Using Genetics in Periodontal Disease to Justify Implant Failure in Down Syndrome Patients
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample and Groups
- -
- Patients without Down syndrome
- -
- Patients receiving treatment that could have repercussions for bone metabolism
- -
- Patients with untreated periodontal disease
2.2. Sampling and Total RNA Isolation
2.3. Functional Analysis of Expressed Genes
2.4. Statistical Analysis from the 96-Plex Card Genes
3. Results
3.1. Gene Expression Analyses
3.2. Functional Analyses of Differentially Expressed Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bartold, P.M.; Van Dyke, T.E. Host modulation: Controlling the inflammation to control the infection. J. Periodontol. 2017, 75, 317–329. [Google Scholar] [CrossRef]
- Kornman, K.S. Mapping the pathogenesis of periodontitis: A new look. J. Periodontol. 2008, 79, 1560–1568. [Google Scholar] [CrossRef]
- Berglundh, T. Guidelines 4. Peri-Implant Health, Peri-Implant Mucositis, and Peri-Implantitis. European Federation of Periodontology, New Classification of Periodontal and Peri-Implant Diseases. 2019. Available online: https://www.efp.org/fileadmin/uploads/efp/Documents/Campaigns/New_Classification/Guidance_Notes/report-04.pdf (accessed on 24 June 2019).
- Baus-Domínguez, M.; Gómez-Díaz, R.; Corcuera-Flores, J.R.; Torres-Lagares, D.; Ruiz-Villandiego, J.C.; Machuca-Portillo, G.; Gutierrez-Pérez, J.L.; Serrera-Figallo, M.A. Metallothioneins in failure of dental implants and periodontitis down syndrome patients. Genes 2019, 10, 711. [Google Scholar] [CrossRef] [Green Version]
- Baus-Domínguez, M.; Gómez-Díaz, R.; Torres-Lagares, D.; Corcuera-Flores, J.R.; Ruiz-Villandiego, J.C.; Machuca-Portillo, G.; Gutiérrez-Pérez, J.L.; Serrera-Figallo, M.A. Differential expression of inflammation-related genes in down syndrome patients with or without periodontal disease. Mediat. Inflamm. 2019, 2019, 4567106. [Google Scholar] [CrossRef]
- Corcuera-Flores, J.R.; López-Giménez, J.; López-Jiménez, J.; López-Giménez, A.; Silvestre-Rangil, J.; Machuca-Portillo, G. Four years survival and marginal bone loss of implants in patients with Down syndrome and cerebral palsy. Clin. Oral Investig. 2017, 21, 1667–1674. [Google Scholar] [CrossRef]
- Silva, C.R.S.; Biselli-Périco, J.M.; Zampieri, B.L.; Silva, W.A.; De Souza, J.E.S.; Bürger, M.C.; Golini-Bertollo, E.M.; Pavarino, E.C. Differential expression of inflammation-related genes in children with down syndrome. Mediat. Inflamm. 2016, 2016, 6985903. [Google Scholar] [CrossRef] [Green Version]
- Bassani, D.G.; Olinto, M.T.A.; Kreiger, N. Periodontal disease and perinatal outcomes: A case-control study. J. Clin. Periodontol. 2007, 34, 31–39. [Google Scholar] [CrossRef]
