Organic Cropping System Affects Grain Chemical Composition, Rheological and Agronomic Performance of Durum Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Field Trials
2.2. Meteorological Trend
2.3. Reagents and Solvents
2.4. Grain Quality Evaluation
2.5. Total Polyphenols Content and Antioxidant Activity
2.6. Ash and Mineral Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Yield and Rheological Traits
3.2. Total Polyphenols Content and Antioxidant Activity
3.3. Ash, Macro-, and Micro-Minerals Content
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Venora, G.; Grillo, O.; Saccone, R. Quality assessment of durum wheat storage centres in Sicily: Evaluation of vitreous, starchy and shrunken kernels using an image analysis system. J. Cereal Sci. 2009, 49, 429–440. [Google Scholar] [CrossRef]
- Mattiolo, E.; Licciardello, F.; Lombardo, G.M.; Muratore, G.; Anastasi, U. Volatile profiling of durum wheat kernels by HS-SPME/GC-MS. Eur. Food Res. Technol. 2016, 243, 147–155. [Google Scholar] [CrossRef]
- Dinelli, G.; Marotta, I.; Di Silvestro, R.; Bosi, S.; Bregola, V.; Accorsi, M.; Di Loreto, A.; Benedettelli, S.; Ghiselli, L. Agronomic, nutritional and nutraceutical aspects of durum wheat (Triticum durum Desf.) genotypes under low input agricultural management. Ital. J. Agron. 2013, 8, 85–93. [Google Scholar]
- ISTAT. Available online: http://dati.istat.it/ (accessed on 10 December 2018).
- Jensen, M.K.; Koh-Banarjee, P.; Hu, F.B.; Franz, M.; Sampson, L.; Grϕnbaek, M.; Rimm, E.B. Intakes of whole grains, bran, and germ and the risk of coronary hearth disease in men. Am. J. Clin. Nutr. 2004, 80, 1492–1499. [Google Scholar] [CrossRef]
- Slavin, J. Why whole grains are protective: Biological mechanisms. Proc. Nutr. Soc. 2003, 62, 129–134. [Google Scholar] [CrossRef]
- Marquardt, L.; Asp, N.G.; Richardson, P. Whole grain health claims in the United States, United Kingdom and Sweden. In Dietary Fibre—Bioactive Carbohydrates in Food and Feed; Kamp, J.W., Asp, N.-G., Miller Jones, J., Schaafsma, G., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2004; pp. 39–57. [Google Scholar]
- Ragaee, A.; Abdel-Aal, E.M.; Noaman, M. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem. 2005, 98, 32–38. [Google Scholar] [CrossRef]
- Adom, K.K.; Sorrells, M.E.; Liu, R.H. Phytochemical profiles and antioxidant activity of wheat varieties. J. Agric. Food Chem. 2003, 51, 7825–7834. [Google Scholar] [CrossRef]
- Mc Keown, N.; Meigs, J.B.; Liu, S.; Wilson, P.W.F.; Jacques, P.F. Whole-grain intake is favourably associated with metabolic risk factors for type 2 diabetes and cardiovascular disease in the Framingham Offspring Study. Am. J. Clin. Nutr. 2002, 76, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Center for Food Safety and Applied Nutrition. Available online: https://www.fda.gov/food/news-events-cfsan/cfsan-constituent-updates (accessed on 10 December 2018).
