General Overview of Nontuberculous Mycobacteria Opportunistic Pathogens: Mycobacterium avium and Mycobacterium abscessus
Abstract
:1. Introduction
2. Mycobacterium avium
2.1. General Characteristics
2.2. Vulnerable Populations to Mycobacterium avium Complex (MAC) Infections
2.3. Pathogenesis of Mycobacterium Avium/MAC
2.3.1. Invasion and Adherence of Mucosal surfaces
2.3.2. Interaction with Phagocytes
2.3.3. Host Defense and Immune Response
2.4. Treatment of Mycobacterium avium/MAC Infections
2.4.1. Pulmonary MAC Infections
2.4.2. Disseminated MAC Infection
2.4.3. MAC Lymphadenitis
3. Mycobacterium abscessus
3.1. General Characteristics
3.2. Vulnerable Populations to Mycobacterium abscessus Infections
3.3. Pathogenesis of Mycobacterium abscessus
3.3.1. The Relation of Morphotypes and Pathogenesis
3.3.2. Host Immune Response
3.4. Treatment of Mycobacterium abscessus Infections
4. Diagnosis of NTM Lung Disease
5. Prevention
6. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Faria, S.; Joao, I.; Jordao, L. General Overview on Nontuberculous Mycobacteria, Biofilms, and Human Infection. Available online: https://www.hindawi.com/journals/jpath/2015/809014/ (accessed on 16 April 2020).
- Brode, S.K.; Daley, C.L.; Marras, T.K. The epidemiologic relationship between tuberculosis and non-tuberculous mycobacterial disease: A systematic review. Int. J. Tuberc. Lung Dis. 2014, 18, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Prince, D.S.; Peterson, D.D.; Steiner, R.M.; Gottlieb, J.E.; Scott, R.; Israel, H.L.; Figueroa, W.G.; Fish, J.E. Infection with Mycobacterium avium complex in patients without predisposing conditions. N. Engl. J. Med. 1989, 321, 863–868. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.T.; Inamdar, L.; O’Riordain, D.; Schweiger, M.; Watson, J.P. Nontuberculous mycobacteria in non-HIV patients: Epidemiology, treatment and response. Eur. Respir. J. 2004, 23, 741–746. [Google Scholar] [CrossRef] [Green Version]
- Griffith, D.E.; Aksamit, T.; Brown-Elliott, B.A.; Catanzaro, A.; Daley, C.; Gordin, F.; Holland, S.M.; Horsburgh, R.; Huitt, G.; Iademarco, M.F.; et al. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 2007, 175, 367–416. [Google Scholar] [CrossRef]
- Rindi, L.; Garzelli, C. Genetic diversity and phylogeny of Mycobacterium avium. Infect. Genet. Evol. 2014, 21, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Lecorche, E.; Haenn, S.; Mougari, F.; Kumanski, S.; Veziris, N.; Benmansour, H.; Raskine, L.; Moulin, L.; Cambau, E.; Aubry, A.; et al. Comparison of methods available for identification of Mycobacterium chimaera. Clin. Microbiol. Infect. 2018, 24, 409–413. [Google Scholar] [CrossRef] [Green Version]
- Perkins, K.M. Mycobacterium chimaera Contamination of Heater-Cooler Devices Used in Cardiac Surgery—United States. MMWR Morb. Mortal. Wkly. Rep. 2016, 65. [Google Scholar] [CrossRef] [Green Version]
- Frothingham, R.; Wilson, K.H. Sequence-based differentiation of strains in the Mycobacterium avium complex. J. Bacteriol. 1993, 175, 2818–2825. [Google Scholar] [CrossRef] [Green Version]
- Tortoli, E.; Rindi, L.; Garcia, M.J.; Chiaradonna, P.; Dei, R.; Garzelli, C.; Kroppenstedt, R.M.; Lari, N.; Mattei, R.; Mariottini, A.; et al. Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. nov. Int. J. Syst. Evol. Microbiol. 2004, 54, 1277–1285. [Google Scholar] [CrossRef]
- Schweickert, B.; Goldenberg, O.; Richter, E.; Göbel, U.B.; Petrich, A.; Buchholz, P.; Moter, A. Occurrence and Clinical Relevance of Mycobacterium chimaera sp. nov., Germany. Emerg. Infect. Dis. 2008, 14, 1443–1446. [Google Scholar] [CrossRef]
- Buchacz, K.; Baker, R.K.; Palella, F.J.; Chmiel, J.S.; Lichtenstein, K.A.; Novak, R.M.; Wood, K.C.; Brooks, J.T.; HOPS Investigators. AIDS-defining opportunistic illnesses in US patients, 1994–2007: A cohort study. AIDS Lond. Engl. 2010, 24, 1549–1559. [Google Scholar] [CrossRef]
- Karakousis, P.C.; Moore, R.D.; Chaisson, R.E. Mycobacterium avium complex in patients with HIV infection in the era of highly active antiretroviral therapy. Lancet Infect. Dis. 2004, 4, 557–565. [Google Scholar] [CrossRef]
- Ayele, W.Y.; Bartos, M.; Svastova, P.; Pavlik, I. Distribution of Mycobacterium avium subsp. paratuberculosis in organs of naturally infected bull-calves and breeding bulls. Vet. Microbiol. 2004, 103, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Whittington, R.J.; Windsor, P.A. In utero infection of cattle with Mycobacterium avium subsp. paratuberculosis: A critical review and meta-analysis. Vet. J. Lond. Engl. 1997 2009, 179, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, I.; Myhill, D.; Aliyu, S.H.; Hunter, P.R. Detection of Mycobacterium avium subspecies paratuberculosis from patients with Crohn’s disease using nucleic acid-based techniques: A systematic review and meta-analysis. Inflamm. Bowel Dis. 2008, 14, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Thegerström, J.; Marklund, B.-I.; Hoffner, S.; Axelsson-Olsson, D.; Kauppinen, J.; Olsen, B. Mycobacterium avium with the bird type IS1245 RFLP profile is commonly found in wild and domestic animals, but rarely in humans. Scand. J. Infect. Dis. 2005, 37, 15–20. [Google Scholar] [CrossRef]
- Schrenzel, M.; Nicolas, M.; Witte, C.; Papendick, R.; Tucker, T.; Keener, L.; Sutherland-Smith, M.; Lamberski, N.; Orndorff, D.; Heckard, D.; et al. Molecular epidemiology of Mycobacterium avium subsp. avium and Mycobacterium intracellulare in captive birds. Vet. Microbiol. 2008, 126, 122–131. [Google Scholar] [CrossRef]
- Matthews, P.R.; McDiarmid, A. The production in bovine calves of a disease resembling paratuberculosis with a Mycobacterium sp isolated from a woodpigeon (Columba palumbus L). Vet. Rec. 1979, 104, 286. [Google Scholar] [CrossRef]
- Pathogenesis of Nontuberculous Mycobacterial Infections-UpToDate. Available online: https://www-uptodate-com.proxy.westernu.edu/contents/pathogenesis-of-nontuberculous-mycobacterial-infections?sectionName=Mycobacterium%20avium%20complex&topicRef=5344&anchor=H3&source=see_link#H3 (accessed on 28 April 2020).
