The Role of Oral Microbiota in Intra-Oral Halitosis
Abstract
:1. Introduction
2. Classifications of Halitosis
3. Volatile Compounds
4. Microbiota Responsible for Intra-Oral Halitosis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pieniążek, A.; Pietrzak, M. Halitoza-etiologia, metody diagnostyki i leczenie. Halitosis-etiology, methods of diagnosis and treatment. J. Health Study Med. 2017, 2, 101–122. [Google Scholar]
- Anbari, F.; Ashouri Moghaddam, A.; Sabeti, E.; Khodabakhshi, A. Halitosis: Helicobacter pylori or oral factors. Helicobacter 2019, 24, e12556. [Google Scholar] [CrossRef]
- De Geest, S.; Laleman, I.; Teughels, W.; Dekeyser, C.; Quirynen, M. Periodontal diseases as a source of halitosis: A review of the evidence and treatment approaches for dentists and dental hygienists. Periodontology 2000 2016, 71, 213–227. [Google Scholar] [CrossRef]
- Kapoor, U.; Sharma, G.; Juneja, M.; Nagpal, A. Halitosis: Current concepts on etiology, diagnosis and management. Eur. J. Dent. 2016, 10, 292–300. [Google Scholar] [CrossRef]
- Seerangaiyan, K.; van Winkelhoff, A.J.; Harmsen, H.J.M.; Rossen, J.W.A.; Winkel, E.G. The tongue microbiome in healthy subjects and patients with intra-oral halitosis. J. Breath. Res. 2017, 11, 036010. [Google Scholar] [CrossRef] [PubMed]
- Veloso, D.J.; Abrão, F.; Martins, C.H.G.; Bronzato, J.D.; Gomes, B.P.F.A.; Higino, J.S.; Sampaio, F.C. Potential antibacterial and anti-halitosis activity of medicinal plants against oral bacteria. Arch. Oral Biol. 2020, 110, 104585. [Google Scholar] [CrossRef] [PubMed]
- Seemann, R.; Filippi, A.; Michaelis, S.; Lauterbach, S.; John, H.-D.; Huismann, J. Duration of effect of the mouthwash CB12 for the treatment of intra-oral halitosis: A double-blind, randomised, controlled trial. J. Breath Res. 2016, 10, 036002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumbargere Nagraj, S.; Eachempati, P.; Uma, E.; Singh, V.P.; Ismail, N.M.; Varghese, E. Interventions for managing halitosis. Cochrane Database Syst. Rev. 2019, 12, CD012213. [Google Scholar] [CrossRef] [PubMed]
- Nadanovsky, P.; Carvalho, L.B.M.; Ponce de Leon, A. Oral malodour and its association with age and sex in a general population in Brazil. Oral Dis. 2007, 13, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Nalçaci, R.; Dülgergil, T.; Oba, A.A.; Gelgör, I.E. Prevalence of breath malodour in 7–11-year-old children living in Middle Anatolia, Turkey. Community Dent. Health 2008, 25, 173–177. [Google Scholar]
- Bornstein, M.M.; Kislig, K.; Hoti, B.B.; Seemann, R.; Lussi, A. Prevalence of halitosis in the population of the city of Bern, Switzerland: A study comparing self-reported and clinical data. Eur. J. Oral Sci. 2009, 117, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, S.; Ohnuki, M.; Shinada, K.; Ueno, M.; Wright, F.A.C.; Kawaguchi, Y. Oral malodor and related factors in Japanese senior high school students. J. Sch. Health 2010, 80, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Y.; Lu, H.-X.; Feng, X.-P. Factors Associated with Halitosis in White-Collar Employees in Shanghai, China. PLoS ONE 2016, 11, e0155592. [Google Scholar] [CrossRef] [PubMed]
- Boyanova, L. Stress hormone epinephrine (adrenaline) and norepinephrine (noradrenaline) effects on the anaerobic bacteria. Anaerobe 2017, 44, 13–19. [Google Scholar] [CrossRef]
- De Lima, P.O.; Nani, B.D.; Rolim, G.S.; Groppo, F.C.; Franz-Montan, M.; Alves De Moraes, A.B.; Cogo-Müller, K.; Marcondes, F.K. Effects of academic stress on the levels of oral volatile sulfur compounds, halitosis-related bacteria and stress biomarkers of healthy female undergraduate students. J. Breath Res. 2020, 14, 036005. [Google Scholar] [CrossRef]
- Wu, J.; Cannon, R.D.; Ji, P.; Farella, M.; Mei, L. Halitosis: Prevalence, risk factors, sources, measurement and treatment—A review of the literature. Aust. Dent. J. 2020, 65, 4–11. [Google Scholar] [CrossRef]
- Calil, C.M.; Oliveira, G.M.; Cogo, K.; Pereira, A.C.; Marcondes, F.K.; Groppo, F.C. Effects of stress hormones on the production of volatile sulfur compounds by periodontopathogenic bacteria. Braz. Oral Res. 2014, 28. [Google Scholar] [CrossRef]
- Mortazavi, H.; Rahbani Nobar, B.; Shafiei, S. Drug-related Halitosis: A Systematic Review. Oral Health Prev. Dent. 2020, 18, 399–407. [Google Scholar] [CrossRef]
- Bicak, D.A. A Current Approach to Halitosis and Oral Malodor—A Mini Review. Open Dent. J. 2018, 12, 322–330. [Google Scholar] [CrossRef]
