Postprandial Apolipoprotein B48 is Associated with Subclinical Atherosclerosis in Patients with Rheumatoid Arthritis
Abstract
:1. Introduction
2. Patients and Methods
2.1. Design
2.2. Patients
2.3. Controls
2.4. Protocol
2.5. Main Outcome Measure
2.6. Laboratory Measures
2.7. Other Variables
2.8. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Study of Pre- and Postprandial Blood Lipid Values and cIMT in Patients and Controls
3.3. Study of pre- and Postprandial Blood Lipids and Baseline Characteristics of Patients with RA According to cIMT
3.4. Multivariate Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goodson, N.; Marks, J.; Lunt, M.; Symmons, D. Cardiovascular admissions and mortality in an inception cohort of patients with rheumatoid arthritis with onset in the 1980s and 1990s. Ann. Rheum. Dis. 2005, 64, 1595–1601. [Google Scholar] [CrossRef] [PubMed]
- Agca, R.; Rollefstad, S.; Södergren, A.; Semb, A.G.; Kitas, G.D.; Sattar, N.; Nurmohamed, M.T. Response to: “Influence of changes in cholesterol levels and disease activity on the 10-year cardiovascular risk estimated with different algorithms in rheumatoid arthritis patients” by Fornaro et al. Ann. Rheum. Dis. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dessein, P.H.; Joffe, B.I.; Stanwix, A.E. Inflammation, insulin resistance, and aberrant lipid metabolism as cardiovascular risk factors in rheumatoid arthritis. J. Rheumatol. 2003, 30, 1403–1405. [Google Scholar] [PubMed]
- Sattar, N.; McCarey, D.W.; Capell, H.; McInnes, I.B. Explaining how “high-grade” systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation 2003, 108, 2957–2963. [Google Scholar] [CrossRef]
- Del Rincon, I.D.; Williams, K.; Stern, M.P.; Freeman, G.L.; Escalante, A. High incidence of cardiovascular events in a rheumatoid arthritis cohort not explained by traditional cardiac risk factors. Arthritis Rheum. 2001, 44, 2737–2745. [Google Scholar] [CrossRef]
- La Montagna, G.; Cacciapuoti, F.; Buono, R.; Manzella, D.; Mennillo, G.A.; Arciello, A.; Valentini, G.; Paolisso, G. Insulin resistance is an independent risk factor for atherosclerosis in rheumatoid arthritis. Diab. Vasc. Dis. Res. 2007, 24, 130–135. [Google Scholar] [CrossRef]
- Burggraaf, B.; Stoep, D.F.V.B.-V.D.; De Vries, M.A.; Klop, B.; Liem, A.H.; Van De Geijn, G.-J.M.; Van Der Meulen, N.; Birnie, E.; Van Der Zwan, E.M.; Van Zeben, J.; et al. Effect of a treat-to-target intervention of cardiovascular risk factors on subclinical and clinical atherosclerosis in rheumatoid arthritis: A randomised clinical trial. Ann. Rheum. Dis. 2019, 78, 335–341. [Google Scholar] [CrossRef]
- Kisiel, B.; Kruszewski, R.; Juszkiewicz, A.; Raczkiewicz, A.; Bachta, A.; Kłos, K.; Duda, K.; Maliborski, A.; Szymański, K.; Ploski, R.; et al. Common atherosclerosis genetic risk factors and subclinical atherosclerosis in rheumatoid arthritis: The relevance of disease duration. Rheumatol. Int. 2019, 39, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar]
