Impact of Weather Conditions and Farming Systems on Size Distribution of Starch Granules and Flour Yield of Winter Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Setup
2.2. Chemical Analysis
2.3. The Size Distribution of Starch Granules
2.4. Yield of Wheat Flour
2.5. Meteorological Data
2.6. Statisticsal Analysis
3. Results
3.1. The Factors Influencing the Size of Starch Granules
3.1.1. Impact of Weather Conditions on Starch Granule Size Distribution
3.1.2. Impact of Organic and Mineral N on Starch Granule Size Distribution
3.2. The Flour Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Psaroudaki, A. An extensive survey of the impact of tropospheric ozone on the biochemical properties of edible plants. WSEAS Trans. Environ. Dev. 2007, 3, 99–100. [Google Scholar]
- Kumar, R.; Kumar, A.; Sharma, N.K.; Kaur, N.; Chunduri, V.; Chawla, M.; Sharma, S.; Singh, K.; Garg, M. Soft and hard textured wheat differ in starch properties as indicated by trimodal distribution, morphology, thermal and crystalline diameter of conventional system properties. PLoS ONE 2016, 11, e0147622. [Google Scholar]
- Krejčířová, L.; Capouchová, I.; Petr, J.; Bicanová, E.; Kvapil, R. Protein composition and quality of winter wheat from organic and conventional farming. Zemdirbyste 2006, 93, 285–296. [Google Scholar]
- Osman, A.M.; Struik, P.C.; Lammerts van Bueren, E.T. Perspectives to breed for improved baking quality wheat varieties adapted to organic growing conditions. J. Sci. Food Agric. 2011, 92, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Hanell, U.; L-Baeckström, G.; Svensson, G. Quality studies on wheat grown in different cropping systems: A holistic perspective. Acta Agric. Scand. Sect. B Soil Plant Sci. 2004, 54, 254–263. [Google Scholar] [CrossRef]
- Xue, C.; Rossmann, A.; Ramona Schuster, R.; Peter Koehler, P.; Karl-Hermann Mühling, K.-H. Split nitrogen application improves wheat baking quality by influencing protein composition rather than concentration. Front. Plant Sci. 2016, 7, 738. [Google Scholar] [CrossRef] [Green Version]
- Rossini, F.; Provenzano, M.E.; Sestili, F.; Ruggeri, R. Synergistic Effect of Sulfur and Nitrogen in the Organic and Mineral Fertilization of Durum Wheat: Grain Yield and Quality Traits in the Mediterranean Environment. Agronomy 2018, 8, 189. [Google Scholar] [CrossRef] [Green Version]
- Jane, W.-N. Ultrastructure of endosperm development in Arundo formosana Hack. (Poaceae) from differentiation to maturity. Bot. Bull. Acad. Sin. 2004, 45, 69–85. [Google Scholar]
- Zeng, M.; Morris, C.F.; Batey, I.L.; Wrigley, C.W. Sources of variation for starch gelatinization, pasting, and gelation properties of wheat. Cereal Chem. 1997, 74, 63–71. [Google Scholar] [CrossRef]
- Peterson, D.D.; Fulcher, R.G. Variation in Minnesota HRS wheats: Starch granule size distribution. Food Res. Int. 2001, 34, 357–363. [Google Scholar] [CrossRef]
- Park, S.-H.; Wilson, J.D.; Seabourn, B.W. Starch granule size distribution of hard red winter and hard red spring wheat: Its effects on mixing and breadmaking quality. J. Cereal Sci. 2009, 49, 98–105. [Google Scholar] [CrossRef]
- Bechtel, D.B.; Wilson, J.D. Amyloplast formation and starch granule development in hard red winter wheat. Cereal Chem. 2003, 80, 175–183. [Google Scholar] [CrossRef]