- Gokdogan, O.; Catli, T.; Ileri, F. Halitosis in otorhinolaryngology practice. Iran. J. Otorhinolaryngol. 2015, 27, 145–153. [Google Scholar]
- Miyazaki, H.; Arao, M.; Okamura, K.; Kawaguchi, Y.; Toyofuku, A.; Hoshi, K.; Yaegaki, K. Tentative classification of halitosis and its treatment needs. Niigata Dent. J. 1999, 32, 7–11. [Google Scholar]
- Tangerman, A.; Winkel, E.G. Extra-oral halitosis: An overview. J. Breath Res. 2010, 4, 017003. [Google Scholar] [CrossRef] [PubMed]
- Aydin, M.; Harvey-Woodworth, C.N. Halitosis: A new definition and classification. Br. Dent. J. 2014, 217. [Google Scholar] [CrossRef] [PubMed]
- Seemann, R.; Conceicao, M.D.; Filippi, A.; Greenman, J.; Lenton, P.; Nachnani, S.; Quirynen, M.; Roldan, S.; Schulze, H.; Sterer, N.; et al. Halitosis management by the general dental practitioner—Results of an international consensus workshop. J. Breath Res. 2014, 8, 017101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koczorowski, R.; Karpiński, T.M. Halitosis—Problem społeczny. Halitosis—A social problem. Now. Lek. 2001, 70, 657–664. [Google Scholar]
- Tangerman, A.; Winkel, E.G. Volatile Sulfur Compounds as the Cause of Bad Breath: A Review. Phosphorus Sulfur Silicon Relat. Elem. 2013, 188, 396–402. [Google Scholar] [CrossRef]
- Rani, H.; Ueno, M.; Zaitsu, T.; Furukawa, S.; Kawaguchi, Y. Factors associated with clinical and perceived oral malodor among dental students. J. Med. Dent. Sci. 2015, 62, 33–41. [Google Scholar] [CrossRef]
- AlSadhan, S.A. Self-perceived halitosis and related factors among adults residing in Riyadh, Saudi Arabia. A cross sectional study. Saudi Dent. J. 2016, 28, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Van den Velde, S.; van Steenberghe, D.; Van Hee, P.; Quirynen, M. Detection of odorous compounds in breath. J. Dent. Res. 2009, 88, 285–289. [Google Scholar] [CrossRef]
- Aylıkcı, B.U.; Colak, H. Halitosis: From diagnosis to management. J. Nat. Sci. Biol. Med. 2013, 4, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Loesche, W.J.; Kazor, C. Microbiology and treatment of halitosis. Periodontology 2000 2002, 28, 256–279. [Google Scholar] [CrossRef] [PubMed]
- van den Velde, S.; Quirynen, M.; van Hee, P.; van Steenberghe, D. Halitosis associated volatiles in breath of healthy subjects. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 853, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Madhushankari, G.S.; Yamunadevi, A.; Selvamani, M.; Mohan Kumar, K.P.; Basandi, P.S. Halitosis—An overview: Part-I—Classification, etiology and pathophysiology of halitosis. J. Pharm. Bioallied Sci. 2015, 7, S339–S343. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.Y.; Lee, B.S.; Kim, J.H.; Kim, J.J.; Jang, Y.; Choi, J.W.; Lee, D.J. Assessment of Volatile Sulfur Compounds in Adult and Pediatric Chronic Tonsillitis Patients Receiving Tonsillectomy. Clin. Exp. Otorhinolaryngol. 2018, 11, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Nani, B.D.; de Lima, P.O.; Marcondes, F.K.; Groppo, F.C.; Rolim, G.S.; de Moraes, A.B.A.; Cogo-Müller, K.; Franz-Montan, M. Changes in salivary microbiota increase volatile sulfur compounds production in healthy male subjects with academic-related chronic stress. PLoS ONE 2017, 12, e0173686. [Google Scholar] [CrossRef]
- Laleman, I.; Dekeyser, C.; Wylleman, A.; Teughels, W.; Quirynen, M. The OralChromaTM CHM-2: A comparison with the OralChromaTM CHM-1. Clin. Oral Investig. 2020. [Google Scholar] [CrossRef]
- Dinc, M.E.; Altundag, A.; Dizdar, D.; Avincsal, M.O.; Sahin, E.; Ulusoy, S.; Paltura, C. An objective assessment of halitosis in children with adenoid vegetation during pre- and post-operative period. Int. J. Pediatr. Otorhinolaryngol. 2016, 88, 47–51. [Google Scholar] [CrossRef]
- He, M.; Lu, H.; Cao, J.; Zhang, Y.; Wong, M.C.M.; Fan, J.; Ye, W. Psychological characteristics of Chinese patients with genuine halitosis. Oral Dis. 2020. [Google Scholar] [CrossRef]
- Wang, F.; Qiao, W.; Bao, B.; Wang, S.; Regenstein, J.; Shi, Y.; Wu, W.; Ma, M. Effect of IgY on Periodontitis and Halitosis Induced by Fusobacterium nucleatum. J. Microbiol. Biotechnol. 2019, 29, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Sezen Erhamza, T.; Ozdıler, F.E. Effect of rapid maxillary expansion on halitosis. Am. J. Orthod. Dentofac. Orthop. 2018, 154, 702–707. [Google Scholar] [CrossRef]
- Interscan Welcomes You to the Official Halimeter® Website. Available online: https://www.halimeter.com/ (accessed on 9 July 2020).