- Gepner, A.D.; Young, R.; Delaney, J.A.; Budoff, M.J.; Polak, J.F.; Blaha, M.J.; Post, W.S.; Michos, E.D.; Kaufman, J.D.; Stein, J.H. Comparison of Carotid Plaque Score and Coronary Artery Calcium Score for Predicting Cardiovascular Disease Events: The Multi-Ethnic Study of Atherosclerosis. J. Am. Heart Assoc. 2017, 6, e005179. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Juanatey, C.; Testa, A.; Garcia-Castelo, A.; Garcia-Porrua, C.; Llorca, J.; Ollier, W.E.; González-Gay, M. Echocardiographic and Doppler findings in long-term treated rheumatoid arthritis patients without clinically evident cardiovascular disease. Semin. Arthritis Rheum. 2004, 33, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Toms, T.E.; Panoulas, V.F.; Douglas, K.M.J.; Griffiths, H.; Sattar, N.; Smith, J.P.; Symmons, D.P.M.; Nightingale, P.; Metsios, G.S.; Kitas, G.D. Statin use in rheumatoid arthritis in relation to actual cardiovascular risk: Evidence for substantial undertreatment of lipid-associated cardiovascular risk? Ann. Rheum. Dis. 2010, 69, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Lee, C.-K.; Lee, E.Y.; Park, S.Y.; Cho, Y.S.; Yoo, B.; Moon, H.-B. Serum oxidized low-density lipoproteins in rheumatoid arthritis. Rheumatol. Int. 2004, 24, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.B.; Lee, S.K.; Lee, W.K.; Suh, C.H.; Lee, C.W.; Song, C.; Lee, J. Lipid profiles in untreated patients with rheumatoid arthritis. J. Rheumatol. 1999, 26, 1701–1704. [Google Scholar] [PubMed]
- Bansal, S.; Buring, J.E.; Rifai, N.; Mora, S.; Sacks, F.M.; Ridker, P.M. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 2007, 298, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Brunzell, J.D. Clinical practice. Hypertriglyceridemia. N. Engl. J. Med. 2007, 357, 1009–1017. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Benn, M.; Schnohr, P.; Tybjaerg-Hansen, A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 2007, 298, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Kolovou, G.D.; Anagnostopoulou, K.K.; Daskalopoulou, S.S.; Mikhailidis, D.P.; Cokkinos, D.V. Clinical relevance of postprandial lipaemia. Curr. Med. Chem. 2005, 12, 1931–1945. [Google Scholar] [CrossRef]
- Stalenhoef, A.F.; de Graaf, J. Association of fasting and nonfasting serum triglycerides with cardiovascular disease and the role of remnant-like lipoproteins and small dense LDL. Curr. Opin. Lipidol. 2008, 19, 355–361. [Google Scholar] [CrossRef]
- Alipour, A.; Valdivielso, P.; Elte, J.W.F.; Janssen, H.W.; Rioja, J.; Van Der Meulen, N.; Van Mechelen, R.; Njo, T.L.; Gonzalez-Santos, P.; Rietveld, A.P.; et al. Exploring the value of apoB48 as a marker for atherosclerosis in clinical practice. Eur. J. Clin. Investig. 2012, 42, 702–708. [Google Scholar] [CrossRef]
- Masuda, D.; Sugimoto, T.; Tsujii, K.-I.; Inagaki, M.; Nakatani, K.; Yuasa-Kawase, M.; Tsubakio-Yamamoto, K.; Ohama, T.; Nishida, M.; Ishigami, M.; et al. Correlation of fasting serum apolipoprotein B-48 with coronary artery disease prevalence. Eur. J. Clin. Investig. 2012, 42, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., III; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Hervas, S.; Bauer-Izquierdo, S.I.; Priego, M.A.; Real, J.T.; Carmena, R.; Ascaso, J.F. Grosor Íntima-Media Carotídeo y Frecuencia de Placas de Ateroma en Población Española sin Factores de Riesgo Cardiovascular. 2012. Available online: https://www.myendnoteweb.com/EndNoteWeb.html (accessed on 1 August 2012).
- Stein, J.H.; Korcarz, C.E.; Post, W.S. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: Summary and discussion of the American Society of Echocardiography consensus statement. Prev. Cardiol. 2009, 12, 34–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleeman, J.I.; Grundy, S.M.; Becker, D.; Clark, L. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar]