- Mao, D.; Epple, H.; Uthgenannt, B.; Novack, D.V.; Faccio, R. PLCγ2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J. Clin. Investig. 2006, 116, 2869–2879. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Miller, C.H.; Giannopoulou, E.; Hu, X.; Ivashkiv, L.B.; Zhao, B. RBP-J imposes a requirement for ITAM-mediated costimulation of osteoclastogenesis. J. Clin. Investig. 2014, 124, 5057–5073. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Constien, R.; Dear, N.; Katan, M.; Hanke, P.; Bunney, T.D.; Kunder, S.; Quintanilla-Martinez, L.; Huffstadt, U.; Schröder, A.; et al. Autoimmunity and inflammation due to a gain-of-function mutation in phospholipase Cγ2 that specifically increases external Ca2+ entry. Immunity 2005, 22, 451–465. [Google Scholar] [CrossRef] [Green Version]
- Weber, K.L.; Doucet, M.; Shaner, A.; Hsu, N.; Huang, D.; Fogel, J.; Kominsky, S.L. MIP-1δ activates NFATc1 and enhances osteoclastogenesis: Involvement of both PLCγ2 and NFκB signaling. PLoS ONE 2012, 7, e40799. [Google Scholar] [CrossRef] [Green Version]
- Niu, C.; Xiao, F.; Yuan, K.; Hu, X.; Lin, W.; Ma, R.; Zhang, X.; Huang, Z. Nardosinone suppresses RANKL-induced osteoclastogenesis and attenuates lipopolysaccharide-induced alveolar bone resorption. Front. Pharmacol. 2017, 8, 626. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-M.; Park, H.; Noh, A.L.S.M.; Kang, J.-H.; Chen, L.; Zheng, T.; Lee, J.; Ji, S.; Jang, C.; Shin, C.S.; et al. 5-Lipoxygenase mediates RANKL-induced osteoclast formation via the cysteinyl leukotriene receptor 1. J. Immunol. 2012, 189, 5284–5292. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Ting, Z.; Moon, M.; Sim, J.; Lee, J.; Doh, K.; Hong, S.; Cui, M.; Choi, S.; Chang, H.W.; et al. 5-Lipoxygenase inhibitors suppress RANKL-induced osteoclast formation via NFATc1 expression. Bioorg. Med. Chem. 2015, 23, 7069–7078. [Google Scholar] [CrossRef]
- Lopes, D.E.M.; Jabr, C.L.; Dejani, N.N.; Saraiva, A.C.; de Aquino, S.G.; Medeiros, A.I.; Junior, C.R. Inhibition of 5-lipoxygenase (5-Lo) attenuates inflammation and bone resorption in lipopolysaccharide (Lps)-induced periodontal disease. J. Periodontol. 2017, 5, 1–18. [Google Scholar] [CrossRef]
- Madeira, M.F.M.; Queiroz-Junior, C.M.; Corrêa, J.D.; Werneck, S.M.C.; Machado, F.S.; Cunha, T.M.; Garlet, G.P.; Teixeira, M.M.; Silva, T.A.; Souza, D.G. The role of 5-lipoxygenase in Aggregatibacter actinomycetemcomitans induced alveolar bone loss. J. Clin. Periodontol. 2017, 44, 793–802. [Google Scholar] [CrossRef]
- Hikiji, H.; Ishii, S.; Yokomizo, T.; Takato, T.; Shimizu, T. A distinctive role of the leukotriene B 4 receptor BLT1 in osteoclastic activity during bone loss. Proc. Natl. Acad. Sci. USA 2009, 106, 21294–21299. [Google Scholar] [CrossRef] [Green Version]
- Dixit, N.; Wu, D.J.; Belgacem, Y.H.; Borodinsky, L.N.; Gershwin, M.E.; Adamopoulos, I.E. Leukotriene B4 activates intracellular calcium and augments human osteoclastogenesis. Arthritis Res. Ther. 2014, 16, 496. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ding, L.; Wang, Y.; Li, Z.; Wang, Q.; Zhao, Z.; Zhao, S.; Wang, H.; Wu, C.; Mao, N.; et al. Skeletal stem cell-mediated suppression on inflammatory osteoclastogenesis occurs via concerted action of cell adhesion molecules and osteoprotegerin. Stem Cells Transl. Med. 2020, 9, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.; Zhao, X.; Zhang, L.; Zhang, J.; L’Huillier, A.; Ling, W.; Roberts, A.I.; Le, A.D.; Shi, S.; Shao, C.; et al. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J. Immunol. 2010, 184, 2321–2328. [Google Scholar] [CrossRef]