- van den Broek, A.M.W.T.; Feenstra, L.; de Baat, C. A review of the current literature on aetiology and measurement methods of halitosis. J. Dent. 2007, 35, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, B.L.; Sensat, M.L.; Stoltenberg, J.L. Halitosis: A review of current literature. J. Dent. Hyg. 2010, 84, 65–74. [Google Scholar] [PubMed]
- Monedeiro, F.; Milanowski, M.; Ratiu, I.-A.; Zmysłowski, H.; Ligor, T.; Buszewski, B. VOC Profiles of Saliva in Assessment of Halitosis and Submandibular Abscesses Using HS-SPME-GC/MS Technique. Molecules 2019, 24, 2977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, M.; Cataneo, R.N.; Greenberg, J.; Munawar, M.; Nachnani, S.; Samtani, S. Pilot study of a breath test for volatile organic compounds associated with oral malodor: Evidence for the role of oxidative stress. Oral Dis. 2005, 11 (Suppl. S1), 32–34. [Google Scholar] [CrossRef]
- Dadamio, J.; Van Tornout, M.; Van den Velde, S.; Federico, R.; Dekeyser, C.; Quirynen, M. A novel and visual test for oral malodour: First observations. J. Breath Res. 2011, 5, 046003. [Google Scholar] [CrossRef]
- Koczorowski, R.; Karpiński, T.M.; Hofman, J. Badanie zależności między halitosis a chorobami przyzębia. A study of the relationship between halitosis and periodontal diseases. Dent. Forum 2004, 30, 51–56. [Google Scholar]
- Mogilnicka, I.; Bogucki, P.; Ufnal, M. Microbiota and Malodor-Etiology and Management. Int. J. Mol. Sci. 2020, 21, 2886. [Google Scholar] [CrossRef]
- Murnane, S.S.; Lehocky, A.H.; Owens, P.D. Odor Thresholds for Chemicals with Established Occupational Health Standards (2nd Edition)—Knovel; American Industrial Hygiene Association: Falls Church, VA, USA, 2013. [Google Scholar]
- Odorous Substances (Osmogenes) and Odor Thresholds. Available online: https://www.lenntech.com/table.htm (accessed on 29 July 2020).
- Leonardos, G.; Kendall, D.; Barnard, N. Odor Threshold Determinations of 53 Odorant Chemicals. J. Air Pollut. Control. Assoc. 1969, 19, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Nagata, Y. Measurement of Odor Threshold by Triangle Odor Bag Method; Office of Odor, Noise and Vibration, Environmental Management Bureau, Ministry of Environment: Tokyo, Japan, 2003; pp. 118–127.
- Warenycia, M.W.; Goodwin, L.R.; Benishin, C.G.; Reiffenstein, R.J.; Francom, D.M.; Taylor, J.D.; Dieken, F.P. Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem. Pharm. 1989, 38, 973–981. [Google Scholar] [CrossRef]
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 12 July 2020).
- ChemIDplus Advanced. Chemical Information with Searchable Synonyms, Structures, and Formulas. Available online: https://chem.nlm.nih.gov/chemidplus/ (accessed on 12 July 2020).
- Safety Data Sheet. Material Name: Ammonia, Anhydrous; Mathesson Tri-Gas: Basking Ridge, NJ, USA, 2009; 11p.
- CDC—Index of Chemicals—NIOSH Publications and Products. Available online: https://www.cdc.gov/niosh/idlh/intridl4.html (accessed on 12 July 2020).
- Til, H.P.; Falke, H.E.; Prinsen, M.K.; Willems, M.I. Acute and subacute toxicity of tyramine, spermidine, spermine, putrescine and cadaverine in rats. Food Chem. Toxicol. 1997, 35, 337–348. [Google Scholar] [CrossRef]
- Safety Data Sheet Valeric Acid—Perstorp. Available online: https://www.perstorp.com/-/media/files/perstorp/msds/valeric%20acid/msds_valeric%20acid_engeu-10857.pdf (accessed on 12 July 2020).
- Suzuki, N.; Yoneda, M.; Takeshita, T.; Hirofuji, T.; Hanioka, T. Induction and inhibition of oral malodor. Mol. Oral Microbiol. 2019, 34, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Zaorska, E.; Konop, M.; Ostaszewski, R.; Koszelewski, D.; Ufnal, M. Salivary Hydrogen Sulfide Measured with a New Highly Sensitive Self-Immolative Coumarin-Based Fluorescent Probe. Molecules 2018, 23, 2241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sopapornamorn, P.; Ueno, M.; Shinada, K.; Yanagishita, M.; Kawaguchi, Y. Relationship between total salivary protein content and volatile sulfur compounds levels in malodor patients. Oral. Surg. Oral. Med. Oral Pathol. Oral Radiol. Endodontol. 2007, 103, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Sterer, N.; Rosenberg, M. Streptococcus salivarius promotes mucin putrefaction and malodor production by Porphyromonas gingivalis. J. Dent. Res. 2006, 85, 910–914. [Google Scholar] [CrossRef]
- Tanabe, S.; Grenier, D. Characterization of volatile sulfur compound production by Solobacterium moorei. Arch. Oral Biol. 2012, 57, 1639–1643. [Google Scholar] [CrossRef]