- Mancia, G.; De Backer, G.; Dominiczak, A.; Cifkova, R.; Fagard, R.; Germano, G.; Grassi, G.; Heagerty, A.M.; Kjeldsen, S.E.; Laurent, S.; et al. ESH/ESC 2007 Guidelines for the management of arterial hypertension. Rev Esp Cardiol. 2007, 60, 968–994. [Google Scholar] [CrossRef] [Green Version]
- Canivell, S.; Gomis, R. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33, S62–S69. [Google Scholar]
- Wilson, P.W.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of coronary heart disease using risk factor categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef] [Green Version]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. New Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, N.; Kawakami, A.; Fujikawa, K.; Aramaki, T.; Kawashiri, S.Y.; Tamai, M.; Arima, K.; Ichinose, K.; Kamachi, M.; Yamasaki, S.; et al. Prediction of DAS28-ESR remission at 6 months by baseline variables in patients with rheumatoid arthritis treated with etanercept in Japanese population. Mod. Rheumatol. 2009, 19, 488–492. [Google Scholar] [CrossRef]
- Moyano, S.; Scolnik, M.; Vergara, F.; Garcia, M.V.; Sabelli, M.R.; Rosa, J.E.; Catoggio, L.J.; Soriano, E.R. Evaluation of Learned Helplessness, Perceived Self-efficacy, and Functional Capacity in Patients With Fibromyalgia and Rheumatoid Arthritis. J. Clin. Rheumatol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Burggraaf, B.; Stoep, D.F.V.B.-V.D.; Van Zeben, J.; Van Der Meulen, N.; Van De Geijn, G.-J.M.; Liem, A.; Valdivielso, P.; Villodres, J.R.; Ramírez-Bollero, J.; Van Der Zwan, E.; et al. Evidence for increased chylomicron remnants in rheumatoid arthritis. Eur. J. Clin. Investig. 2018, 48. [Google Scholar] [CrossRef] [PubMed]
- Van Breukelen-van der Stoep, D.F.; Klop, B.; van Zeben, D.; Hazes, J.M.; Castro Cabezas, M. Cardiovascular risk in rheumatoid arthritis: How to lower the risk? Atherosclerosis 2013, 231, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Van Wijk, J.P.; Halkes, C.J.; Erkelens, D.W.; Castro Cabezas, M. Fasting and daylong triglycerides in obesity with and without type 2 diabetes. Metabolism 2003, 52, 1043–1049. [Google Scholar] [CrossRef]
- Masuda, D.; Nishida, M.; Arai, T.; Hanada, H.; Yoshida, H.; Yamauchi-Takihara, K.; Moriyama, T.; Tada, N.; Yamashita, S. Reference interval for the apolipoprotein B-48 concentration in healthy Japanese individuals. J. Atheroscler. Thromb. 2014, 21, 618–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strang, A.C.; Bisoendial, R.J.; Kootte, R.S.; Schulte, D.; Dallinga-Thie, G.M.; Levels, J.H.; Kok, M.; Vos, K.; Tas, S.W.; Tietge, U.J.; et al. Pro-atherogenic lipid changes and decreased hepatic LDL receptor expression by tocilizumab in rheumatoid arthritis. Atherosclerosis 2013, 229, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Valdivielso, P.; Puerta, S.; Rioja, J.; Alonso, I.; Ariza, M.; Sánchez-Chaparro, M.-Á.; Palacios, R.; Gonzalez-Santos, P. Postprandial apolipoprotein B48 is associated with asymptomatic peripheral arterial disease: A study in patients with type 2 diabetes and controls. Clin. Chim. Acta 2010, 411, 433–437. [Google Scholar] [CrossRef]