- Xie, X.J.; CuiS, W.; Li, W.; Tsao, R. Isolation and characterization of wheat bran starch. Food Res. Int. 2008, 41, 882–887. [Google Scholar] [CrossRef]
- Wilson, J.D.; Bechtel, D.B.; Todd, T.C.; Seib, P.A. Measurement of wheat starch granule size distribution using image analysis and laser diffraction technology. Cereal Chem. 2006, 83, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Edwards, M. Morphological Features of Wheat Grain and Genotype Affecting Flour Yield. Ph.D. Thesis, Southern Cross University, Lismore, NSW, Australia, 2010. [Google Scholar]
- Zi, Y.; Shen, H.; Dai, S.; Ma, X.; Ju, W.; Wang, C.; Guo, J.; Liu, A.; Cheng, D.; Li, H.; et al. Comparison of starch physicochemical properties of wheat cultivars differing in bread- and noodle-making quality. Food Hydrocoll. 2019, 93, 78–86. [Google Scholar] [CrossRef]
- Li, W.; Shan, Y.; Xiao, X.; Zheng, J.; Luo, Q.; Ouyang, S.; Shang, G. Effect of nitrogen and sulfur fertilization on accumulation characteristics and physicochemical properties of A- and B-Wheat starch. J. Agric. Food Chem. 2013, 61, 2418–2425. [Google Scholar] [CrossRef]
- Xiong, F.; Yu, X.; Zhou, L.; Zhang, J.; Jin, Y.; Li, D.; Wang, Z. Effect of nitrogen fertilizer on distribution of starch granules in different regions of wheat endosperm. Crop J. 2014, 2, 46–54. [Google Scholar] [CrossRef] [Green Version]
- MacNeill, G.J.; Mehrpouyan, S.; Minow, M.A.A.; Patterson, J.A.; Tetlow, I.J.; Emes, M.J. Starch as a source, starch as a sink: The bifunctional role of starch in carbon allocation. J. Exp. Bot. 2017, 68, 4433–4453. [Google Scholar] [CrossRef]
- Nuttall, J.G.; O’Leary, G.J.; Panozzo, J.F.; Walker, C.K.; Barlow, K.M.; Fitzgerald, G.J. Models of grain quality in wheat—A review. Field Crops Res. 2017, 202, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Tambussi, E.A.; Bort, J.; Guiamet, J.J.; Nogues, S.; Araus, J.L. The photosynthetic role of ears in C3 cereals: Metabolism, water use efficiency and contribution to grain yield. Crit. Rev. Plant Sci. 2007, 26, 1–16. [Google Scholar] [CrossRef]
- Campbell, G.M.; Fang, C.; Muhamad, I.I. On predicting roller milling performance VI: Effect of kernel hardness and shape on the particle size distribution from first break milling of wheat. Food Bioprod. Process. 2007, 85, 7–23. [Google Scholar] [CrossRef]
- Fang, C.Y.; Campbell, G.M. Effect of roll fluting disposition and roll gap on breakage of wheat kernels during first-break roller milling. Cereal Chem. 2002, 79, 518–522. [Google Scholar] [CrossRef] [Green Version]
- Alaru, M.; Talgre, L.; Eremeev, V.; Tein, B.; Luik, A.; Nemvalts, A.; Loit, E. Crop yields and supply of nitrogen compared in conventional and organic systems. Agric. Food Sci. 2014, 23, 317–326. [Google Scholar] [CrossRef]
- Calderini, D.F.; Abeledo, L.G.; Slafer, G.A. Physiological Maturity in Wheat Based on Kernel Water and Dry Matter. J. Agron. 2000, 92, 895–901. [Google Scholar] [CrossRef]
- MTTK. Methods of Soil and Plant Analysis; Agricultural Research Centre, Department of Soil Science: Jokioinen, Finland, 1986; p. 45. [Google Scholar]
- Stoddard, F.L. Survey of starch particle-size distribution in wheat and related species. Cereal Chem. 1998, 76, 145–149. [Google Scholar] [CrossRef]