- Quirynen, M.; Dadamio, J.; van den Velde, S.; Smit, M.D.; Dekeyser, C.; Tornout, M.V.; Vandekerckhove, B. Characteristics of 2000 patients who visited a halitosis clinic. J. Clin. Periodontol. 2009, 36, 970–975. [Google Scholar] [CrossRef]
- Milella, L. The Negative Effects of Volatile Sulphur Compounds. J. Vet. Dent. 2015, 32, 99–102. [Google Scholar] [CrossRef]
- Fujimura, M.; Calenic, B.; Yaegaki, K.; Murata, T.; Ii, H.; Imai, T.; Sato, T.; Izumi, Y. Oral malodorous compound activates mitochondrial pathway inducing apoptosis in human gingival fibroblasts. Clin. Oral Investig. 2010, 14, 367–373. [Google Scholar] [CrossRef]
- Attene-Ramos, M.S.; Wagner, E.D.; Plewa, M.J.; Gaskins, H.R. Evidence that hydrogen sulfide is a genotoxic agent. Mol. Cancer Res. 2006, 4, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Yalçın Yeler, D.; Aydın, M.; Hocaoğlu, P.T.; Koraltan, M.; Özdemir, H.; Kotil, T.; Gül, M. Ultrastructural changes in epithelial cells of rats exposed to low concentration of hydrogen sulfide for 50 days. Ultrastruct. Pathol. 2016, 40, 351–357. [Google Scholar] [CrossRef]
- Karpiński, T.M. Role of Oral Microbiota in Cancer Development. Microorganisms 2019, 7, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Bian, H.; Li, X.; Wu, H.; Bi, Q.; Yan, Y.; Wang, Y. Hydrogen sulfide promotes cell proliferation of oral cancer through activation of the COX2/AKT/ERK1/2 axis. Oncol. Rep. 2016, 35, 2825–2832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpiński, T.M. The Microbiota and Pancreatic Cancer. Gastroenterol. Clin. N. Am. 2019, 48, 447–464. [Google Scholar] [CrossRef] [PubMed]
- Tiso, M.; Schechter, A.N. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. PLoS ONE 2015, 10, e0119712. [Google Scholar] [CrossRef] [Green Version]
- Ufnal, M.; Zadlo, A.; Ostaszewski, R. TMAO: A small molecule of great expectations. Nutrition 2015, 31, 1317–1323. [Google Scholar] [CrossRef]
- Ma, W.; Chen, K.; Li, Y.; Hao, N.; Wang, X.; Ouyang, P. Advances in Cadaverine Bacterial Production and Its Applications. Engineering 2017, 3, 308–317. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Nascimento, M.; Burne, R.A. Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries. Int. J. Oral Sci. 2012, 4, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Sakanaka, A.; Kuboniwa, M.; Hashino, E.; Bamba, T.; Fukusaki, E.; Amano, A. Distinct signatures of dental plaque metabolic byproducts dictated by periodontal inflammatory status. Sci. Rep. 2017, 7, 42818. [Google Scholar] [CrossRef]
- Liu, J.; Lkhagva, E.; Chung, H.-J.; Kim, H.-J.; Hong, S.-T. The Pharmabiotic Approach to Treat Hyperammonemia. Nutrients 2018, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- Awano, N.; Wada, M.; Mori, H.; Nakamori, S.; Takagi, H. Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl. Environ. Microbiol. 2005, 71, 4149–4152. [Google Scholar] [CrossRef] [Green Version]
- Romano, K.A.; Vivas, E.I.; Amador-Noguez, D.; Rey, F.E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio 2015, 6, e02481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velasquez, M.T.; Ramezani, A.; Manal, A.; Raj, D.S. Trimethylamine N-Oxide: The Good, the Bad and the Unknown. Toxins 2016, 8, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rath, S.; Heidrich, B.; Pieper, D.H.; Vital, M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome 2017, 5, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Tang, W.H.W.; Buffa, J.A.; Fu, X.; Britt, E.B.; Koeth, R.A.; Levison, B.S.; Fan, Y.; Wu, Y.; Hazen, S.L. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur. Heart J. 2014, 35, 904–910. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Slupsky, C.M. Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial-mammalian co-metabolism. J. Proteome Res. 2014, 13, 5281–5292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Codipilly, D.; Kleinberg, I. Generation of indole/skatole during malodor formation in the salivary sediment model system and initial examination of the oral bacteria involved. J. Breath Res. 2008, 2, 017017. [Google Scholar] [CrossRef]
- Garg, N.; Luzzatto-Knaan, T.; Melnik, A.V.; Caraballo-Rodríguez, A.M.; Floros, D.J.; Petras, D.; Gregor, R.; Dorrestein, P.C.; Phelan, V.V. Natural products as mediators of disease. Nat. Prod. Rep. 2017, 34, 194–219. [Google Scholar] [CrossRef]
- Takeshita, T.; Suzuki, N.; Nakano, Y.; Shimazaki, Y.; Yoneda, M.; Hirofuji, T.; Yamashita, Y. Relationship between oral malodor and the global composition of indigenous bacterial populations in saliva. Appl. Environ. Microbiol. 2010, 76, 2806–2814. [Google Scholar] [CrossRef] [Green Version]
- HOMD: Human Oral Microbiome Database. Available online: http://www.homd.org/ (accessed on 19 June 2020).