- Kartalija, M.; Ovrutsky, A.R.; Bryan, C.L.; Pott, G.B.; Fantuzzi, G.; Thomas, J.; Strand, M.J.; Bai, X.; Ramamoorthy, P.; Rothman, M.S.; et al. Patients with nontuberculous mycobacterial lung disease exhibit unique body and immune phenotypes. Am. J. Respir. Crit. Care Med. 2013, 187, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Inderlied, C.B.; Kemper, C.A.; Bermudez, L.E. The Mycobacterium avium complex. Clin. Microbiol. Rev. 1993, 6, 266–310. [Google Scholar] [CrossRef]
- Damsker, B.; Bottone, E.J. Mycobacterium avium-Mycobacterium intracellulare from the intestinal tracts of patients with the acquired immunodeficiency syndrome: Concepts regarding acquisition and pathogenesis. J. Infect. Dis. 1985, 151, 179–181. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, S.D.; Byrd, L.T.; Southern, P.M.; Jockusch, J.D.; Cal, S.X.; Wynne, B.A. Incidence of Mycobacterium avium-intracellulare complex bacteremia in human immunodeficiency virus-positive patients. J. Infect. Dis. 1992, 165, 1082–1085. [Google Scholar] [CrossRef] [PubMed]
- Al-Mahruqi, S.H.; van Ingen, J.; Al-Busaidy, S.; Boeree, M.J.; Al-Zadjali, S.; Patel, A.; Dekhuijzen, P.N.R.; van Soolingen, D. Clinical Relevance of Nontuberculous Mycobacteria, Oman. Emerg. Infect. Dis. 2009, 15, 292–294. [Google Scholar] [CrossRef] [PubMed]
- Oloya, J.; Opuda-Asibo, J.; Kazwala, R.; Demelash, A.B.; Skjerve, E.; Lund, A.; Johansen, T.B.; Djonne, B. Mycobacteria causing human cervical lymphadenitis in pastoral communities in the Karamoja region of Uganda. Epidemiol. Infect. 2008, 136, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Casanova, J.-L.; Abel, L. Genetic dissection of immunity to mycobacteria: The human model. Annu. Rev. Immunol. 2002, 20, 581–620. [Google Scholar] [CrossRef] [PubMed]
- Skamene, E. Genetic control of susceptibility to infections with intracellular pathogens. Pathol. Biol. 1998, 46, 689–692. [Google Scholar]
- Lake, M.A.; Ambrose, L.R.; Lipman, M.C.I.; Lowe, D.M. “Why me, why now?” Using clinical immunology and epidemiology to explain who gets nontuberculous mycobacterial infection. BMC Med. 2016, 14, 54. [Google Scholar] [CrossRef] [Green Version]
- Hambleton, S.; Salem, S.; Bustamante, J.; Bigley, V.; Boisson-Dupuis, S.; Azevedo, J.; Fortin, A.; Haniffa, M.; Ceron-Gutierrez, L.; Bacon, C.M.; et al. IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 2011, 365, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Bogunovic, D.; Byun, M.; Durfee, L.A.; Abhyankar, A.; Sanal, O.; Mansouri, D.; Salem, S.; Radovanovic, I.; Grant, A.V.; Adimi, P.; et al. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science 2012, 337, 1684–1688. [Google Scholar] [CrossRef] [Green Version]
- Collin, M.; Dickinson, R.; Bigley, V. Haematopoietic and immune defects associated with GATA2 mutation. Br. J. Haematol. 2015, 169, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Spinner, M.A.; Sanchez, L.A.; Hsu, A.P.; Shaw, P.A.; Zerbe, C.S.; Calvo, K.R.; Arthur, D.C.; Gu, W.; Gould, C.M.; Brewer, C.C.; et al. GATA2 deficiency: A protean disorder of hematopoiesis, lymphatics, and immunity. Blood 2014, 123, 809–821. [Google Scholar] [CrossRef] [Green Version]
- Okada, S.; Markle, J.G.; Deenick, E.K.; Mele, F.; Averbuch, D.; Lagos, M.; Alzahrani, M.; Al-Muhsen, S.; Halwani, R.; Ma, C.S.; et al. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 2015, 349, 606–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deffert, C.; Cachat, J.; Krause, K.-H. Phagocyte NADPH oxidase, chronic granulomatous disease and mycobacterial infections. Cell. Microbiol. 2014, 16, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Winthrop, K.L.; Baxter, R.; Liu, L.; Varley, C.D.; Curtis, J.R.; Baddley, J.W.; McFarland, B.; Austin, D.; Radcliffe, L.; Suhler, E.B.; et al. Mycobacterial diseases and antitumour necrosis factor therapy in USA. Ann. Rheum. Dis. 2013, 72, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Longworth, S.A.; Vinnard, C.; Lee, I.; Sims, K.D.; Barton, T.D.; Blumberg, E.A. Risk factors for nontuberculous mycobacterial infections in solid organ transplant recipients: A case-control study. Transpl. Infect. Dis. J. Transplant. Soc. 2014, 16, 76–83. [Google Scholar] [CrossRef]
- Bermudez, L.E.; Wagner, D.; Sosnowska, D. Mechanisms of Mycobacterium Avium Pathogenesis. In Inflammation; Górski, A., Krotkiewski, H., Zimecki, M., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 153–166. ISBN 978-94-015-9702-9. [Google Scholar]
- Bermudez, L.E.; Petrofsky, M.; Kolonoski, P.; Young, L.S. An animal model of Mycobacterium avium complex disseminated infection after colonization of the intestinal tract. J. Infect. Dis. 1992, 165, 75–79. [Google Scholar] [CrossRef]
- McGarvey, J.; Bermudez, L.E. Pathogenesis of nontuberculous mycobacteria infections. Clin. Chest Med. 2002, 23, 569–583. [Google Scholar] [CrossRef]
- Middleton, A.M.; Chadwick, M.V.; Nicholson, A.G.; Dewar, A.; Groger, R.K.; Brown, E.J.; Wilson, R. The role of Mycobacterium avium complex fibronectin attachment protein in adherence to the human respiratory mucosa. Mol. Microbiol. 2000, 38, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Menozzi, F.D.; Bischoff, R.; Fort, E.; Brennan, M.J.; Locht, C. Molecular characterization of the mycobacterial heparin-binding hemagglutinin, a mycobacterial adhesin. Proc. Natl. Acad. Sci. USA 1998, 95, 12625–12630. [Google Scholar] [CrossRef] [Green Version]
- Bermudez, L.E.; Young, L.S. Factors affecting invasion of HT-29 and HEp-2 epithelial cells by organisms of the Mycobacterium avium complex. Infect. Immun. 1994, 62, 2021–2026. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Goodman, J.R.; Petrofsky, M.; Bermudez, L.E. Mycobacterium avium infection of gut mucosa in mice associated with late inflammatory response and intestinal cell necrosis. J. Med. Microbiol. 1998, 47, 725–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangari, F.J.; Petrofsky, M.; Bermudez, L.E. Mycobacterium avium infection of epithelial cells results in inhibition or delay in the release of interleukin-8 and RANTES. Infect. Immun. 1999, 67, 5069–5075. [Google Scholar] [CrossRef] [Green Version]