- Li, W.; Yan, S.; Shi, X.; Zhang, C.; Shao, Q.; Xu, F.; Wang, J. Starch granule size distribution from twelve wheat cultivars in east China’s Huaibei regioon. Can. J. Plant Sci. 2016, 96, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, E.; Ral, J.-P.F.; Li, S.; Gaire, R.; Cavanagh, C.R.; Cullis, B.R.; Whan, A. Increased accuracy of starch granule type quantification using mixture distributions. Plant Methods 2017, 13, 107. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Managing the risks of extreme events and disasters of advance climate change adaptation. In A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; p. 582. [Google Scholar]
- Campbell, C.A.; Davidson, H.R.; Winkleman, G.E. Effect of nitrogen, temperature, growth stage and duration of moisture stress on yield components and protein content of Manitou spring wheat. Can. J. Plant Sci. 1981, 61, 549–563. [Google Scholar] [CrossRef] [Green Version]
- Garrido-Lestache, E.; López-Bellido, R.J.; López-Bellido, L. Durum wheat quality under Mediterranean conditions as affected by N rate, timing and splitting, N form and S fertilization. Eur. J. Agron. 2005, 23, 265–278. [Google Scholar] [CrossRef]
- Barraclough, P.B.; Howarth, J.R.; Jones, J.; Lopez-Bellido, R.; Parmar, S.; Shepherd, E.C.; Hawkesford, M.J. Nitrogen efficiency of wheat: Genotypic and environmental variation and prospects for improvement. Eur. J. Agron. 2010, 33, 1–11. [Google Scholar] [CrossRef]
- Kihlberg, J.; Johansson, L.; Kohler, A.; Risvik, E. Sensory qualities of Whole wheat pan bread—Influence of farming system, milling and baking technique. J. Cereal Sci. 2004, 39, 67–84. [Google Scholar] [CrossRef]
- Hurkman, W.J.; McCue, K.F.; Altenbach, S.B.; Korn, A.; Tanaka, C.K.; Kothari, K.M.; Johnson, E.L.; Bechtel, D.B.; Wilson, J.D.; Anderson, O.D.; et al. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci. 2003, 164, 873–881. [Google Scholar] [CrossRef]
- Acevedo, E.; Nachit, M.; Ortiz-Ferrara, G. Effect of heat stress on wheat and possible selection tools for use in breeding for tolerance. In Wheat for the Nontraditional Warm Areas; Saunders, D.A., Ed.; CIMMYT: Mexico Distrito Federal, Mexico, 1991; pp. 401–421. [Google Scholar]
- Smidansky, E.D.; Martin, J.M.; Hannah, L.C.; Giroux, M.J. Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta 2003, 216, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Dziki, D.; Cacak-Pietrzak, G.; Miś, A.; Jończyk, K.; Gawlik-Dziki, U. Influence of wheat kernel physical properties on the pulverizing process. J. Food Sci. Technol. 2014, 51, 2648–2655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Month | Temperature, °C * | |||||
---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2017 | 1969–2017 ** | |
April | 3.5 | 6.5 | 5.4 | 6.1 | 3.4 | 4.8 |
May | 14.8 | 11.9 | 10.3 | 14.0 | 10.2 | 11.4 |
June | 18.2 | 13.4 | 14.3 | 15.9 | 14 | 15.4 |
July | 17.8 | 19.9 | 15.7 | 17.8 | 15.9 | 17.5 |
August | 16.9 | 16.8 | 17.0 | 16.1 | 16.8 | 16.2 |
April–August | 14.2 | 13.7 | 12.5 | 14.0 | 12.1 | 13.1 |
Precipitation, mm * | ||||||
April | 17 | 13 | 51 | 50 | 52 | 29 |
May | 61 | 84 | 60 | 2 | 16 | 56 |
June | 52 | 104 | 40 | 125 | 94 | 78 |
July | 63 | 71 | 62 | 82 | 61 | 70 |
August | 75 | 113 | 42 | 42 | 106 | 88 |
April–August | 268 | 384 | 251 | 301 | 329 | 321 |
Factors | Dv(10) | Dv(50) | Dv(90) |
---|---|---|---|
Temperature *; n = 105 | −0.39 *** | −0.37 *** | −0.26 ** |
