.31 (7.26–7.38) | 7.35 (7.32–7.37) | −0.03 (−0.07 to 0.02) | 0.219 |
BD (mmol/L) | 3.7 (1.23–5.62) | 4.5 (3.23–9.35) | −1.8 (−3.6 to 0) | 0.05 | 4.7 (1.85–6.15) | 3.8 (2.15–4.85) | 0.8 (−0.9 to 2.4) | 0.2955 |
Lactate (mmol/L) | 2.16 (1.44–2.8) | 2.33 (1.8–4.86) | −0.44 (−1.22 to 0.11) | 0.0875 | 2.44 (1.55–2.94) | 1.89 (1.55–2.33) | 0.33 (−0.11 to 0.78) | 0.1485 |
Hemoglobin (g/dL) | 12.2 (10.85–13.4) | 10.05 (9–11.8) | 2 (1 to 2.9) | 0.0002 | 11.9 (10.6–12.9) | 10.5 (9.8–12.3) | 0.9 (−0.3 to 2) | 0.1364 |
Fibrinogen (mg/dL) | 189.5 (166–222) | 171.5 (112.5–208.25) | 30.73 (3 to 58) | 0.029 | 205 (150–224.5) | 193 (171.5–225) | 2 (−22 to 30) | 0.9028 |
Platelets (G/L) | 190.5 (156.75–217.25) | 166.5 (150–202.5) | 17 (−2 to 36) | 0.0848 | 189 (157.5–220.5) | 180 (151–215) | 11 (−13 to 37) | 0.3516 |
PTI (%) | 69 (61.75–84.25) | 58.5 (44.25–68.25) | 14 (7 to 21) | 0.0002 | 69 (61.5–85) | 66 (58.5–74) | 5 (−3 to 13) | 0.151 |
INR | 1.2 (1.1–1.33) | 1.4 (1.2–1.67) | −0.2 (−0.3 to −0.1) | 0.0004 | 1.2 (1.1–1.35) | 1.3 (1.2–1.4) | −0.1 (−0.1 to 0) | 0.2553 |
aPTT (s) | 31.5 (27.75–33.25) | 37 (29.25–49) | −7 (−12 to −3) | 0.0004 | 32 (29–33.5) | 34 (28–37.5) | −2 (−5 to 2) | 0.3348 |
ExCT (s) | 54 (51–63) | 64 (49–82) | −7 (−16 to 0) | 0.0552 | 56.5 (52–67.25) | 49 (47.5–64) | 5 (−1 to 10) | 0.0959 |
ExMCF (mm) | 56 (50–59) | 54 (49.25–57) | 3 (−1 to 5) | 0.1195 | 57 (48.75–61.25) | 54 (53–57.5) | 1 (−3 to 5) | 0.6432 |
FibA10 (mm) | 9 (6–11) | 8 (4.25–10) | 1 (0 to 3) | 0.0736 | 9 (5.75–12.25) | 9 (8–10.5) | −1 (−3 to 2) | 0.6716 |
Organ Failure (SOFA > 2) | Unmatched Population | Matched Population | ||||||
---|---|---|---|---|---|---|---|---|
No PC (n = 60) | PC (n = 34) | Estimate with 95% CI | p Value | No PC (n = 43) | PC (n = 19) | Estimate with 95% CI | p Value | |
Respiration | 18/60 (30%) | 18/34 (52.9%) | 2.6 (1.01 to 6.86) | 0.046 | 15/43 (34.9%) | 6/19 (31.6%) | 0.86 (0.22 to 3.08) | 1 |
Coagulation | 4/60 (6.7%) | 20/34 (58.8%) | 19.15 (5.32–89.81) | <0.0001 | 2/43 (4.7%) | 13/19 (68.4%) | 39.99 (6.82–447.59) | <0.0001 |
Liver | 0/60 (0%) | 6/34 (17.6%) | Inf (2.3 to Inf) | 0.0017 | 0/43 (0%) | 2/19 (10.5%) | Inf (0.43 to Inf) | 0.0904 |
Cardiovascular | 48/60 (80%) | 34/34 (100%) | Inf (1.8 to Inf) | 0.0035 | 37/43 (86%) | 19/19 (100%) | Inf (0.54 to Inf) | 0.1647 |
Central nervous system | 17/60 (28.3%) | 15/34 (44.1%) | 1.98 (0.75 to 5·26) | 0.1737 | 12/43 (27.9%) | 6/19 (31.6%) | 1.19 (0.3 to 4.39) | 0.77 |
Renal | 1/60 (1.7%) | 12/34 (3.3%) | 30.99 (4.15 to 1387.39) | <0.0001 | 0/43 (0%) | 6/19 (31.6%) | Inf (3.27 to Inf) | 0.0004 |
Multiple organ failure | 25/60 (41.7%) | 29/34 (85.3%) | 7.93 (2.56 to 29.96) | <0.0001 | 18/43 (41.9%) | 15/19 (78.9%) | 5.07 (1.32 to 24.56) | 0.012 |