- Wu, Y.; Raymond, B.; Goossens, P.L.; Njamkepo, E.; Guiso, N.; Paya, M.; Touqui, L. Type-IIA secreted phospholipase A2 is an endogenous antibiotic-like protein of the host. Biochimie 2010, 92, 583–587. [Google Scholar] [CrossRef]
- Weiss, J.P. Molecular determinants of bacterial sensitivity and resistance to mammalian Group IIA phospholipase A2. Biochim. Biophys. Acta Biomembr. 2015, 1848, 3072–3077. [Google Scholar] [CrossRef] [Green Version]
- Dore, E.; Boilard, E. Roles of secreted phospholipase A2 group IIA in inflammation and host defense. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 789–802. [Google Scholar] [CrossRef]
- Al-Attar, A.; Alimova, Y.; Kirakodu, S.; Kozal, A.; Novak, M.J.; Stromberg, A.J.; Orraca, L.; González-Martínez, J.; Martinez, M.; Ebersole, J.L.; et al. Activation of Notch-1 in oral epithelial cells by P. gingivalis triggers the expression of the antimicrobial protein PLA2-IIA. Mucosal Immunol. 2018, 11, 1047–1059. [Google Scholar] [CrossRef]
- Koduri, R.S.; Grönroos, J.O.; Laine, V.J.O.; Le Calvez, C.; Lambeau, G.; Nevalainen, T.J.; Gelb, M.H. Bactericidal properties of human and murine groups I, II, V, X, and XII secreted phospholipases A 2. J. Biol. Chem. 2002, 277, 5849–5857. [Google Scholar] [CrossRef] [Green Version]
18Sª | GAPDHª | HPRT1ª | GUSBª | A2M | ADRB1 | ADRB2 | ALOX12 | ALOX5 | ANXA1 | ANXA3 | ANXA5 |
---|---|---|---|---|---|---|---|---|---|---|---|
KLK3 | BDKRB1 | BDKRB2 | CACNA1C | CACNA1D | CACNA2D1 | CACNB2 | CACNB4 | CASP1 | CD40 | CD40LG | CES1 |
LTB4R | MAPK14 | NR3C1 | HPGD | HRH1 | HRH2 | HTR3A | ICAM1 | IL1R1 | AL2RA | IL2RB | IL2RG |
IL13 | ITGAL | ITGAM | ITGB1 | KTGB2 | KLK1 | KLK2 | KLKB1 | KNG1 | LTA4H | LTC4S | MC2R |
NFKB1 | NOS2 | PDE4A | PDE4B | PDE4C | PDE4D | PLA2G1B | PLA2G2A | PLA2G5 | PLCB2 | PLCB3 | PLCB4 |
PLCD1 | PLCG1 | PLCG2 | MAPK1 | MAPK3 | MAPK8 | PTAFR | PTGDR | PTGER2 | PTGER3 | PTGFR | PTGIR |
PTGIS | PTGS1 | PTGS2 | TBXA2R | TBXAS1 | TNF | TNFRSF1A | TNFRSF1B | VCAM1 | IL1R2 | PLA2G7 | PLA2G10 |
PLA2G4C | IL1RL1 | HTR3B | TNFSF13B | CYSLTR1 | HRH3 | PLA2G2D | IL1RAPL2 | KLK14 | PLCE1 | KLK15 | LTB4R |
GENE | GENE ID - OMIM | GENE NAME | PD+IR+ AVG (Log2) | PD+IR- AVG (Log2) | PD+IR+ Standard Deviation | PD+IR- Standard Deviation | Fold Change | p-Value | Chromosome |
---|---|---|---|---|---|---|---|---|---|
PLCG2 | * 600220 | Phospholipase c, gamma-2 | 12.32 | 11.85 | 0.41 | 0.39 | 1.39 | 0.0333 | chr16 |
ALOX5 | * 152390 | Arachidonate 5-lipoxygenase | 11.24 | 10.29 | 0.6 | 0.9 | 1.94 | 0.03 | chr10 |
LTA4H | * 151570 | Leukotriene a4 hydrolase | 14.11 | 12.76 | 0.81 | 0.67 | 2.55 | 0.0081 | chr12 |