- Krishnan, K.; Chen, T.; Paster, B.J. A practical guide to the oral microbiome and its relation to health and disease. Oral Dis. 2017, 23, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.L.; Bor, B.; Agnello, M.; Shi, W.; He, X. Ecology of the Oral Microbiome: Beyond Bacteria. Trends Microbiol. 2017, 25, 362–374. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, X.; Li, H.; Ni, C.; Du, Z.; Yan, F. Human oral microbiota and its modulation for oral health. Biomed. Pharmacother. 2018, 99, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Mok, S.F.; Karuthan, C.; Cheah, Y.K.; Ngeow, W.C.; Rosnah, Z.; Yap, S.F.; Ong, H.K.A. The oral microbiome community variations associated with normal, potentially malignant disorders and malignant lesions of the oral cavity. Malays J. Pathol. 2017, 39, 1–15. [Google Scholar] [PubMed]
- Bashan, A.; Gibson, T.E.; Friedman, J.; Carey, V.J.; Weiss, S.T.; Hohmann, E.L.; Liu, Y.-Y. Universality of human microbial dynamics. Nature 2016, 534, 259–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, T.; Schloss, P.D. Dynamics and associations of microbial community types across the human body. Nature 2014, 509, 357–360. [Google Scholar] [CrossRef]
- Rautava, J.; Pinnell, L.J.; Vong, L.; Akseer, N.; Assa, A.; Sherman, P.M. Oral microbiome composition changes in mouse models of colitis. J. Gastroenterol. Hepatol. 2015, 30, 521–527. [Google Scholar] [CrossRef]
- Persson, S.; Edlund, M.B.; Claesson, R.; Carlsson, J. The formation of hydrogen sulfide and methyl mercaptan by oral bacteria. Oral Microbiol. Immunol. 1990, 5, 195–201. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, X.; Qu, Y. Biodegradation and Biotransformation of Indole: Advances and Perspectives. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef]
- Deslandes, B.; Gariépy, C.; Houde, A. Review of microbiological and biochemical effects of skatole on animal production. Livestock Prod. Sci. 2001, 71, 193–200. [Google Scholar] [CrossRef]
- Formolo, M. The Microbial Production of Methane and Other Volatile Hydrocarbons. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 113–126. ISBN 978-3-540-77587-4. [Google Scholar]
- Lan, W.; Yang, C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef]
- Huang, J.; Tang, W.; Zhu, S.; Du, M. Biosynthesis of butyric acid by Clostridium tyrobutyricum. Prep. Biochem. Biotechnol. 2018, 48, 427–434. [Google Scholar] [CrossRef]
- Lynch, K.M.; Zannini, E.; Wilkinson, S.; Daenen, L.; Arendt, E.K. Physiology of Acetic Acid Bacteria and Their Role in Vinegar and Fermented Beverages. Compr. Rev. Food Sci. Food Saf. 2019, 18, 587–625. [Google Scholar] [CrossRef] [Green Version]
- Ye, W.; Zhang, Y.; He, M.; Zhu, C.; Feng, X.-P. Relationship of tongue coating microbiome on volatile sulfur compounds in healthy and halitosis adults. J. Breath Res. 2019, 14, 016005. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.A.V.; Ueno, M.; Zaitsu, T.; Takehara, S.; Shinada, K.; Lam, P.H.; Kawaguchi, Y. Clinical trial of oral malodor treatment in patients with periodontal diseases. J. Periodont. Res. 2011, 46, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Niederauer, A.J.; Guimarães, R.A.; Oliveira, K.L.; Pires, A.R.; Demasi, A.P.; Ferreira, H.H.; Sperandio, M.; Napimoga, M.H.; Peruzzo, D.C. H2S in periodontal immuneinflammatory response and bone loss: A study in rats. Acta Odontol. Latinoam. 2019, 32, 164–171. [Google Scholar] [PubMed]
- Silva, M.F.; Nascimento, G.G.; Leite, F.R.M.; Horta, B.L.; Demarco, F.F. Periodontitis and self-reported halitosis among young adults from the 1982 Pelotas Birth Cohort. Oral Dis. 2020, 26, 843–846. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, T.; Suzuki, N.; Nakano, Y.; Yasui, M.; Yoneda, M.; Shimazaki, Y.; Hirofuji, T.; Yamashita, Y. Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production. Sci. Rep. 2012, 2, 215. [Google Scholar] [CrossRef] [Green Version]
- Demmer, R.T.; Jacobs, D.R.; Singh, R.; Zuk, A.; Rosenbaum, M.; Papapanou, P.N.; Desvarieux, M. Periodontal Bacteria and Prediabetes Prevalence in ORIGINS: The Oral Infections, Glucose Intolerance and Insulin Resistance Study. J. Dent. Res. 2015, 94, 201S–211S. [Google Scholar] [CrossRef] [Green Version]
- Tang, K.Y. Future Management and Possible Treatment of Halitosis. Available online: https://munin.uit.no/handle/10037/7626 (accessed on 21 June 2020).