- Hussain, A.; Larsson, H.; Kuktaite, R.; Johansson, E. Mineral composition of organically grown wheat genotypes: Contribution to daily minerals intake. Int. J. Environ. Res. Pu. 2010, 7, 3442–3456. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, Q.; Yan, J.; Tang, J.; Zhao, R.; Zhang, Y.; He, Z.; Zou, C.; Ortiz-Monasterio, I. Mineral element concentrations in grains of chinese wheat cultivars. Euphytica 2010, 174, 303–313. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- Gupta, R.B.; Batey, I.L.; MacRitchie, F. Relationships between protein composition and functional properties of wheat flours. Cereal Chem. 1992, 69, 125–131. [Google Scholar]
- Mäder, P.; Hahn, D.; Dubois, D.; Gunst, L.; Alföldi, T.; Bergmann, H.; Oehme, M.; Amadò, R.; Schneider, H.; Graf, U.; et al. Wheat quality in organic and conventional farming: Results of a 21 year field experiment. J. Sci. Food Agric. 2007, 87, 1826–1835. [Google Scholar] [CrossRef]
- Dangour, A.D.; Dodhia, S.K.; Hayter, A.; Allen, E.; Lock, K.; Uary, R. Nutritional quality of organic foods: A systemic review. Am. J. Clin. Nutr. 2009, 10, 680–685. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.; Derrick, J.; Dann, P. Grain mineral concentrations and yield of wheat grown under organic and conventional management. J. Sci. Food Agri. 2004, 84, 207–216. [Google Scholar] [CrossRef]
- Nitika, D.P.; Khetarpaul, N. Physico-chemical characteristics, nutrient composition and consumer acceptability of wheat varieties grown under organic and inorganic farming conditions. Int. J. Food Sci. Nutr. 2008, 59, 224–245. [Google Scholar] [CrossRef]
- Quaranta, F.; Belocchi, A.; Fornara, M.; Ripa, C.; D’Egidio, M.G. Le Varietà di Frumento duro in Italia: Risultati della rete Nazionale di Sperimentazione 1999–2012; Consiglio per la Ricerca e la Sperimentazione in Agricoltura: Rome, Italy, 2013; ISBN 978-88-97081-31-9. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A Decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Menga, V.; Fares, C.; Troccoli, A.; Cattivelli, L.; Baiano, A. Effects of genotype, location and baking on the phenolic content and some antioxidant properties of cereal species. Int. J. Food Sci. Technol. 2010, 45, 7–16. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Food Sci. Tech. 1995, 22, 25–30. [Google Scholar] [CrossRef]
- Quaranta, F.; Amoriello, T.; Aureli, G.; Belocchi, A.; D’Egidio, M.G.; Fornara, M.; Melloni, S.; Desiderio, E. Grain yield, quality and deoxynivalenol (DON) contamination of durum wheat (Triticum Durum Desf.): Results of national networks in organic and conventional cropping systems. Ital. J. Agron. 2010, 4, 353–366. [Google Scholar] [CrossRef]
- Vaccari, F.P.; Ranieri, R.; Matese, A.; Miglietta, F. Enhanced temperature during grain filling reduces protein concentration of durum wheat. Ital. J. Agron. 2007, 4, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Galterio, G.; Biancolatte, E.; Autran, J.C. Proteins deposition in developing durum wheat. Implications in technology quality. In Proceedings of the 3rd International Workshop on Gluten Proteins, Budapest, Hungary, 9–12 May 1987; Lasztity, R., Bekes, F., Eds.; World Scientific: Singapore, 1987; pp. 284–298. [Google Scholar]
- Kovacs, M.I.P.; Poste, L.M.; Butler, G.; Woods, S.M.; Leisle, D.; Noll, J.S.; Dahlke, G. Durum wheat quality: Comparison of chemical and rheological screening tests with sensory analysis. J. Cereal Sci. 1997, 25, 65–75. [Google Scholar] [CrossRef]
- Autran, J.C.; Hamer, R.J.; Plitjer, J.J.; Pogna, N.E. Exploring and improving the industrial uses of wheat. Cereal Foods World 1997, 42, 221–226. [Google Scholar]
- Simic, G.; Horvat, D.; Jurkovic, Z.; Drezner, G.; Novoselovic, D.; Dvojkovic, K. The genotype effect on the ratio of wet gluten content to total wheat grain protein. J. Cent. Eur. Agric. 2006, 7, 13–18. [Google Scholar]