- Teno, S.; Uto, Y.; Nagashima, H.; Endoh, Y.; Iwamoto, Y.; Omori, Y.; Takizawa, T. Association of postprandial hypertriglyceridemia and carotid intima-media thickness in patients with type 2 diabetes. Diabetes Care 2000, 23, 1401–1406. [Google Scholar] [CrossRef] [Green Version]
- Valdivielso, P.; Hidalgo, A.; Rioja, J.; Aguilar, I.; Ariza, M.J.; González-Alegre, T.; Gonzalez-Santos, P. Smoking and postprandial triglycerides are associated with vascular disease in patients with type 2 diabetes. Atherosclerosis 2007, 194, 391–396. [Google Scholar] [CrossRef]
- Valéro, R.; Lorec, A.-M.; Paganelli, F.; Beliard, S.; Atlan, C.; Lairon, D.; Vialettes, B.; Portugal, H. Fasting apoprotein B-48 level and coronary artery disease in a population without frank fasting hypertriglyceridemia. Metabolism 2005, 54, 1442–1447. [Google Scholar] [CrossRef]
- Choy, E.; Sattar, N. Interpreting lipid levels in the context of high-grade inflammatory states with a focus on rheumatoid arthritis: A challenge to conventional cardiovascular risk actions. Ann. Rheum. Dis. 2009, 68, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Steiner, G.; Urowitz, M.B. Lipid profiles in patients with rheumatoid arthritis: Mechanisms and the impact of treatment. Semin. Arthritis Rheum. 2009, 38, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Segura, B.T.; Macía-Díaz, M.; Machado, J.D.; De Vera-González, A.M.; Dopico, J.A.G.; Olmos, J.M.; Hernandez, J.L.; Díaz-González, F.; González-Gay, M.A.; Ferraz-Amaro, I. HDL cholesterol efflux capacity in rheumatoid arthritis patients: Contributing factors and relationship with subclinical atherosclerosis. Arthritis Res. Ther. 2017, 19, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vries, M.A.; Klop, B.; Alipour, A.; Van De Geijn, G.-J.M.; Prinzen, L.; Liem, A.H.; Valdivielso, P.; Villodres, J.R.; Ramírez-Bollero, J.; Cabezas, M.C. In vivo evidence for chylomicrons as mediators of postprandial inflammation. Atherosclerosis 2015, 243, 540–545. [Google Scholar] [CrossRef]
- Valdivielso, P.; Ramirez-Bollero, J.; Perez-Lopez, C. Peripheral arterial disease, type 2 diabetes and postprandial lipidaemia: Is there a link? World J. Diabetes 2014, 5, 577–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoep, D.F.V.B.D.; Van Zeben, D.; Klop, B.; Van De Geijn, G.-J.M.; Janssen, H.J.W.; Hazes, M.J.M.W.; Birnie, E.; Van Der Meulen, N.; De Vries, M.A.; Cabezas, M.C. Association of Cardiovascular Risk Factors with Carotid Intima Media Thickness in Patients with Rheumatoid Arthritis with Low Disease Activity Compared to Controls: A Cross-Sectional Study. PLoS ONE 2015, 10, e0140844. [Google Scholar]
- Tan, T.Y.; Lu, C.H.; Lin, T.K.; Liou, C.W.; Chuang, Y.C.; Schminke, U. Factors associated with gender difference in the intima-media thickness of the common carotid artery. Clin. Radiol. 2009, 64, 1097–1103. [Google Scholar] [CrossRef]
- Spinelli, F.R.; Pecani, A.; Ciciarello, F.; Colasanti, T.; Di Franco, M.; Miranda, F.; Conti, F.; Valesini, G.; Alessandri, C. Association between antibodies to carbamylated proteins and subclinical atherosclerosis in rheumatoid arthritis patients. BMC Musculoskelet. Disord. 2017, 18, 214. [Google Scholar] [CrossRef]
- Gerli, R.; Bocci, E.B.; Sherer, Y.; Vaudo, G.; Moscatelli, S.; Shoenfeld, Y. Association of anti-cyclic citrullinated peptide antibodies with subclinical atherosclerosis in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2008, 67, 724–725. [Google Scholar] [CrossRef]