- Ileri Keceli, T.; Gulmez, D.; Dolgun, A.; Tekcicek, M. The relationship between tongue brushing and halitosis in children: A randomized controlled trial. Oral Dis. 2015, 21, 66–73. [Google Scholar] [CrossRef]
- Nakano, Y.; Suzuki, N.; Kuwata, F. Predicting oral malodour based on the microbiota in saliva samples using a deep learning approach. BMC Oral Health 2018, 18, 128. [Google Scholar] [CrossRef]
- Bernardi, S.; Karygianni, L.; Filippi, A.; Anderson, A.C.; Zürcher, A.; Hellwig, E.; Vach, K.; Macchiarelli, G.; Al-Ahmad, A. Combining culture and culture-independent methods reveals new microbial composition of halitosis patients’ tongue biofilm. Microbiologyopen 2020, 9, e958. [Google Scholar] [CrossRef]
- Yitzhaki, S.; Reshef, L.; Gophna, U.; Rosenberg, M.; Sterer, N. Microbiome associated with denture malodour. J. Breath Res. 2018, 12, 027103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardi, S.; Continenza, M.A.; Al-Ahmad, A.; Karygianni, L.; Follo, M.; Filippi, A.; Macchiarelli, G. Streptococcus spp. and Fusobacterium nucleatum in tongue dorsum biofilm from halitosis patients: A fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM) study. New Microbiol. 2019, 42, 108–113. [Google Scholar] [PubMed]
- Al-Zyoud, W.; Hajjo, R.; Abu-Siniyeh, A.; Hajjaj, S. Salivary Microbiome and Cigarette Smoking: A First of Its Kind Investigation in Jordan. Int. J. Environ. Res. Public Health 2019, 17, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Chi, X.; Zhang, Q.; Chen, F.; Deng, X. Characterization of the salivary microbiome in people with obesity. PeerJ 2018, 6, e4458. [Google Scholar] [CrossRef] [Green Version]
- De Boever, E.H.; Loesche, W.J. Assessing the contribution of anaerobic microflora of the tongue to oral malodor. J. Am. Dent. Assoc. 1995, 126, 1384–1393. [Google Scholar] [CrossRef]
- Roldán, S.; Winkel, E.G.; Herrera, D.; Sanz, M.; Van Winkelhoff, A.J. The effects of a new mouthrinse containing chlorhexidine, cetylpyridinium chloride and zinc lactate on the microflora of oral halitosis patients: A dual-centre, double-blind placebo-controlled study. J. Clin. Periodontol. 2003, 30, 427–434. [Google Scholar] [CrossRef]
- Grover, H.S.; Blaggana, A.; Jain, Y.; Saini, N. Detection and measurement of oral malodor in chronic periodontitis patients and its correlation with levels of select oral anaerobes in subgingival plaque. Contemp. Clin. Dent. 2015, 6, S181–S187. [Google Scholar] [CrossRef]
- Faveri, M.; Feres, M.; Shibli, J.A.; Hayacibara, R.F.; Hayacibara, M.M.; de Figueiredo, L.C. Microbiota of the dorsum of the tongue after plaque accumulation: An experimental study in humans. J. Periodontol. 2006, 77, 1539–1546. [Google Scholar] [CrossRef]
- Ademovski, S.E.; Persson, G.R.; Winkel, E.; Tangerman, A.; Lingström, P.; Renvert, S. The short-term treatment effects on the microbiota at the dorsum of the tongue in intra-oral halitosis patients—A randomized clinical trial. Clin. Oral Investig. 2013, 17, 463–473. [Google Scholar] [CrossRef]
- Kamaraj, D.R.; Bhushan, K.S.; Laxman, V.K.; Mathew, J. Detection of odoriferous subgingival and tongue microbiota in diabetic and nondiabetic patients with oral malodor using polymerase chain reaction. Indian J. Dent. Res. 2011, 22, 260–265. [Google Scholar] [CrossRef]
- Awano, S.; Gohara, K.; Kurihara, E.; Ansai, T.; Takehara, T. The relationship between the presence of periodontopathogenic bacteria in saliva and halitosis. Int. Dent. J. 2002, 52 (Suppl. S3), 212–216. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Yamamoto, Y.; Kuboniwa, M.; Nonaka, A.; Nishida, N.; Maeda, K.; Kataoka, K.; Nagata, H.; Shizukuishi, S. Contribution of periodontal pathogens on tongue dorsa analyzed with real-time PCR to oral malodor. Microbes Infect. 2004, 6, 1078–1083. [Google Scholar] [CrossRef] [PubMed]
- Adedapo, A.H.; Kolude, B.; Dada-Adegbola, H.O.; Lawoyin, J.O.; Adeola, H.A. Targeted polymerase chain reaction-based expression of putative halitogenic bacteria and volatile sulphur compound analysis among halitosis patients at a tertiary hospital in Nigeria. Odontology 2020, 108, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Riggio, M.P.; Lennon, A.; Rolph, H.J.; Hodge, P.J.; Donaldson, A.; Maxwell, A.J.; Bagg, J. Molecular identification of bacteria on the tongue dorsum of subjects with and without halitosis. Oral Dis. 2008, 14, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Haraszthy, V.I.; Zambon, J.J.; Sreenivasan, P.K.; Zambon, M.M.; Gerber, D.; Rego, R.; Parker, C. Identification of oral bacterial species associated with halitosis. J. Am. Dent. Assoc. 2007, 138, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Zhang, Q.; Liu, X.; Zheng, S.; Ma, L.; Chen, F.; Xu, T.; Xu, B. Supragingival Plaque Microbial Community Analysis of Children with Halitosis. J. Microbiol. Biotechnol. 2016, 26, 2141–2147. [Google Scholar] [CrossRef] [Green Version]