- Sangari, F.J.; Goodman, J.; Bermudez, L.E. Mycobacterium avium enters intestinal epithelial cells through the apical membrane, but not by the basolateral surface, activates small GTPase Rho and, once within epithelial cells, expresses an invasive phenotype. Cell. Microbiol. 2000, 2, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Falkinham, J.O.; Norton, C.D.; LeChevallier, M.W. Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other Mycobacteria in drinking water distribution systems. Appl. Environ. Microbiol. 2001, 67, 1225–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bermudez, L.E.; Goodman, J. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect. Immun. 1996, 64, 1400–1406. [Google Scholar] [CrossRef] [Green Version]
- Fenton, M.J.; Riley, L.W.; Schlesinger, L.S. Receptor-Mediated Recognition of Mycobacterium tuberculosis by Host Cells. Tuberc. Tuber. Bacillus 2005, 405–426. [Google Scholar]
- Bermudez, L.E.; Goodman, J.; Petrofsky, M. Role of complement receptors in uptake of mycobacterium avium by macrophages in vivo: Evidence from studies using cd18-deficient mice. Infect. Immun. 1999, 67, 4912–4916. [Google Scholar] [CrossRef] [Green Version]
- Frehel, C.; de Chastellier, C.; Lang, T.; Rastogi, N. Evidence for inhibition of fusion of lysosomal and prelysosomal compartments with phagosomes in macrophages infected with pathogenic Mycobacterium avium. Infect. Immun. 1986, 52, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Crowle, A.J.; Dahl, R.; Ross, E.; May, M.H. Evidence that vesicles containing living, virulent Mycobacterium tuberculosis or Mycobacterium avium in cultured human macrophages are not acidic. Infect. Immun. 1991, 59, 1823–1831. [Google Scholar] [CrossRef] [Green Version]
- Sturgill-Koszycki, S.; Schlesinger, P.H.; Chakraborty, P.; Haddix, P.L.; Collins, H.L.; Fok, A.K.; Allen, R.D.; Gluck, S.L.; Heuser, J.; Russell, D.G. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 1994, 263, 678–681. [Google Scholar] [CrossRef]
- Oh, Y.K.; Straubinger, R.M. Intracellular fate of Mycobacterium avium: Use of dual-label spectrofluorometry to investigate the influence of bacterial viability and opsonization on phagosomal pH and phagosome-lysosome interaction. Infect. Immun. 1996, 64, 319–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guérin, I.; de Chastellier, C. Pathogenic mycobacteria disrupt the macrophage actin filament network. Infect. Immun. 2000, 68, 2655–2662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bermudez, L.E.; Young, L.S. Natural killer cell-dependent mycobacteriostatic and mycobactericidal activity in human macrophages. J. Immunol. Baltim. Md 1950 1991, 146, 265–270. [Google Scholar]
- Bermudez, L.E.M.; Kolonoski, P.; Young, L.S. Natural killer cell activity and macrophage-dependent inhibition of growth or killing of mycobacterium avium complex in a mouse model. J. Leukoc. Biol. 1990, 47, 135–141. [Google Scholar] [CrossRef]
- Harshan, K.V.; Gangadharam, P.R. In vivo depletion of natural killer cell activity leads to enhanced multiplication of Mycobacterium avium complex in mice. Infect. Immun. 1991, 59, 2818–2821. [Google Scholar] [CrossRef] [Green Version]
- Appelberg, R.; Castro, A.G.; Pedrosa, J.; Silva, R.A.; Orme, I.M.; Minóprio, P. Role of gamma interferon and tumor necrosis factor alpha during T-cell-independent and -dependent phases of Mycobacterium avium infection. Infect. Immun. 1994, 62, 3962–3971. [Google Scholar] [CrossRef] [Green Version]
- Saunders, B.M.; Cheers, C. Inflammatory response following intranasal infection with Mycobacterium avium complex: Role of T-cell subsets and gamma interferon. Infect. Immun. 1995, 63, 2282–2287. [Google Scholar] [CrossRef] [Green Version]
- Bermudez, L.E.; Young, L.S. Recombinant granulocyte-macrophage colony-stimulating factor activates human macrophages to inhibit growth or kill Mycobacterium avium complex. J. Leukoc. Biol. 1990, 48, 67–73. [Google Scholar] [CrossRef]
- Wagner, D.; Sangari, F.J.; Kim, S.; Petrofsky, M.; Bermudez, L.E. Mycobacterium avium infection of macrophages results in progressive suppression of interleukin-12 production in vitro and in vivo. J. Leukoc. Biol. 2002, 71, 80–88. [Google Scholar]
- Bermudez, L.E.; Wu, M.; Young, L.S. Interleukin-12-stimulated natural killer cells can activate human macrophages to inhibit growth of Mycobacterium avium. Infect. Immun. 1995, 63, 4099–4104. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, D.K.; Michelini-Norris, M.B.; Pearson, C.A.; Freitag, C.S.; Djeu, J.Y. Mycobacterium avium-intracellulare induces interleukin-6 from human monocytes and large granular lymphocytes. Blood 1991, 77, 2218–2224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, D.; Maser, J.; Lai, B.; Cai, Z.; Barry, C.E.; Höner Zu Bentrup, K.; Russell, D.G.; Bermudez, L.E. Elemental analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-containing phagosomes indicates pathogen-induced microenvironments within the host cell’s endosomal system. J. Immunol. Baltim. Md 1950 2005, 174, 1491–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, W.-J.; Jeong, B.-H.; Jeon, K.; Lee, N.Y.; Lee, K.S.; Woo, S.Y.; Shin, S.J.; Kwon, O.J. Clinical significance of the differentiation between mycobacterium avium and mycobacterium intracellulare in M avium complex lung disease. Chest 2012, 142, 1482–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline: Executive summary. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Haworth, C.S.; Banks, J.; Capstick, T.; Fisher, A.J.; Gorsuch, T.; Laurenson, I.F.; Leitch, A.; Loebinger, M.R.; Milburn, H.J.; Nightingale, M.; et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 2017, 72, ii1–ii64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffith, D.E.; Eagle, G.; Thomson, R.; Aksamit, T.R.; Hasegawa, N.; Morimoto, K.; Addrizzo-Harris, D.J.; O’Donnell, A.E.; Marras, T.K.; Flume, P.A.; et al. amikacin liposome inhalation suspension for treatment-refractory lung disease caused by mycobacterium avium complex (CONVERT). A prospective, open-label, randomized study. Am. J. Respir. Crit. Care Med. 2018, 198, 1559–1569. [Google Scholar] [CrossRef]