- Indrani, D.; Manohar, R.S.; Rajiv, J.; Venkateswara Rao, G. Alveograph as a tool to assess the quality characteristics of wheat flour for parotta making. J. Food Eng. 2007, 78, 1202–1206. [Google Scholar] [CrossRef]
- Zuchowski, J.; Jonczyk, K.; Pecio, L.; Oleszek, W. Phenolic acid concentrations in organically and conventionally cultivated spring and winter wheat. J. Sci. Food Agric. 2011, 91, 1089–1095. [Google Scholar] [CrossRef]
- Hallmann, E. The influence of organic and conventional cropping systems on the nutritional value and content of bioactive compounds in selected tomato types. J. Sci. Food Agric. 2012, 92, 2840–2848. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The effect on tuber quality of an organic versus a conventional cropping system in the early crop potato. J. Food Compos. Anal. 2017, 62, 189–196. [Google Scholar] [CrossRef]
- Zielinski, H.; Kozlowska, H. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J. Agric. Food Chem. 2000, 48, 2008–2016. [Google Scholar] [CrossRef]
- Yu, L.; Haley, S.; Perret, J.; Harris, M.; Wilson, J.; Qian, M. Free radical scavenging properties of wheat extracts. J. Agric. Food Chem. 2002, 50, 1619–1624. [Google Scholar] [CrossRef]
- Martini, D.; Taddei, F.; Ciccoritti, R.; Pasquini, M.; Nicoletti, I.; Corradini, D.; D’Egidio, M.G. Variation of total antioxidant activity and of phenolic acid, total phenolics and yellow coloured pigments in durum wheat (Triticum turgidum L. var. durum) as a function of genotype, crop year and growing area. J. Cereal Sci. 2015, 65, 175–185. [Google Scholar] [CrossRef]
- Stracke, B.A.; Eitel, J.; Watzl, B.; Mader, P.; Rufer, C.E. Influence of the production method on phytochemical concentrations in whole wheat (Triticum aestivum L.): A comparative study. J. Agr. Food Chem. 2009, 57, 10116–10121. [Google Scholar] [CrossRef] [PubMed]
- Bellato, S.; Ciccoritti, R.; Del Frate, V.; Sgrulletta, D.; Carbone, K. Influence of genotype and environment on the content of 5-n alkylresorcinols, total phenols and on the antiradical activity of whole durum wheat grains. J. Cereal Sci. 2013, 57, 162–169. [Google Scholar] [CrossRef]
- Murphy, K.M.; Campbell, K.G.; Lyon, S.R.; Jones, S.S. Evidence of varietal adaptation to organic farming systems. Field Crop. Res. 2007, 102, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, S.; Lo Monaco, A.; Pandino, G.; Parisi, B.; Mauromicale, G. The phenology, yield and tuber composition of ‘early’ crop potatoes: A comparison between organic and conventional cropping systems. Renew. Agric. Food Syst. 2013, 28, 50–58. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. Minerals profile of two globe artichoke genotypes as affected by NPK fertilizer regimes. Food Res. Int. 2017, 100, 95–99. [Google Scholar] [CrossRef]
- Ficco, D.B.M.; Riefolo, C.; Nicastro, G.; De Simone, V.; Di Gesù, A.M.; Beleggia, R.; Platani, C.; Cattivelli, L.; De Vita, P. Phytate and mineral elements concentration in a collection of Italian durum wheat genotypes. Field Crop Res. 2009, 111, 235–242. [Google Scholar] [CrossRef]
- Scherz, H.; Kirchhoff, E. Trace elements in foods: Zinc contents of raw foods-A comparison of data originating from different geographical regions of the world. J. Food Compos. Anal. 2006, 19, 420–433. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Mauromicale, G. Mineral profile in globe artichoke as affected by genotype, head part and environment. J. Sci. Food Agric. 2011, 91, 302–308. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The influence of growing environment on the antioxidant and mineral content of “early” crop potato. J. Food Compos. Anal. 2013, 32, 28–35. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Mauromicale, G. Chemical and morphological characteristics of new clones and commercial varieties of globe artichoke (Cynara cardunculus var. scolymus). Plant Foods Hum. Nutr. 2011, 66, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, B.; Singh, R.P.; Velu, G. QTL mapping for mineral nutrient concentrations and agronomic-related traits in a hexaploid wheat mapping population. J. Cereal Sci. 2019, 88, 57–64. [Google Scholar] [CrossRef]