- Mercado, M.V.-D.; Nuñez-Atahualpa, L.; Figueroa-Sanchez, M.; Gómez-Bañuelos, E.; Rocha-Muñoz, A.D.; Martín-Márquez, B.T.; Corona-Sanchez, E.G.; Martínez-García, E.A.; Macías-Reyes, H.; Gonzalez-Lopez, L.; et al. Serum Levels of Anticyclic Citrullinated Peptide Antibodies, Interleukin-6, Tumor Necrosis Factor-α, and C-Reactive Protein Are Associated with Increased Carotid Intima-Media Thickness: A Cross-Sectional Analysis of a Cohort of Rheumatoid Arthritis Patients without Cardiovascular Risk Factors. Biomed. Res. Int. 2015, 2015. [Google Scholar] [CrossRef]
- Provan, S.A.; Lillegraven, S.; Sexton, J.; Angel, K.; Austad, C.; Haavardsholm, E.A.; Kvien, T.K.; Uhlig, T. Trends in all-cause and cardiovascular mortality in patients with incident rheumatoid arthritis: A 20-year follow-up matched case-cohort study. Rheumatology 2020, 59, 505–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, J.W.; Nzekwu, M.M.; Cabezas, M.C.; Redgrave, T.; Proctor, S.D. Methods to assess impaired post-prandial metabolism and the impact for early detection of cardiovascular disease risk. Eur. J. Clin. Investig. 2009, 39, 741–754. [Google Scholar] [CrossRef] [PubMed]
- Karamanos, B.G.; Thanopoulou, A.C.; Roussi-Penesi, D.P. Maximal post-prandial triglyceride increase reflects post-prandial hypertriglyceridaemia and is associated with the insulin resistance syndrome. Diabet. Med. 2001, 18, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Roubille, C.; Richer, V.; Starnino, T.; McCourt, C.; McFarlane, A.; Fleming, P.; Siu, S.; Kraft, J.; Lynde, C.; Pope, J.; et al. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: A systematic review and meta-analysis. Ann. Rheum. Dis. 2015, 74, 480–489. [Google Scholar] [CrossRef]
- Panoulas, V.F.; Douglas, K.M.J.; Metsios, G.; Kita, M.D.; Elisaf, M.; Stavropoulos-Kalinoglou, A.; Nightingale, P.; Kitas, G.D. Long-term exposure to medium-dose glucocorticoid therapy associates with hypertension in patients with rheumatoid arthritis. Rheumatology 2008, 47, 72–75. [Google Scholar] [CrossRef] [Green Version]
Variable | Patients n = 40 | Controls n = 40 | p Value |
---|---|---|---|
Epidemiological Characteristics | |||
Age in Years, Median (IQR) | 55.7 (52.9–61.7) | 57.0 (52.7–61.1) | 0.662 |
Female Sex; n (%) | 35 (87.5) | 34 (85.0) | 0.745 |
Smoking | 0.181 | ||
Never Smoked, n (%) | 15 (37.5) | 21 (52.5) | |
Exsmoker, n (%) | 19 (47.5) | 11 (27.5) | |
Active Smoker, n (%) | 6 (15.0) | 8 (20.0) | |
Comorbidities | |||
Arterial Hypertension, n (%) | 10 (25.0) | 9 (22.5) | 0.792 |
Diabetes Mellitus, n (%) | 2 (5.0) | 4 (10.0) | 0.395 |
Cardiovascular Disease, n (%) | 3 (7.5) | 2 (5.0) | 0.644 |
Family History of Coronary Artery Disease, n (%) | 13 (32.5) | 7 (17.5) | 0.121 |
Anthropometric Characteristics | |||
BMI (kg/m2), Median (IQR) | 26.7 (24.5–31.0) | 27.2 (24.4–30.8) | 0.758 |
Obesity, n (%) | 10 (26.3) | 10 (27.0) | 0.944 |
Waist Circumference, (cm), Median (IQR) | 91.5 (83.0–108.5) | 91 (84.0–102.0) | 0.361 |
Hip Circumference (cm), Median (IQR) | 106.5 (103.5–112.3) | 105.0 (100.0–114.0) | 0.308 |
Waist-Hip Ratio, Median (IQR) | 0.86 (0.8–0.9) | 0.86 (0.8–0.9) | 0.828 |
MET-Minute, Median (IQR) | 495.0 (70.0–990.0) | 893.0 (280.5–1188.0) | 0.008 |
Total MEDAS Score, Median (IQR) | 10.0 (8.0–11.0) | 9.0 (8.0–11.0) | 0.184 |
Framingham %, Median (IQR) | 2.6 (0.9–4.1) | 1.8 (0.7–4.6) | 0.501 |