- Olivier, K.N.; Griffith, D.E.; Eagle, G.; McGinnis, J.P.; Micioni, L.; Liu, K.; Daley, C.L.; Winthrop, K.L.; Ruoss, S.; Addrizzo-Harris, D.J.; et al. Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am. J. Respir. Crit. Care Med. 2017, 195, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.K.; Park, H.Y.; Kim, D.; Jeong, B.-H.; Jeon, K.; Cho, J.H.; Kim, H.K.; Choi, Y.S.; Kim, J.; Koh, W.-J. Treatment outcomes of adjuvant resectional surgery for nontuberculous mycobacterial lung disease. BMC Infect. Dis. 2015, 15, 76. [Google Scholar] [CrossRef] [Green Version]
- Brown-Elliott, B.A.; Woods, G.L. Antimycobacterial susceptibility testing of nontuberculous mycobacteria. J. Clin. Microbiol. 2019, 57. [Google Scholar] [CrossRef]
- Wallace, R.J.; Brown, B.A.; Griffith, D.E.; Girard, W.M.; Murphy, D.T. Clarithromycin regimens for pulmonary Mycobacterium avium complex. The first 50 patients. Am. J. Respir. Crit. Care Med. 1996, 153, 1766–1772. [Google Scholar] [CrossRef]
- Tanaka, E.; Kimoto, T.; Tsuyuguchi, K.; Watanabe, I.; Matsumoto, H.; Niimi, A.; Suzuki, K.; Murayama, T.; Amitani, R.; Kuze, F. Effect of Clarithromycin Regimen for Mycobacterium avium Complex Pulmonary Disease. Am. J. Respir. Crit. Care Med. 1999, 160, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Meier, A.; Heifets, L.; Wallace, R.J.; Zhang, Y.; Brown, B.A.; Sander, P.; Böttger, E.C. Molecular mechanisms of clarithromycin resistance in Mycobacterium avium: Observation of multiple 23S rDNA mutations in a clonal population. J. Infect. Dis. 1996, 174, 354–360. [Google Scholar] [CrossRef] [Green Version]
- Meier, A.; Kirschner, P.; Springer, B.; Steingrube, V.A.; Brown, B.A.; Wallace, R.J.; Böttger, E.C. Identification of mutations in 23S rRNA gene of clarithromycin-resistant Mycobacterium intracellulare. Antimicrob. Agents Chemother. 1994, 38, 381–384. [Google Scholar] [CrossRef] [Green Version]
- Brown-Elliott, B.A.; Iakhiaeva, E.; Griffith, D.E.; Woods, G.L.; Stout, J.E.; Wolfe, C.R.; Turenne, C.Y.; Wallace, R.J. In Vitro Activity of Amikacin against Isolates of Mycobacterium avium Complex with Proposed MIC Breakpoints and Finding of a 16S rRNA Gene Mutation in Treated Isolates. J. Clin. Microbiol. 2013, 51, 3389–3394. [Google Scholar] [CrossRef] [Green Version]
- Woods, G.L.; Brown-Elliott, B.A.; Conville, P.S.; Desmond, E.P.; Hall, G.S.; Lin, G.; Pfyffer, G.E.; Ridderhof, J.C.; Siddiqi, S.H.; Wallace, R.J.; et al. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes. In CLSI Standards: Guidelines for Health Care Excellence, 2nd ed.; Clinical and Laboratory Standards Institute: Wayne, NJ, USA, 2011; ISBN 978-1-56238-746-4. [Google Scholar]
- Charles, R.; Horsburgh, J.R.; Mason, U.G., III; Farhi, D.C.; Iseman, M.D. Disseminated infection with Mycobacterium avium-intracellulare: A report of 13 cases and a review of the literature. Medicine 1985, 64, 36–48. [Google Scholar]
- Benson, C.A.; Williams, P.L.; Currier, J.S.; Holland, F.; Mahon, L.F.; MacGregor, R.R.; Inderlied, C.B.; Flexner, C.; Neidig, J.; Chaisson, R.; et al. A Prospective, Randomized Trial Examining the Efficacy and Safety of Clarithromycin in Combination with Ethambutol, Rifabutin, or Both for the Treatment of Disseminated Mycobacterium avium Complex Disease in Persons with Acquired Immunodeficiency Syndrome. Clin. Infect. Dis. 2003, 37, 1234–1243. [Google Scholar] [CrossRef] [Green Version]
- May, T.; Brel, F.; Beuscart, C.; Vincent, V.; Perronne, C.; Doco-Lecompte, T.; Saint-Marc, T.; Dautzenberg, B.; Grosset, J. Comparison of combination therapy regimens for treatment of human immunodeficiency virus-infected patients with disseminated bacteremia due to mycobacterium avium. Clin. Infect. Dis. 1997, 25, 621–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Baum, H.; Bommer, M.; Forke, A.; Holz, J.; Frenz, P.; Wellinghausen, N. Is domestic tap water a risk for infections in neutropenic patients? Infection 2010, 38, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Reuss, A.M.; Wiese-Posselt, M.; Weimann, B.; Siedler, A.; Zuschneid, I.; an der Heiden, M.; Claus, H.; von Kries, R.; Haas, W.H. Incidence rate of nontuberculous mycobacterial disease in immunocompetent children: A prospective nationwide surveillance study in germany. Pediatr. Infect. Dis. J. 2009, 28, 642–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindeboom, J.A.; Kuijper, E.J.; Bruijnesteijn van Coppenraet, E.S.; Lindeboom, R.; Prins, J.M. Surgical excision versus antibiotic treatment for nontuberculous mycobacterial cervicofacial lymphadenitis in children: A Multicenter, randomized, controlled trial. Clin. Infect. Dis. 2007, 44, 1057–1064. [Google Scholar] [CrossRef] [Green Version]
- Lindeboom, J.A. Conservative wait-and-see therapy versus antibiotic treatment for nontuberculous mycobacterial cervicofacial lymphadenitis in children. Clin. Infect. Dis. 2011, 52, 180–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chesney, P.J. Nontuberculous mycobacteria. Pediatr. Rev. 2002, 23, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Brown-Elliott, B.A.; Wallace, R.J. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin. Microbiol. Rev. 2002, 15, 716–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, L.; Li, B.; Chu, H.; Huang, D.; Zhang, Z.; Zhang, J.; Gui, T.; Xu, L.; Zhao, L.; Sun, X.; et al. Characterization of mycobacterium abscessus subtypes in shanghai of China. Medicine 2016, 95. [Google Scholar] [CrossRef] [PubMed]