Sepsis | 4/60 (6.7%) | 12/34 (35.3%) | 7.45 (1.99 to 35.14) | 0.001 | 2/43 (4.7%) | 7/19 (36.8%) | 11.37 (1.85 to 126.32) | 0.0024 |
Venous thrombosis | 5/60 (8.3%) | 7/34 (20.6%) | 2.82 (0.7 to 12.38) | 0.1117 | 2/43 (4.7%) | 5/19 (26.3%) | 7.04 (1.02 to 81.66) | 0.0238 |
Peripheral pulmonary embolism | 3/60 (5%) | 1/34 (2.9%) | 0.58 (0.01 to 7.55) | 1 | 2/43 (4.7%) | 1/19 (5.3%) | 1.14 (0.02 to 23.16) | 1 |
Hemofiltration | 1/60 (1.7%) | 12/34 (3.3%) | 30.99 (4.15 to 1387.39) | <0.0001 | 0/43 (0%) | 6/19 (31.6%) | Inf (3.27 to Inf) | 0.0004 |
Ventilator-free days | 25 (17.75–27) | 13.5 (0.5–21) | 9 (4–13) | <0.0001 | 24 (14–26.5) | 16 (7–22.5) | 5 (0–11) | 0.0552 |
ICU-free days | 22 (14.75–25) | 6.5 (0–18.5) | 9 (4 to 15) | 0.0003 | 19 (8–24) | 16 (3.5–24) | 2 (−3 to 8) | 0.4263 |
Hospital-free days | 2 (0–12) | 0 (0–4.75) | 0 (0–3) | 0.0298 | 2 (0–9.5) | 0 (0–8) | 0 (0 to 3) | 0.2295 |
In-hospital mortality | 0/60 (0%) | 7/34 (20.6%) | Inf (2.9 to Inf) | 0.0005 | 0/43 (0%) | 3/19 (15.8%) | Inf (0.99 to Inf) | 0.0256 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tauber, H.; Innerhofer, N.; von Langen, D.; Ströhle, M.; Fries, D.; Mittermayr, M.; Hell, T.; Oswald, E.; Innerhofer, P. Dynamics of Platelet Counts in Major Trauma: The Impact of Haemostatic Resuscitation and Effects of Platelet Transfusion—A Sub-Study of the Randomized Controlled RETIC Trial. J. Clin. Med. 2020, 9, 2420. https://doi.org/10.3390/jcm9082420
Tauber H, Innerhofer N, von Langen D, Ströhle M, Fries D, Mittermayr M, Hell T, Oswald E, Innerhofer P. Dynamics of Platelet Counts in Major Trauma: The Impact of Haemostatic Resuscitation and Effects of Platelet Transfusion—A Sub-Study of the Randomized Controlled RETIC Trial. Journal of Clinical Medicine. 2020; 9(8):2420. https://doi.org/10.3390/jcm9082420
Chicago/Turabian StyleTauber, Helmuth, Nicole Innerhofer, Daniel von Langen, Mathias Ströhle, Dietmar Fries, Markus Mittermayr, Tobias Hell, Elgar Oswald, and Petra Innerhofer. 2020. "Dynamics of Platelet Counts in Major Trauma: The Impact of Haemostatic Resuscitation and Effects of Platelet Transfusion—A Sub-Study of the Randomized Controlled RETIC Trial" Journal of Clinical Medicine 9, no. 8: 2420. https://doi.org/10.3390/jcm9082420
APA StyleTauber, H., Innerhofer, N., von Langen, D., Ströhle, M., Fries, D., Mittermayr, M., Hell, T., Oswald, E., & Innerhofer, P. (2020). Dynamics of Platelet Counts in Major Trauma: The Impact of Haemostatic Resuscitation and Effects of Platelet Transfusion—A Sub-Study of the Randomized Controlled RETIC Trial. Journal of Clinical Medicine, 9(8), 2420. https://doi.org/10.3390/jcm9082420