High Risk, n (%) | 0 (0.0) | 0 (0.0) | 1.000 |
Intermediate Risk, n (%) | 6 (16.2) | 3 (8.1) | 0.286 |
Low Risk, n (%) | 31 (83.8) | 34 (91.9) | 0.286 |
Clinical-Laboratory Characteristics | |||
Progression of RA, Months, Median (IQR) | 119 (81.2–167.9) | - | - |
Diagnostic delay, months, median (IQR) | 8.1 (5.6–16.7) | - | - |
Erosions, n (%) | 16 (40.0) | - | - |
RF > 10, n (%) | 26 (65.0) | 0 (0.0) | <0.001 |
ACPA > 20, n (%) | 31 (77.5) | 0 (0.0) | <0.001 |
High-Sensitivity CRP (mg/dL), Median (IQR) | 4.2 (2.7–7.4) | 1.7 (0.8–3.1) | 0.002 |
ESR (mm/h), Median (IQR) | 15 (9.0–26.5) | 11 (6.6–18.5) | 0.016 |
DAS28 at Protocol, Median (IQR) | 3.06 (2.5–4.2) | - | - |
Remission-Low Activity, n (%) | 21 (53.8) | - | - |
Moderate-High Activity, n (%) | 18 (46.1) | - | - |
HAQ, Median (IQR) | 0.9 (0.2–1.6) | - | - |
Synthetic DMARDs, n (%) | 31 (77.5) | - | - |
Methotrexate, n (%) | 23 (62.2) | - | - |
Leflunomide, n (%) | 3 (8.1) | - | - |
Sulfasalazine, n (%) | 3 (8.1) | - | - |
Hydroxychloroquine, n (%) | 2 (5.4) | ||
Biologic DMARDs, n (%) | 21 (52.5) | - | - |
Anti TNF-α, n (%) | 17 (45.9) | - | - |
Jak Inhibitor, n (%) | 1 (2.7) | - | - |
Anti-IL-6, n (%) | 3 (8.1) | - | - |
Glucocorticoid at Protocol, n (%) | 13 (32.5) | - | - |
Glucocorticoid Dose at Protocol, Median (IQR) | 5 (5.0–5.0) | - | - |
Other Treatments | |||
Antihypertensive Drugs | 10 (25.0) | 9 (22.5) | 0.792 |
ACEIs, n (%) | 7 (17.5) | 7 (17.5) | 0.778 |
ARAIIs, n (%) | 3 (7.5) | 2 (5.0) | 0.462 |
Diuretics, n (%) | 5 (12.5) | 8 (20.0) | 0.370 |
Metformin, n (%) | 2 (5.0) | 3 (7.5) | 0.320 |
Insulin, n (%) | 0 (0.0) | 1 (2.5) | 0.320 |
Other Oral Antidiabetic Agents, n (%) | 0 (0.0) | 1 (2.5) | 0.320 |
Variable | RA n = 40 | Controls n = 40 | RA vs. Controls p | |||
---|---|---|---|---|---|---|
Fasting | Postprandial | Fasting | Postprandial | Fasting | Postprandial | |
Fasting Lipid Profile | ||||||
Total Cholesterol (mg/dL), Median (IQR) | 212.1 (187.0–234.2) | 202.0 (178.0–226.2) | 200.2 (176.0–227.2) | 201.0 (168.1–220.5) | 0.148 | 0.222 |
LDL Cholesterol (mg/dL), Median (IQR) | 127.0 (107.1–140.0) | 110.3 (98.5–130.0) | 116.5 (95.7–140.5) | 108.0 (83.1–128.6) | 0.229 | 0.203 |
HDL Cholesterol (mg/dL), Median (IQR) | 62.5 (54.7–76.5) | 62.2 (52.7–72.2) | 59.5 (47.7–71) | 57.1 (46.2–67.2) | 0.162 | 0.063 |
Triglycerides (mg/dL), Median (IQR) | 82.5 (66.7–113.5) | 130.0 (91.7–185.0) * | 88.5 (64.5–125.7) | 132.5 (108.2–210.4) * | 0.823 | 0.913 |
Chylomicrons (Triglycerides), Median (IQR) | 14.7 (10.3–27.4) | 42.3 (22.1–81.3) * | 16.4 (7.5–39.8) | 43.7 (31.9–84.7) * | 0.644 | 0.225 |
Chylomicrons (Cholesterol), Median (IQR) | 9.2 (6.8–13.5) | 9.2 (6.8–13.5) * | 12.3 (5.3–21.9) | 12.3 (5.3–21.9) * | 0.544 | 0.613 |
VLDL (Triglycerides), Median (IQR) | 16.0 (10.1–27.7) | 29.6 (15.5–41.1) * | 21.0 (9.8–31.5) | 24.6 (17.6–38.7) * | 0.758 | 0.859 |
VLDL (Cholesterol), Median (IQR) | 3.6 (2.3–6.1) | 3.6 (2.3–6.1) * | 5.8 (2.7–9.8) | 5.8 (2.7–9.8) * | 0.087 | 0.083 |
ApoB48, Median (IQR) | 7.4 (6.2–10.5) | 14.4 (10.8–23.2) * | 7.7 (5.5–10.3) | 12.1 (10.9–16.2) * | 0.874 | 0.042 |
ApoB Total, Median (IQR) | 96.1 (84.9–104.9) | 92.4 (80–103.4) | 98.0 (84.3–108.3) | 93.2 (77.3–102.9) | 0.950 | 0.517 |
TG/HDL Ratio, Median (IQR) | 1.2 (0.8–2.0) | 2.1 (1.3–3.5) | 1.4 (0.8–2.9) | 2.5 (1.6–4.1) | 0.597 | 0.574 |