VCAM1 | * 192225 | Vascular cell adhesion molecule 1 | 5.51 | 6.27 | 0.22 | 0.48 | −1.69 | 0.0182 | chr1 |
PLA2G2A | * 172411 | Phospholipase A2, group IIa | 3.95 | 4.74 | 0.27 | 0.49 | −1.73 | 0.0034 | chr1 |
PLA2G10 | * 603603 | Phospholipase A2, group X | 5.51 | 6.02 | 0.21 | 0.46 | −1.42 | 0.047 | chr16 |
GENE | PATHWAYS (KEGG) | p-VALUE | FOLD CHANGE | |
---|---|---|---|---|
PLCG2 | ko04020 | Calcium signalling pathway | 0.0333 | 1.39 |
ko04064 | NF-kappa B signalling pathway | |||
ko04380 | Osteoclast differentiation | |||
ALOX5 | ko00590 | Arachidonic acid metabolism | 0.03 | 1.94 |
ko01100 | Metabolic pathways | |||
LTA4H | ko00590 | Arachidonic acid metabolism | 0.0081 | 2.55 |
ko01100 | Metabolic pathways | |||
VCAM1 | ko04064 | NF-kappa B signalling pathway | 0.0182 | −1.69 |
ko04514 | Cell adhesion molecules (CAMs) | |||
ko04668 | TNF signalling pathway | |||
ko04670 | Leukocyte transendothelial migration | |||
PLA2G2A | hsa00564 | Glycerophospholipid metabolism | 0.0034 | −1.73 |
hsa00565 | Ether lipid metabolism | |||
hsa00590 | Arachidonic acid metabolism | |||
hsa00591 | Linoleic acid metabolism | |||
hsa00592 | alpha-Linolenic acid metabolism | |||
hsa01100 | Metabolic pathways | |||
PLA2G10 | hsa00564 | Glycerophospholipid metabolism | 0.047 | −1.42 |
hsa00565 | Ether lipid metabolism | |||
hsa00590 | Arachidonic acid metabolism | |||
hsa00591 | Linoleic acid metabolism | |||
hsa00592 | alpha-Linolenic acid metabolism | |||
hsa01100 | Metabolic pathways |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baus-Domínguez, M.; Gómez-Díaz, R.; Corcuera-Flores, J.-R.; Torres-Lagares, D.; Ruiz-Villandiego, J.-C.; Machuca-Portillo, G.; Gutiérrez-Pérez, J.-L.; Serrera-Figallo, M.-A. Using Genetics in Periodontal Disease to Justify Implant Failure in Down Syndrome Patients. J. Clin. Med. 2020, 9, 2525. https://doi.org/10.3390/jcm9082525
Baus-Domínguez M, Gómez-Díaz R, Corcuera-Flores J-R, Torres-Lagares D, Ruiz-Villandiego J-C, Machuca-Portillo G, Gutiérrez-Pérez J-L, Serrera-Figallo M-A. Using Genetics in Periodontal Disease to Justify Implant Failure in Down Syndrome Patients. Journal of Clinical Medicine. 2020; 9(8):2525. https://doi.org/10.3390/jcm9082525
Chicago/Turabian StyleBaus-Domínguez, Maria, Raquel Gómez-Díaz, Jose-Ramón Corcuera-Flores, Daniel Torres-Lagares, José-Cruz Ruiz-Villandiego, Guillermo Machuca-Portillo, José-Luis Gutiérrez-Pérez, and María-Angeles Serrera-Figallo. 2020. "Using Genetics in Periodontal Disease to Justify Implant Failure in Down Syndrome Patients" Journal of Clinical Medicine 9, no. 8: 2525. https://doi.org/10.3390/jcm9082525
APA StyleBaus-Domínguez, M., Gómez-Díaz, R., Corcuera-Flores, J. -R., Torres-Lagares, D., Ruiz-Villandiego, J. -C., Machuca-Portillo, G., Gutiérrez-Pérez, J. -L., & Serrera-Figallo, M. -A. (2020). Using Genetics in Periodontal Disease to Justify Implant Failure in Down Syndrome Patients. Journal of Clinical Medicine, 9(8), 2525. https://doi.org/10.3390/jcm9082525