- Petrini, B. Mycobacterium abscessus: An emerging rapid-growing potential pathogen. APMIS 2006, 114, 319–328. [Google Scholar] [CrossRef]
- Bryant, J.M.; Grogono, D.M.; Rodriguez-Rincon, D.; Everall, I.; Brown, K.P.; Moreno, P.; Verma, D.; Hill, E.; Drijkoningen, J.; Gilligan, P.; et al. Population-level genomics identifies the emergence and global spread of a human transmissible multidrug-resistant nontuberculous mycobacterium. Science 2016, 354, 751–757. [Google Scholar] [CrossRef] [Green Version]
- Ringuet, H.; Akoua-Koffi, C.; Honore, S.; Varnerot, A.; Vincent, V.; Berche, P.; Gaillard, J.L.; Pierre-Audigier, C. HSP65 sequencing for identification of rapidly growing mycobacteria. J. Clin. Microbiol. 1999, 37, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Adékambi, T.; Drancourt, M. Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, Soda, recA and rpoB gene sequencing. Int. J. Syst. Evol. Microbiol. 2004, 54, 2095–2105. [Google Scholar] [CrossRef]
- Adékambi, T.; Berger, P.; Raoult, D.; Drancourt, M. ’RpoB gene’ sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int. J. Syst. Evol. Microbiol. 2006, 56, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Benwill, J.L.; Wallace, R.J. Mycobacterium abscessus: Challenges in diagnosis and treatment. Curr. Opin. Infect. Dis. 2014, 27, 506–510. [Google Scholar] [CrossRef]
- Shallom, S.J.; Gardina, P.J.; Myers, T.G.; Sebastian, Y.; Conville, P.; Calhoun, L.B.; Tettelin, H.; Olivier, K.N.; Uzel, G.; Sampaio, E.P.; et al. New rapid scheme for distinguishing the subspecies of the Mycobacterium abscessus group and identifying Mycobacterium massiliense isolates with inducible clarithromycin resistance. J. Clin. Microbiol. 2013, 51, 2943–2949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastian, S.; Veziris, N.; Roux, A.-L.; Brossier, F.; Gaillard, J.-L.; Jarlier, V.; Cambau, E. Assessment of Clarithromycin Susceptibility in Strains Belonging to the Mycobacterium abscessus Group by erm(41) and rrl Sequencing. Antimicrob. Agents Chemother. 2011, 55, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Wallace, R.J.; Meier, A.; Brown, B.A.; Zhang, Y.; Sander, P.; Onyi, G.O.; Böttger, E.C. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob. Agents Chemother. 1996, 40, 1676–1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansen, M.D.; Herrmann, J.-L.; Kremer, L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat. Rev. Microbiol. 2020, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kothavade, R.J.; Dhurat, R.S.; Mishra, S.N.; Kothavade, U.R. Clinical and laboratory aspects of the diagnosis and management of cutaneous and subcutaneous infections caused by rapidly growing mycobacteria. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 161–188. [Google Scholar] [CrossRef] [PubMed]
- Falkinham, J.O. Epidemiology of infection by nontuberculous mycobacteria. Clin. Microbiol. Rev. 1996, 9, 177–215. [Google Scholar] [CrossRef] [PubMed]
- Falkinham, J.O.F., III. Ecology of Nontuberculous Mycobacteria—Where do human infections come from? Semin. Respir. Crit. Care Med. 2013, 34, 095–102. [Google Scholar] [CrossRef]
- Bryant, J.M.; Grogono, D.M.; Greaves, D.; Foweraker, J.; Roddick, I.; Inns, T.; Reacher, M.; Haworth, C.S.; Curran, M.D.; Harris, S.R.; et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: A retrospective cohort study. Lancet Lond. Engl. 2013, 381, 1551–1560. [Google Scholar] [CrossRef] [Green Version]
- Hayes, D. Mycobacterium abscessus and other nontuberculous mycobacteria: Evolving respiratory pathogens in cystic fibrosis: A case report and review. South. Med. J. 2005, 98, 657–661. [Google Scholar] [CrossRef]
- Olivier, K.N.; Weber, D.J.; Wallace, R.J.; Faiz, A.R.; Lee, J.-H.; Zhang, Y.; Brown-Elliot, B.A.; Handler, A.; Wilson, R.W.; Schechter, M.S.; et al. Nontuberculous mycobacteria. I: Multicenter prevalence study in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2003, 167, 828–834. [Google Scholar] [CrossRef]
- Sermet-Gaudelus, I.; Le Bourgeois, M.; Pierre-Audigier, C.; Offredo, C.; Guillemot, D.; Halley, S.; Akoua-Koffi, C.; Vincent, V.; Sivadon-Tardy, V.; Ferroni, A.; et al. Mycobacterium abscessus and Children with Cystic Fibrosis. Emerg. Infect. Dis. 2003, 9, 1587–1591. [Google Scholar] [CrossRef] [PubMed]
- Fauroux, B.; Delaisi, B.; Clément, A.; Saizou, C.; Moissenet, D.; Truffot-Pernot, C.; Tournier, G.; Vu Thien, H. Mycobacterial lung disease in cystic fibrosis: A prospective study. Pediatr. Infect. Dis. J. 1997, 16, 354–358. [Google Scholar] [CrossRef]
- Sanguinetti, M.; Ardito, F.; Fiscarelli, E.; La Sorda, M.; D’Argenio, P.; Ricciotti, G.; Fadda, G. Fatal pulmonary infection due to multidrug-resistant Mycobacterium abscessus in a patient with cystic fibrosis. J. Clin. Microbiol. 2001, 39, 816–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horsburgh, C.R. The Pathophysiology of Disseminated Mycobacterium avium Complex Disease in AIDS. J. Infect. Dis. 1999, 179, S461–S465. [Google Scholar] [CrossRef]
- van Ingen, J. Diagnosis of nontuberculous mycobacterial infections. Semin. Respir. Crit. Care Med. 2013, 34, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anonymous. Diagnosis and treatment of disease caused by nontuberculous mycobacteria. This official statement of the American Thoracic Society was approved by the Board of Directors, March 1997. Medical Section of the American Lung Association. Am. J. Respir. Crit. Care Med. 1997, 156, S1–S25. [Google Scholar]
- Burke, D.S.; Ullian, R.B. Megaesophagus and pneumonia associated with Mycobacterium chelonei. A case report and a literature review. Am. Rev. Respir. Dis. 1977, 116, 1101–1107. [Google Scholar]