ApoB48/TG Ratio, Median (IQR) | 0.09 (0.07–0.1) | 0.1 (0.7–0.1) | 0.08 (0.1–0.13) | 0.09 (0.7–0.1) | 0.985 | 0.326 |
Fasting Carbohydrate Profile | ||||||
Baseline Blood Sugar (mg/dL), Median (IQR) | 78.0 (74.7–83) | 80.0 (72.7–88.2) | 0.843 | 0.277 | ||
Homocysteine, Median (IQR) | 14.4 (12.8–18) | 13.5 (11.4–16.8) | 0.494 | |||
Carotid Ultrasound | ||||||
Pathologic cIMT >p90, n (%) | 10 (25.0) | 9 (22.5) | 0.555 | |||
Right cIMT (mm), Median (IQR) | 0.7 (0.6–0.8) | 0.7 (0.7–1.0) | 0.652 | |||
Left cIMT (mm), Median (IQR) | 0.66 (0.6–0.7) | 0.7 (0.64–0.78) | 0.353 | |||
Patients with Atheromatous Plaques, n (%) | 7 (18.4) | 8 (20.0) | 0.481 |
Variable | RA with IMT >p90 n = 10 | RA with IMT ≤p90 n = 30 | p Value |
---|---|---|---|
Age, Years, Median (IQR) | 55.3 (48.6–68.3) | 55.7 (53.3–61.6) | 0.900 |
Female Sex; n (%) | 6 (60.0) | 29 (96.7) | 0.002 |
Smoking | 0.818 | ||
Never, n (%) | 4 (40.0) | 11 (36.7) | |
Exsmoker, n (%) | 4 (40.0) | 15 (50.0) | |
Active Smoker, n (%) | 2 (20.0) | 4 (13.3) | |
Comorbidities | |||
Arterial Hypertension, n (%) | 3 (30.0) | 7 (23.3) | 0.673 |
Diabetes Mellitus, n (%) | 1 (10.0) | 1 (3.3) | 0.442 |
Cardiovascular Disease, n (%) | 0 (0.0) | 3 (10.0) | 0.298 |
Anthropometric Characteristics | |||
BMI (kg/m2), Median (IQR) | 27.1 (24.4–32.2) | 26.6 (24.6–29.5) | 0.700 |
Obesity, n (%) | |||
Waist Circumference, (cm), Median (IQR) | 106.5 (87–110.7) | 89 (83–103) | 0.212 |
Hip Circumference (cm), Median (IQR) | 106 (103.2–109.7) | 106.5 (102.2–112.2) | 0.941 |
Waist-Hip Index, Median (IQR) | 0.92 (0.83–1) | 0.85 (0.81–0.91) | 0.048 |
MET-Minute, Median (IQR) | 247.5 (70.0–618.7) | 594.0 (84.0–1064.0) | 0.164 |
Total MEDAS, Median (IQR) | 10. (8.7–11.0) | 10.0 (8.0–11.0) | 0.824 |
Framingham %, Median (IQR) | 4.6 (1.5–13.8) | 1.2 (0.6–3.8) | 0.039 |
Clinical-Laboratory Characteristics | |||
Time Since Diagnosis of RA, Months, Median (IQR) | 140 (93–214.4) | 113 (80–166.2) | 0.138 |
Diagnostic Delay, Months, Median (IQR) | 9.9 (5.5–18.5) | 6.9 (5.3–12.0) | 0.414 |
Erosions, n (%) | 4 (40.0) | 12 (40.0) | 0.473 |
RF > 10, n (%) | 7 (70.0) | 21 (70.0) | 1.000 |
ACPA > 20, n (%) | 8 (80.0) | 22 (73.3) | 0.473 |
High ACPA (>340), n (%) | 6 (60.0) | 10 (33.3) | 0.036 |
High-Sensitivity CRP (mg/dL), Median (IQR) | 4.4 (3.2–8.7) | 3.8 (2.5–7.5) | 0.221 |
ESR (mm/h), Median (IQR) | 12.0 (7.7–37.2) | 15.0 (9.0–26.0) | 0.839 |
DAS28 at Protocol, Median (IQR) | 3.3 (2.5–3.9) | 2.9 (2.5–4.2) | 0.644 |
HAQ, Median (IQR) | 1.3 (0.7–1.7) | 0.8 (0.2–1.6) | 0.544 |
Synthetic DMARDs, n (%) | 9 (90.0) | 22 (73.0) | 0.174 |
Methotrexate, n (%) | 5 (50.0) | 18 (60.0) | 0.580 |
Biologic DMARDs, n (%) | 4 (40.0) | 18 (60.0) | 0.271 |
Corticosteroids, n (%) | 6 (60.0) | 7 (23.3) | 0.032 |
Variable | RA with IMT >p90 n = 10 | RA with IMT ≤p90 n = 30 | RA with IMT >p90 vs. RA with IMT ≤p90 p | |||
---|---|---|---|---|---|---|
Fasting | Postprandial | Fasting | Postprandial | Fasting | Postprandial | |
Fasting Lipid Profile | ||||||
Total Cholesterol (mg/dL), Median (IQR) | 226.0 (189.5–243.2) | 204.1 (184–237.2) | 210.2 (187.2–225.7) | 200.0 (179.2–222.2) | 0.471 | 0.573 |
LDL Cholesterol (mg/dL), Median (IQR) | 138.2 (118.7–152.0) | 110.0 (107.2–130.5) | 123.5 (105.5–139.0) | 110.0 (95.5–129.7) | 0.266 | 0.647 |
HDL Cholesterol (mg/dL), Median (IQR) | 61.0 (51.2–69.7) | 57.5 (49.0–65.7) | 66.5 (56.5–77.5) | 63.5 (53.7–73.7) | 0.045 | 0.042 |