- Kazor, C.E.; Mitchell, P.M.; Lee, A.M.; Stokes, L.N.; Loesche, W.J.; Dewhirst, F.E.; Paster, B.J. Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J. Clin. Microbiol. 2003, 41, 558–563. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Huang, S.; He, T.; Catrenich, C.; Teng, F.; Bo, C.; Chen, J.; Liu, J.; Li, J.; Song, Y.; et al. Microbial basis of oral malodor development in humans. J. Dent. Res. 2013, 92, 1106–1112. [Google Scholar] [CrossRef]
- Washio, J.; Sato, T.; Koseki, T.; Takahashi, N. Hydrogen sulfide-producing bacteria in tongue biofilm and their relationship with oral malodour. J. Med. Microbiol. 2005, 54, 889–895. [Google Scholar] [CrossRef] [Green Version]
- Oshiro, A.; Zaitsu, T.; Ueno, M.; Kawaguchi, Y. Characterization of oral bacteria in the tongue coating of patients with halitosis using 16S rRNA analysis. Acta Odontol. Scand. 2020, 1–6. [Google Scholar] [CrossRef]
- Tetz, G.; Vikina, D.; Brown, S.; Zappile, P.; Dolgalev, I.; Tsirigos, A.; Heguy, A.; Tetz, V. Draft Genome Sequence of Streptococcus halitosis sp. nov., Isolated from the Dorsal Surface of the Tongue of a Patient with Halitosis. Microbiol. Resour. Announc. 2019, 8, e01704-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group of Compounds | Compound Name | Chemical Formula | Chemical Structure | Odor Threshold (ppm) [49,50,51,52] | Toxicity in Rats LD50 (mg/kg) |
---|---|---|---|---|---|
Volatile sulfur compounds (VSC) | Hydrogen sulfide | H2S | 0.00004 | 15 [53] | |
Methyl mercaptan | CH4S | 5.1 × 10−13 | 61 (unspecified mammal species) [54] | ||
Dimethyl sulfide | C2H6S | 0.00012 | 3300 [54,55] | ||
Dimethyl disulfide | C2H6S2 | 0.00029 | 190 [54] | ||
Dimethyl trisulfide | C2H6S3 | no data | no data | ||
Allyl methyl sulfide | C4H8S | 0.00014 | no data | ||
Aromatic compounds | Pyridine | C5H5N | 0.01 | 360–891 [54,55] | |
Picoline | C6H7N | 0.0026 | 200–790 [54,55] | ||
Indole | C8H7N | 0.0003 | 1000 [54,55] | ||
Skatole | C9H9N | 0.0000056 | 3450 [54,55] | ||
Amines | Ammonia | H3N | 0.043 | 350 [56] | |
Urea | CH4N2O | no data | 567–8471 [54,55] | ||
Methylamine | CH5N | 0.00075 | 100 [54,55] | ||
Dimethylamine | C2H7N | 0.00076 | 698 [54,55,57] | ||
Trimethylamine | C3H9N | 0.00002 | 500–535 [54,55] | ||
Putrescine | C4H12N | no data | 463–2000 [54,55,58] | ||
Cadaverine | C5H14N | no data | 2000 [58] | ||
Short/medium fatty or organic acids | Acetic acid | C2H4O2 | 0.0004 | 3310 [54,55] | |
Propionic acid | C3H6O2 | 0.00099 | 2600–3500 [54,55] | ||
Butyric acid | C4H8O2 | 0.001 | 1500–2000 [54,55] | ||
Valeric acid | C5H10O | 0.000037 | 2000–4600 [59] | ||
Isovaleric acid | C5H10O | 0.000078 | 2 [54] | ||
Alcohols | Methanol | CH4O | 3.05 | 2131–7529 [54,55] | |
Ethanol | C2H6O | 0.09 | 1440–7060 [54,55] | ||
Propanol | C3H8O | 0.031 | 590–2200 [54,55] | ||
Aliphatic compounds | Cyclopropane | C3H6 | no data | no data | |
Cyclobutane | C4H8 | no data | no data | ||
Pentane | C5H12 | 1.29 | 400–>2000 [54,55] | ||
Aldehydes and ketones | Acetaldehyde | C2H4O | 0.0015 | 640–1930 [54,55] | |
Acetone | C3H6O | 0.4 | 5500–5800 [54,55,57] | ||
Acetophenone | C8H8O | 0.00024 | 815–2650 [54,55] | ||
Benzophenone | C13H10O | no data | >10,000 [54,55] |
Chemical Compound | Bacteria |
---|---|
Hydrogen sulfide from L-cysteine | Bacteroides intermedius, Bacteroides spp., Capnocytophaga ochracea, Centipeda periodontii, Eikenella corrodens, Eubacterium brachy, E. limosum, Eubacterium spp., Fusobacterium alocis, F. nucleatum, F. periodonticum, F. sulei, Peptostreptococcus anaerobius, P. micros, P. prevotii, Porphyromonas endodontalis, Propionibacterium propionicum, Selenomonas artemidis, S. dianae, S. flueggei, S. infelix, S. noxia, S. sputigena, Tannerella forsythia, Veillonella dispar, V. parvula |
Methyl mercaptan from L-methionine | Bacteroides spp., Eubacterium spp., F. nucleatum, F. periodonticum, Porphyromonas endodontalis |
Hydrogen sulfide from serum | Bacteroides gracilis, B. intermedius, B. loescheii, B. oralis, Eubacterium lentum, Eubacterium spp., F. nucleatum, Mitsuokella dentalis, Peptostreptococcus magnus, P. micros, P. prevotii, P. propionicum, Porphyromonas gingivalis, T. forsythia, Treponema denticola, V. parvula |
Methyl mercaptan from serum | P. endodontalis, P. gingivalis, T. denticola |
Bacteria Related to Intra-Oral Halitosis | Studied Population | Study Method | Reference |
---|---|---|---|
Bacteroides gracilis, B. intermedius, B. loescheii, B. oralis, Capnocytophaga ochracea, Centipeda periodontii, Eikenella corrodens, Eubacterium brachy, E. lentum, E. limosum, Fusobacterium alocis, F. nucleatum, F. periodonticum, F. sulei, Mitsuokella dentalis, Peptostreptococcus anaerobius, P. magnus, P. micros, P. prevotii, Porphyromonas endodontalis, P. gingivalis, Propionibacterium propionicum, Selenomonas artemidis, S. dianae, S. flueggei, S. infelix, S. noxia, S. sputigena, Tannerella forsythia, Treponema denticola, Veillonella dispar, V. parvula | 9 persons | Bacterial culture | [96] |