- Rhoades, E.R.; Archambault, A.S.; Greendyke, R.; Hsu, F.-F.; Streeter, C.; Byrd, T.F. Mycobacterium abscessus Glycopeptidolipids mask underlying cell wall phosphatidyl-myo-inositol mannosides blocking induction of human macrophage TNF-alpha by preventing interaction with TLR2. J. Immunol. Baltim. Md 1950 2009, 183, 1997–2007. [Google Scholar]
- Ryan, K.; Byrd, T.F. Mycobacterium abscessus: Shapeshifter of the Mycobacterial World. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef]
- Byrd, T.F.; Lyons, C.R. Preliminary characterization of a Mycobacterium abscessus mutant in human and murine models of infection. Infect. Immun. 1999, 67, 4700–4707. [Google Scholar] [CrossRef] [Green Version]
- Howard, S.T.; Rhoades, E.; Recht, J.; Pang, X.; Alsup, A.; Kolter, R.; Lyons, C.R.; Byrd, T.F. Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype. Microbiol. Read. Engl. 2006, 152, 1581–1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nessar, R.; Reyrat, J.-M.; Davidson, L.B.; Byrd, T.F. Deletion of the mmpL4b gene in the Mycobacterium abscessus glycopeptidolipid biosynthetic pathway results in loss of surface colonization capability, but enhanced ability to replicate in human macrophages and stimulate their innate immune response. Microbiology 2011, 157, 1187–1195. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, B.E.; Gilljam, M.; Lindblad, A.; Ridell, M.; Wold, A.E.; Welinder-Olsson, C. Molecular epidemiology of Mycobacterium abscessus, with focus on cystic fibrosis. J. Clin. Microbiol. 2007, 45, 1497–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreutzfeldt, K.M.; McAdam, P.R.; Claxton, P.; Holmes, A.; Seagar, A.L.; Laurenson, I.F.; Fitzgerald, J.R. Molecular longitudinal tracking of Mycobacterium abscessus spp. during chronic infection of the human lung. PLoS ONE 2013, 8, e63237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roux, A.-L.; Viljoen, A.; Bah, A.; Simeone, R.; Bernut, A.; Laencina, L.; Deramaudt, T.; Rottman, M.; Gaillard, J.-L.; Majlessi, L.; et al. The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages. Open Biol. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frehel, C.; Ryter, A.; Rastogi, N.; David, H. The electron-transparent zone in phagocytized Mycobacterium avium and other mycobacteria: Formation, persistence and role in bacterial survival. Ann. Inst. Pasteur Microbiol. 1986, 137B, 239–257. [Google Scholar] [CrossRef]
- Bernut, A.; Herrmann, J.-L.; Kissa, K.; Dubremetz, J.-F.; Gaillard, J.-L.; Lutfalla, G.; Kremer, L. Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation. Proc. Natl. Acad. Sci. USA 2014, 111, E943–E952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greendyke, R.; Byrd, T.F. Differential antibiotic susceptibility of Mycobacterium abscessus variants in biofilms and macrophages compared to that of planktonic bacteria. Antimicrob. Agents Chemother. 2008, 52, 2019–2026. [Google Scholar] [CrossRef] [Green Version]
- Schorey, J.S.; Sweet, L. The mycobacterial glycopeptidolipids: Structure, function, and their role in pathogenesis. Glycobiology 2008, 18, 832–841. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.-M.; Yang, C.-S.; Yuk, J.-M.; Lee, J.-Y.; Kim, K.H.; Shin, S.J.; Takahara, K.; Lee, S.J.; Joy, E.-K. Mycobacterium abscessus activates the macrophage innate immune response via a physical and functional interaction between TLR2 and dectin-1. Cell. Microbiol. 2008, 10, 1608–1621. [Google Scholar] [CrossRef] [PubMed]
- Davidson, L.B.; Nessar, R.; Kempaiah, P.; Perkins, D.J.; Byrd, T.F. Mycobacterium abscessus Glycopeptidolipid Prevents Respiratory Epithelial TLR2 Signaling as Measured by HβD2 Gene Expression and IL-8 Release. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malcolm, K.C.; Nichols, E.M.; Caceres, S.M.; Kret, J.E.; Martiniano, S.L.; Sagel, S.D.; Chan, E.D.; Caverly, L.; Solomon, G.M.; Reynolds, P.; et al. Mycobacterium abscessus Induces a Limited Pattern of Neutrophil Activation That Promotes Pathogen Survival. PLoS ONE 2013, 8, e57402. [Google Scholar] [CrossRef] [PubMed]
- Sim, Y.S.; Kim, S.-Y.; Kim, E.J.; Shin, S.J.; Koh, W.-J. Impaired Expression of MAPK Is Associated with the Downregulation of TNF-α, IL-6, and IL-10 in Mycobacterium abscessus Lung Disease. Tuberc. Respir. Dis. 2012, 72, 275–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.J.; Shin, S.J.; Lee, S.J.; Lee, M.H.; Kang, T.H.; Noh, K.T.; Shin, Y.K.; Kim, H.W.; Yun, C.-H.; Jung, I.D.; et al. Mycobacterium abscessus MAB2560 induces maturation of dendritic cells via Toll-like receptor 4 and drives Th1 immune response. BMB Rep. 2014, 47, 512–517. [Google Scholar] [CrossRef] [Green Version]
- Tomioka, H.; Tatano, Y.; Maw, W.W.; Sano, C.; Kanehiro, Y.; Shimizu, T. Characteristics of suppressor macrophages induced by mycobacterial and protozoal infections in relation to alternatively activated M2 macrophages. Clin. Dev. Immunol. 2012, 2012, 635451. [Google Scholar] [CrossRef]
- Nessar, R.; Cambau, E.; Reyrat, J.M.; Murray, A.; Gicquel, B. Mycobacterium abscessus: A new antibiotic nightmare. J. Antimicrob. Chemother. 2012, 67, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Nakanaga, K.; Hoshino, Y.; Era, Y.; Matsumoto, K.; Kanazawa, Y.; Tomita, A.; Furuta, M.; Washizu, M.; Makino, M.; Ishii, N. Multiple Cases of Cutaneous Mycobacterium massiliense Infection in a “Hot Spa” in Japan. J. Clin. Microbiol. 2011, 49, 613–617. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-R.; Cheng, A.; Lee, Y.-C.; Yang, C.-Y.; Lai, C.-C.; Huang, Y.-T.; Ho, C.-C.; Wang, H.-C.; Yu, C.-J.; Hsueh, P.-R. CNS infections caused by Mycobacterium abscessus complex: Clinical features and antimicrobial susceptibilities of isolates. J. Antimicrob. Chemother. 2012, 67, 222–225. [Google Scholar] [CrossRef] [Green Version]
- Shields, R.K.; Clancy, C.J.; Minces, L.R.; Shigemura, N.; Kwak, E.J.; Silveira, F.P.; Abdel-Massih, R.C.; Bhama, J.K.; Bermudez, C.A.; Pilewski, J.M.; et al. Epidemiology and outcomes of deep surgical site infections following lung transplantation. Am. J. Transplant. 2013, 13, 2137–2145. [Google Scholar] [CrossRef]