Triglycerides (mg/dL), Median (IQR) | 112.0 (82.7–17.6) | 195.0 (127.5–285.2) | 77.5 (863.5–107.2) | 116.0 (83.5–176.2) | 0.014 | 0.033 |
Chylomicrons (Triglycerides), Median (IQR) | 33.8 (14.2–57.0) * | 79.1 (25.6–167.1) * | 14.1 (9.3–23.2) | 32.7 (21.8–54.7) | 0.066 | 0.045 |
Chylomicrons (Cholesterol), Median (IQR) | 12.3 (8.6–16.1) | 15.6 (5.7–25.0) | 8.7 (6.0–11.6) | 15.3 (7.3–24.5) | 0.089 | 0.770 |
VLDL (Triglycerides), Median (IQR) | 24.2 (21.9–39.5) | 42.6 (17.3–60.0) | 14.4 (9.8–26.4) | 23.1 (13.1–39.7) | 0.022 | 0.036 |
VLDL (Cholesterol), Median (IQR) | 5.3 (3.9–9.4) | 8.2 (3.7–12.7) | 2.8 (1.9–6.0) | 3.9 (2.7–8.9) | 0.028 | 0.046 |
ApoB48, Median (IQR) | 8.5 (5.9–13.0) * | 24.3 (15.1–27.1) * | 7.7 (5.5–10.3) | 13.5 (10.5–18.2) | 0.186 | 0.017 |
ApoB Total, Median (IQR) | 102.7 (94.4–115.1) | 98.0 (87–110.8) | 94 (82.6–104.3) | 91.7 (76.1–102.6) | 0.141 | 0.100 |
Increased Postprandial Blood Lipids | ||||||
Triglycerides (mg/dL), Median (IQR) | 73.2 (24.0–134.5) | 39.9 (17.2–68.0) | 0.122 | |||
Chylomicrons (Triglycerides), Median (IQR) | 47.4 (14.6–124.1) | 21.5 (10.2–37.7) | 0.045 | |||
VLDL (Triglycerides), Median (IQR) | 12.9 (6.4–20.7) | 8.0 (3.0–16.2) | 0.424 | |||
ApoB48, median (IQR) | 12.3 (10.8–14.3) | 6.7 (3.4–8.6) | 0.002 |
Predictor | OR | 95% CI | p Value |
---|---|---|---|
Female Sex | 0.010 | 0.000–0.381 | 0.014 |
Postprandial ApoB48 * | 1.159 | 1.021–1.315 | 0.023 |
Total ApoB | 1.121 | 1.109–1.259 | 0.046 |
Dependent Variable | Predictor | B | 95% CI for B | p Value |
---|---|---|---|---|
Pathologic cIMT | Female Sex | −0.607 | −0.306 to −0.151 | <0.001 |
Postprandial ApoB48 | 0.285 | 0.002 to 0.013 | 0.002 | |
Total ApoB | 0.239 | 0.001 to 0.005 | 0.047 | |
ACPA≥340 | 0.256 | 0.018 to 0.137 | 0.018 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mena-Vázquez, N.; Rojas-Gimenez, M.; Jimenez Nuñez, F.G.; Manrique-Arija, S.; Rioja, J.; Ruiz-Limón, P.; Ureña, I.; Castro-Cabezas, M.; Valdivielso, P.; Fernández-Nebro, A. Postprandial Apolipoprotein B48 is Associated with Subclinical Atherosclerosis in Patients with Rheumatoid Arthritis. J. Clin. Med. 2020, 9, 2483. https://doi.org/10.3390/jcm9082483
Mena-Vázquez N, Rojas-Gimenez M, Jimenez Nuñez FG, Manrique-Arija S, Rioja J, Ruiz-Limón P, Ureña I, Castro-Cabezas M, Valdivielso P, Fernández-Nebro A. Postprandial Apolipoprotein B48 is Associated with Subclinical Atherosclerosis in Patients with Rheumatoid Arthritis. Journal of Clinical Medicine. 2020; 9(8):2483. https://doi.org/10.3390/jcm9082483
Chicago/Turabian StyleMena-Vázquez, Natalia, Marta Rojas-Gimenez, Francisco Gabriel Jimenez Nuñez, Sara Manrique-Arija, José Rioja, Patricia Ruiz-Limón, Inmaculada Ureña, Manuel Castro-Cabezas, Pedro Valdivielso, and Antonio Fernández-Nebro. 2020. "Postprandial Apolipoprotein B48 is Associated with Subclinical Atherosclerosis in Patients with Rheumatoid Arthritis" Journal of Clinical Medicine 9, no. 8: 2483. https://doi.org/10.3390/jcm9082483
APA StyleMena-Vázquez, N., Rojas-Gimenez, M., Jimenez Nuñez, F. G., Manrique-Arija, S., Rioja, J., Ruiz-Limón, P., Ureña, I., Castro-Cabezas, M., Valdivielso, P., & Fernández-Nebro, A. (2020). Postprandial Apolipoprotein B48 is Associated with Subclinical Atherosclerosis in Patients with Rheumatoid Arthritis. Journal of Clinical Medicine, 9(8), 2483. https://doi.org/10.3390/jcm9082483