Precipitation *; n = 105 | ns | ns | −0.26 ** |
Length of period BBCH65‒PhM; n = 112 | −0.54 *** | −0.52 *** | −0.40 *** |
N amount (treatment); n = 105 | 0.20 * | 0.19 * | 0.19 * |
Farming system; n = 105 | ns | ns | ns |
Biomass of wheat at BBCH65; n = 112 | −0.27 ** | −0.26 ** | ns |
Fine flour yield; n = 56 | −0.40 ** | −0.27 * | −0.27 * |
Whole flour yield; n = 56 | −0.31 * | −0.31 * | −0.29 * |
Parameter | Years | ||||
---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2017 | |
Dates of Flowering (BBCH65) and Physiological Maturity (PhM) | |||||
BBCH65 | 5.06 | 10.06 | 15.06 | 4.06 | 29.06 |
PhM | 15.07 | 16.07 | 20.07 | 11.07 | 7.08 |
BBCH65‒PhM, days | 40 | 36 | 35 | 37 | 40 |
GDD for period of BBCH65‒PhM, °C | 519 | 351 | 358 | 408 | 448 |
Year | Dv(10), µm ** | Dv(50), µm | Dv(90), µm |
---|---|---|---|
2013 | 2.85 ± 0.05 b * | 6.63 ± 0.29 bc | 17.80 ± 1.54 ab |
2014 | 3.13 ± 0.06 a | 7.86 ± 0.30 ab | 20.40 ± 1.04 ab |
2015 | 3.05 ± 0.03 a | 8.15 ± 0.35 a | 22.61 ± 0.88 a |
2016 | 3.12 ± 0.04 a | 7.08 ± 0.24 abc | 17.01 ± 0.67 b |
2017 | 2.70 ± 0.05 b | 6.25 ± 0.20 c | 16.77 ± 0.99 b |
Treatment | Dv(10), µm ** | Dv(50), µm | Dv(90), µm |
---|---|---|---|
Organic | |||
Org 0 | 2.85 ± 0.07 b * | 6.76 ± 0.36 abc | 18.15 ± 1.59 ab |
Org I | 2.96 ± 0.05 b | 7.14 ± 0.38 abc | 17.83 ± 1.50 ab |
Org II | 3.22 ± 0.06 a | 8.03 ± 0.28 a | 22.77 ± 1.04 a |
Conventional | |||
N0 | 2.91 ± 0.05 b | 6.26 ± 0.11 c | 15.94 ± 0.82 b |
N50 | 2.86 ± 0.05 b | 6.43 ± 0.18 cb | 16.90 ± 0.70 b |
N100 | 2.97 ± 0.07 ab | 7.49 ± 0.40 ab | 19.93 ± 1.22 ab |
N150 | 3.04 ± 0.07 ab | 8.23 ± 0.49 a | 20.94 ± 1.70 ab |
Year | Fine Flour Yield (g kg‒1) | Whole Flour Yield (g kg−1) | Bran and Shorts (g kg−1) | Ratio of Whole Flour Yield to Bran |
---|---|---|---|---|
2013 | 483 ± 10 bc * | 758 ± 3 a | 204 ± 2 b | 3.72 ± 0.06 a |
2014 | 440 ± 6 d | 725 ± 3 b | 229 ± 3 a | 3.18 ± 0.05 b |
2015 | 459 ± 9 cd | 729 ± 3 b | 229 ± 2 a | 3.19 ± 0.05 b |
2017 | 554 ± 7 a | 760 ± 4 a | 213 ± 8 b | 3.59 ± 0.08 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keres, I.; Alaru, M.; Talgre, L.; Luik, A.; Eremeev, V.; Sats, A.; Jõudu, I.; Riisalu, A.; Loit, E. Impact of Weather Conditions and Farming Systems on Size Distribution of Starch Granules and Flour Yield of Winter Wheat. Agriculture 2020, 10, 22. https://doi.org/10.3390/agriculture10010022
Keres I, Alaru M, Talgre L, Luik A, Eremeev V, Sats A, Jõudu I, Riisalu A, Loit E. Impact of Weather Conditions and Farming Systems on Size Distribution of Starch Granules and Flour Yield of Winter Wheat. Agriculture. 2020; 10(1):22. https://doi.org/10.3390/agriculture10010022
Chicago/Turabian StyleKeres, Indrek, Maarika Alaru, Liina Talgre, Anne Luik, Viacheslav Eremeev, Andres Sats, Ivi Jõudu, Anu Riisalu, and Evelin Loit. 2020. "Impact of Weather Conditions and Farming Systems on Size Distribution of Starch Granules and Flour Yield of Winter Wheat" Agriculture 10, no. 1: 22. https://doi.org/10.3390/agriculture10010022
APA StyleKeres, I., Alaru, M., Talgre, L., Luik, A., Eremeev, V., Sats, A., Jõudu, I., Riisalu, A., & Loit, E. (2020). Impact of Weather Conditions and Farming Systems on Size Distribution of Starch Granules and Flour Yield of Winter Wheat. Agriculture, 10(1), 22. https://doi.org/10.3390/agriculture10010022