- Moorthy, R.S.; Valluri, S.; Rao, N.A. Nontuberculous mycobacterial ocular and adnexal infections. Surv. Ophthalmol. 2012, 57, 202–235. [Google Scholar] [CrossRef]
- Griffith, D.E.; Girard, W.M.; Wallace, R.J. Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 154 patients. Am. Rev. Respir. Dis. 1993, 147, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Jarand, J.; Levin, A.; Zhang, L.; Huitt, G.; Mitchell, J.D.; Daley, C.L. Clinical and microbiologic outcomes in patients receiving treatment for Mycobacterium abscessus pulmonary disease. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2011, 52, 565–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolinsky, E. Nontuberculous mycobacteria and associated diseases. Am. Rev. Respir. Dis. 1979, 119, 107–159. [Google Scholar]
- Evans, A.J.; Crisp, A.J.; Hubbard, R.B.; Colville, A.; Evans, S.A.; Johnston, I.D. Pulmonary Mycobacterium kansasii infection: Comparison of radiological appearances with pulmonary tuberculosis. Thorax 1996, 51, 1243–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, M.S.; von Reyn, C.F. Nosocomial infections due to nontuberculous mycobacteria. Clin. Infect. Dis. 2001, 33, 1363–1374. [Google Scholar] [CrossRef]
- Kankya, C.; Muwonge, A.; Djønne, B.; Munyeme, M.; Opuda-Asibo, J.; Skjerve, E.; Oloya, J.; Edvardsen, V.; Johansen, T.B. Isolation of non-tuberculous mycobacteria from pastoral ecosystems of Uganda: Public health significance. BMC Public Health 2011, 11, 320. [Google Scholar] [CrossRef] [Green Version]
- Falkinham, J.O.; Iseman, M.D.; de Haas, P.; van Soolingen, D. Mycobacterium avium in a shower linked to pulmonary disease. J. Water Health 2008, 6, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Falkinham, J.O. Reducing Human Exposure to Mycobacterium avium. Ann. Am. Thorac. Soc. 2013, 10, 378–382. [Google Scholar] [CrossRef]
- Kaplan, J.E.; Masur, H.; Holmes, K.K.; USPHS; Infectious Disease Society of America Guidelines for Preventing Opportunistic Infections among HIV-Infected Persons--2002. Recommendations of the U.S. Public Health Service and the Infectious Diseases Society of America. MMWR Recomm. Rep. Morb. Mortal. Wkly. Rep. Recomm. Rep. 2002, 51, 1–52. [Google Scholar]
- Dworkin, M.S.; Hanson, D.L.; Kaplan, J.E.; Jones, J.L.; Ward, J.W. Risk for preventable opportunistic infections in persons with AIDS after antiretroviral therapy increases CD4+ T lymphocyte counts above prophylaxis thresholds. J. Infect. Dis. 2000, 182, 611–615. [Google Scholar] [CrossRef] [Green Version]
- Brooks, J.T.; Song, R.; Hanson, D.L.; Wolfe, M.; Swerdlow, D.L. Adult and Adolescent Spectrum of Disease Working Group Discontinuation of primary prophylaxis against Mycobacterium avium complex infection in HIV-infected persons receiving antiretroviral therapy: Observations from a large national cohort in the United States, 1992–2002. Clin. Infect. Dis. 2005, 41, 549–553. [Google Scholar] [PubMed] [Green Version]
- Mycobacterium avium Complex Adult and Adolescent Opportunistic Infection. Available online: https://aidsinfo.nih.gov/guidelines/html/4/adult-and-adolescent-opportunistic-infection/326/mycobacterium-avium-complex (accessed on 19 July 2020).
- Kelly, C.; Chalmers, J.D.; Crossingham, I.; Relph, N.; Felix, L.M.; Evans, D.J.; Milan, S.J.; Spencer, S. Macrolide antibiotics for bronchiectasis. Cochrane Database Syst. Rev. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havlir, D.V.; Dubé, M.P.; Sattler, F.R.; Forthal, D.N.; Kemper, C.A.; Dunne, M.W.; Parenti, D.M.; Lavelle, J.P.; White, A.C.; Witt, M.D.; et al. Prophylaxis against disseminated Mycobacterium avium complex with weekly azithromycin, daily rifabutin, or both. California Collaborative Treatment Group. N. Engl. J. Med. 1996, 335, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Pierce, M.; Crampton, S.; Henry, D.; Heifets, L.; LaMarca, A.; Montecalvo, M.; Wormser, G.P.; Jablonowski, H.; Jemsek, J.; Cynamon, M.; et al. A randomized trial of clarithromycin as prophylaxis against disseminated mycobacterium avium complex infection in patients with advanced acquired immunodeficiency syndrome. N. Engl. J. Med. 1996, 335, 384–391. [Google Scholar] [CrossRef]
- Keating, M.R.; Daly, J.S. Nontuberculous mycobacterial infections in solid organ transplantation. Am. J. Transplant. 2013, 13, 77–82. [Google Scholar] [CrossRef]
- Huang, H.C.; Weigt, S.S.; Derhovanessian, A.; Palchevskiy, V.; Ardehali, A.; Saggar, R.; Saggar, R.; Kubak, B.; Gregson, A.; Ross, D.J.; et al. Non-tuberculous mycobacterium infection after lung transplantation is associated with increased mortality. J. Heart Lung Transplant. 2011, 30, 790–798. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, P.; Finn, A.; Curtis, N. Does BCG Vaccination Protect Against Nontuberculous Mycobacterial Infection? A Systematic Review and Meta-Analysis. J. Infect. Dis. 2018, 218, 679–687. [Google Scholar] [CrossRef]
- Schaffer, K. Epidemiology of infection and current guidelines for infection prevention in cystic fibrosis patients. J. Hosp. Infect. 2015, 89, 309–313. [Google Scholar] [CrossRef]
Human Pathogenic Mycobacteria | ||||
---|---|---|---|---|
Group | Mycobacterium Tuberculosis Complex | Non-Tuberculous Mycobacteria | Leprotic Mycobacteria | |
Rapidly Growing | Slow Growing | |||
Species | M. tuberculosis M. bovis M. africanum M. canettii M. caprae M. pinnipedii M. orygis M. microti M. mungi M. suricattae | M. abscessus group -M. abscessus -M. bolletii -M. massiliense M. fortuitum group -M. fortuitum -M. peregrinum -M. porcinum M. smegmatis M. vaccae M. mucogenicum | M. avium complex -M. avium -M. chimaera -M. intracellulare M. haemophilum M. gordonae M. kansasii M. simiae M. marinum M. malmoense M. xenopi M. ulcerans | M. leprae M. lepromatosis |
Type of Disease | Recommend Regimen | |
---|---|---|
Mycobacterium avium Disease | Pulmonary MAC Infections | macrolides, followed by close follow-up monitoring for up to a year |