Fusobacterium sp., P. gingivalis, Prevotella intermedia | 16 IOH adults or children | Bacterial culture | [117] |
Campylobacter rectus, F. nucleatum, P. micros, P. gingivalis, P. intermedia, T. forsythia | 40 IOH patients | Anaerobic culture | [118] |
Fusobacterium sp., P. gingivalis, P. intermedia, T. forsythia | 20 IOH adults | Anaerobic culture | [119] |
P. gingivalis, P. intermedia, P. melaninogenica, P. nigrescens, Streptococcus constellatus, T. forsythia, T. denticola, V. parvula | 10 adult persons | checkerboard DNA-DNA hybridization technique | [120] |
Actinomyces israelii, A. neuii, A. odontolyticus, Aggregatibacter actinomycetemcomitans (serotype a), Atopobium parvulum, Prevotella bivia, P. disiens, P. nigrescens, Pseudomonas aeruginosa, Staphylococcus epidermis, S. constellatus, Streptococcus mitis, T. forsythia, V. parvula | 21 IOH adults | Checkerboard DNA-DNA hybridization | [121] |
F. nucleatum, P. gingivalis, T. forsythia | 30 adults | PCR | [122] |
P. gingivalis, P. intermedia, T. forsythia | 101 IOH adults | PCR | [123] |
P. gingivalis, P. intermedia, P. nigrescens, T. forsythia, T. denticola | 29 IOH patients and 10 healthy adults | Real-time PCR | [124] |
F. nucleatum, Solobacterium moorei, T. forsythia | 78 adult males | Quantitative real-time PCR | [35] |
A. actinomycetemcomitans, F. nucleatum, P. gingivalis, P. intermedia, T. denticola | 31 IOH patients and 31 healthy adults | 16S rDNA-directed PCR | [125] |
Atopobium sp., Dialister sp., Eubacterium sp., Fusobacterium nucleatum, Leptotrichia sp., Megasphaera sp., Neisseria sp., Parvimonas sp., Peptococcus sp., Peptostreptococcus sp., P. gingivalis, P. endodontalis, Prevotella sp., Selenomonas sp., Solobacterium sp., SR1 sp., Veillonella sp. | 30 IOH patients and 13 healthy persons | PCR and sequencing | [107] |
A. odontolyticus, F. periodonticum, Leptotrichia sp., Okadaella gastrococcus, Prevotella melaninogenica, S. moorei, T. forsythia | 6 IOH patients and 6 healthy adults | PCR and sequencing | [112] |
phyla Firmicutes and Fusobacteria, genera Atopobium, Campylobacter, Leptotrichia, Megasphaera, Oribacterium | 26 full dentures patients | PCR and sequencing | [113] |
A. odontolyticus, Atopobium parvulum, Lysobacter-type species, Porphyromonas sp., P. melaninogenica, P. pallens, P. veroralis, Streptococcus salivarius, S. mitis, S. oralis, V. parvula | 20 IOH patients and 12 healthy adults | PCR and DNA sequencing | [126] |
Eubacterium sp., Dialister sp., Granulicatella elegans, Porphyromonas sp., P. intermedia, Staphylococcus warneri, S. moorei | 8 IOH patients and 5 healthy adults | PCR and DNA sequencing | [127] |
Aggregatibacter sp., A. segnis, Campylobacter sp., Capnocytophaga sp., Clostridiales, Dialister sp., Leptotrichia sp., Parvimonas sp., Peptostreptococcus sp., Peptococcus sp., Prevotella sp., Selenomonas sp., SR1, Tannerella sp., TM7-3, Treponema sp. | 16 IOH patients and 10 healthy adults | 16S rRNA sequencing | [5] |
Prevotella sp., Leptotrichia sp., Actinomyces sp., Porphyromonas sp., Selenomonas sp., Selenomonas noxia, Capnocytophaga ochracea | 5 IOH children and 5 healthy | 16S rRNA sequencing | [128] |
A. parvulum, Eubacterium sulci, F. periodonticum, Dialister sp., S. moorei, Streptococcus sp., TM7-8, | 6 IOH patients and 5 healthy adults | 16S rRNA sequencing | [129] |
A. odontolyticus, Hemophilus parainfluenzae, Gemella sp., Leptotrichia wadei, Prevotella tannerae, Streptococcus sp., | 29 adults | 16S rDNA amplicon sequencing | [130] |
Actinomyces sp., Prevotella sp., Veillonella sp. | 10 adults | 16S rRNA gene sequencing | [131] |
Aggregatibacter sp., Anaerovorax sp., Bacteroidales, Butyrivibrio sp., Dialister sp., Eikenella sp., Mogibacterium sp., Moraxella sp., Peptococcus sp., Peptostreptococcaceae, RF39, Tannerella sp., Treponema sp., Veillonellaceae | 40 IOH adults | 16S rRNA sequencing | [132] |
Streptococcus halitosis sp. nov. strain VT-4 | - | 16S rRNA sequencing | [133] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hampelska, K.; Jaworska, M.M.; Babalska, Z.Ł.; Karpiński, T.M. The Role of Oral Microbiota in Intra-Oral Halitosis. J. Clin. Med. 2020, 9, 2484. https://doi.org/10.3390/jcm9082484
Hampelska K, Jaworska MM, Babalska ZŁ, Karpiński TM. The Role of Oral Microbiota in Intra-Oral Halitosis. Journal of Clinical Medicine. 2020; 9(8):2484. https://doi.org/10.3390/jcm9082484
Chicago/Turabian StyleHampelska, Katarzyna, Marcelina Maria Jaworska, Zuzanna Łucja Babalska, and Tomasz M. Karpiński. 2020. "The Role of Oral Microbiota in Intra-Oral Halitosis" Journal of Clinical Medicine 9, no. 8: 2484. https://doi.org/10.3390/jcm9082484
APA StyleHampelska, K., Jaworska, M. M., Babalska, Z. Ł., & Karpiński, T. M. (2020). The Role of Oral Microbiota in Intra-Oral Halitosis. Journal of Clinical Medicine, 9(8), 2484. https://doi.org/10.3390/jcm9082484