Mild or moderate bronchiectatic disease | azithromycin (500 mg three times per week), rifampin (600 mg three times per week), and ethambutol (25 mg/kg three times per week) | |
Cavitary or severe nodular bronchiectatic disease | a daily regimen of azithromycin (250 to 500 mg daily), rifampin (600 mg daily), and ethambutol (15 mg/kg daily) and a fourth agent consisting of parenteral streptomycin or amikacin (10 to 15 mg/kg three times per week) is used for the first 8 to 12 weeks of therapy | |
Macrolide resistant infections | daily ethambutol, rifampin, and clofazimine, in addition to two to three months of parenteral amikacin administered three times a week | |
Disseminated MAC infections with AIDS | combination of antimicrobial and antiretroviral therapy (ART) and may take more than 12 months; dual therapy with a macrolide, azithromycin (500–600 mg daily), or clarithromycin (500 mg twice daily), combined with ethambutol (15 mg/kg daily) is initially used | |
Disseminated MAC infections with AIDS failing ART | dual therapy with a macrolide, azithromycin (500–600 mg daily), or clarithromycin (500 mg twice daily), combined with ethambutol (15 mg/kg daily) is initially used, plus a third agent (e.g., rifabutin) is added | |
MAC Lymphadenitis | surgical excision and/or antimicrobial therapy; antimicrobial therapy includes a macrolide in combination with ethambutol and/or rifampin; Azithromycin is the preferable macrolide for children; the duration for antimicrobial therapy of NTM or MAC specific lymphadenitis may take up to six months | |
Mycobacterium abscessus Diseases | M. abscessus complex-associated pulmonary disease | combination of macrolide-based therapy with intravenous antimicrobial agents; surgical resection of the localized infection in combination with antimicrobial therapy; continue until sputum samples are negative for M. abscessus complex for 12 months |
M. abscessus complex-associated skin and soft tissue infections (SSTIs) | macrolide in combination with amikacin plus cefoxitin/imipenem plus surgical debridement; minimum of 4 months, including a minimum of 2 weeks combined with intravenous agents | |
M. abscessus-associated central nervous system infections: cerebral abscesses and meningitis | treatment includes at least one year of clarithromycin-based combination therapy (preferably including at least amikacin in the first weeks) for 12 months and surgical intervention if needed | |
M. abscessus complex ocular infections | systemic antimicrobial drugs can be used to treat most M. abscessus-associated ocular infections, while topical therapy with topical amikacin and clarithromycin are used to treat certain M. abscessus complex ocular infections for 6weeks to 6 months | |
Serious M. abscessus complex infections | initial treatment should include a combination of antimicrobial drugs with a macrolide (clarithromycin with 1,000 mg daily or azithromycin with 250 mg to 500 mg daily) and intravenous agents for two weeks to several months subsequently after oral macrolide-based therapy. The initial intravenous drug treatment is amikacin for (25 mg/kg 3×/week) and cefoxitin (up to 12 g/d in divided doses) or amikacin (25 mg/kg 3×/week) and imipenem (500 mg 2–4×/week) |
Test Type | Criteria Required |
---|---|
Clinical and/or Radiological | 1. Pulmonary symptoms, nodular or cavitary opacities on chest radiograph, or an HRCT scan that shows multifocal bronchiectasis with multiple small nodules. AND 2. Appropriate exclusion of other diagnoses. (* both are required) |
Microbiologic | 1. Positive culture results from at least two separate expectorated sputum samples. (If the results from the initial sputum samples are non-diagnostic, consider repeat sputum AFB smears and cultures.) OR 2. Positive culture results from at least one bronchial wash or lavage. OR 3. Transbronchial or another lung biopsy with mycobacterial histopathologic features (granulomatous inflammation or AFB) and positive culture for NTM or biopsy showing mycobacterial histopathologic features (granulomatous inflammation or AFB) and one or more sputum or bronchial washings that are culture positive for NTM. 4. Expert consultation should be obtained when NTM are recovered that are either infrequently encountered or that usually represent environmental contamination. 5. Patients who are suspected of having NTM lung disease but who do not meet the diagnostic criteria should be followed until the diagnosis is firmly established or excluded. 6. Making the diagnosis of NTM lung disease does not, per se, necessitate the institution of therapy, which is a decision based on potential risks and benefits of therapy for individual patients. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
To, K.; Cao, R.; Yegiazaryan, A.; Owens, J.; Venketaraman, V. General Overview of Nontuberculous Mycobacteria Opportunistic Pathogens: Mycobacterium avium and Mycobacterium abscessus. J. Clin. Med. 2020, 9, 2541. https://doi.org/10.3390/jcm9082541
To K, Cao R, Yegiazaryan A, Owens J, Venketaraman V. General Overview of Nontuberculous Mycobacteria Opportunistic Pathogens: Mycobacterium avium and Mycobacterium abscessus. Journal of Clinical Medicine. 2020; 9(8):2541. https://doi.org/10.3390/jcm9082541
Chicago/Turabian StyleTo, Kimberly, Ruoqiong Cao, Aram Yegiazaryan, James Owens, and Vishwanath Venketaraman. 2020. "General Overview of Nontuberculous Mycobacteria Opportunistic Pathogens: Mycobacterium avium and Mycobacterium abscessus" Journal of Clinical Medicine 9, no. 8: 2541. https://doi.org/10.3390/jcm9082541
APA StyleTo, K., Cao, R., Yegiazaryan, A., Owens, J., & Venketaraman, V. (2020). General Overview of Nontuberculous Mycobacteria Opportunistic Pathogens: Mycobacterium avium and Mycobacterium abscessus. Journal of Clinical Medicine, 9(8), 2541. https://doi.org/10.3390/jcm9082541