- Velu, G.; Crespo Herrera, L.; Guzman, C.; Huerta, J.; Payne, T.; Singh, R.P. Assessing genetic diversity to breed competitive biofortified wheat with enhanced grain Zn and Fe concentrations. Front. Plant Sci. 2019, 9, 1971. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.H.; Morales, D.A.; Rodríguez, E.; Romero, C.D. Minerals and trace elements in a collection of wheat landraces from the Canary Islands. J. Food Compos. Anal. 2011, 24, 1081–1090. [Google Scholar] [CrossRef]
- Krummel, R.D. Nutrición en la hipertension. In Nutrición y dietoterapia de Krause; McGraw Hill: Mexico City, Mexico, 2001; Volume X, p. 1274. [Google Scholar]
Genotype | Biological Cycle | Adaptability (%) † | Plant Height (cm) | 1000 Seeds Weight (g) | Reference |
---|---|---|---|---|---|
Anco Marzio | Medium-early | 70 | 87 | 42 | [20] |
Claudio | Medium | 78 | 87 | 45 | [20] |
Core | Medium-early | 75 | 80 | 55 | Lombardo ‡ |
Duilio | Early | 75 | 83 | 46 | [20] |
Mongibello | Medium-early | 70 | 75 | 48 | Lombardo |
Ramirez | Medium | 89 | 86 | 41 | [20] |
Saragolla | Early | 76 | 80 | 42 | [20] |
Simeto | Medium-early | 70 | 79 | 50 | [20]/Lombardo |
Tirex | Medium-early | 59 | 81 | 45 | [20] |
Source of Variation | Degree of Freedom | Yield | Protein | Wet Gluten | W † | TPC ‡ | AA § |
---|---|---|---|---|---|---|---|
Cropping system (CS) | 1 | 8.6 *** | 96.2 *** | 89.4 *** | 43.4 *** | 87.5 *** | 43.1 *** |
Genotype (G) | 8 | 79.1 *** | 1.3 *** | 2.3 NS | 45.7 *** | 11.0 *** | 54.2 *** |
CS × G | 8 | 10.5 *** | 2.5 *** | 5.6 NS | 10.1 *** | 1.5 NS | 2.7 NS ⁋ |
Variable | Yield | Protein (% DM) | W † (× 10−4 J) | Wet Gluten (%) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ORG ‡ | CONV § | Mean | ORG | CONV | Mean | ORG | CONV | Mean | ORG | CONV | Mean | ||||||||||||
Genotype | |||||||||||||||||||||||
Anco Marzio | 1.9 ± 0.20 | 2.8 ± 0.11 | 2.4 | bc | 10.8 ± 0.06 | 12.6 ± 0.06 | 11.7 | b | 70.4 ± 8.96 | 120.6 ± 3.21 | 95.5 | c | 26.2 ± 1.20 | 26.8 ± 0.18 | 26.5 | ||||||||
Claudio | 2.2 ± 0.31 | 3.1 ± 0.40 | 2.7 | bc | 10.9 ± 0.39 | 11.3 ± 0.06 | 11.1 | c | 75.0 ± 8.94 | 95.0 ± 2.35 | 85.0 | cd | 23.7 ± 0.57 | 29.1 ± 2.76 | 26.4 | ||||||||
Core | 2.1 ± 0.15 | 5.3 ± 0.41 | 3.7 | a | 10.5 ± 0.06 | 13.4 ± 0.28 | 11.9 | ab | 76.0 ± 8.94 | 100.4 ± 12.58 | 88.2 | cd | 26.6 ± 2.26 | 33.1 ± 2.72 | 29.9 | ||||||||
Duilio | 1.4 ± 0.21 | 2.9 ± 0.30 | 2.2 | bc | 10.9 ± 0.34 | 12.9 | 11.9 | ab | 108.4 ± 6.11 | 128.0 ± 13.98 | 118.2 | b | 28.8 ± 3.04 | 31.3 ± 0.67 | 30.1 | ||||||||
Mongibello | 3.7 ± 0.45 | 2.7 ± 0.15 | 3.2 | ab | 11.7 ± 0.23 | 12.6 ± 0.06 | 12.1 | a | 209.8 ± 17.39 | 157.4 ± 11.37 | 183.6 | a | 28.5 ± 0.49 | 30.3 ± 1.59 | 29.4 | ||||||||
Ramirez | 1.4 ± 0.26 | 4.0 ± 0.29 | 2.7 | bc | 10.3 ± 0.06 | 12.0 | 11.1 | c | 52.0 ± 5.61 | 98.0 ± 15.56 | 75.0 | de | 25.1 ± 1.34 | 29.0 ± 0.99 | 27.1 | ||||||||
Saragolla | 2.3 ± 0.14 | 3.0 ± 0.31 | 2.6 | bc | 10.8 ± 0.11 | 12.6 ± 0.06 | 11.7 | b | 65.2 ± 13.72 | 128.0 ± 11.66 | 96.6 | c | 23.0 ± 1.10 | 32.6 ± 3.80 | 27.8 | ||||||||
Simeto | 1.7 ± 0.30 | 2.1 ± 0.31 | 1.9 | c | 10.1 ± 0.17 | 13.2 ± 0.11 | 11.6 | b | 71.6 ± 20.19 | 95.8 ± 8.04 | 83.7 | cd | 22.0 ± 0.92 | 36.6 ± 0.32 | 29.3 | ||||||||
Tirex | 2.3 ± 0.18 | 3.6 ± 0.27 | 3.0 | ac | 101 ± 0.11 | 13.1 ± 0.11 | 11.6 | b | 58.6 ± 8.73 | 69.4 ± 3.78 | 64.0 | e | 24.2 ± 1.34 | 32.7 ± 1.38 | 28.4 | ||||||||
Mean | 2.1 | B | 3.3 | A | 10.7 | B | 12.6 | A | 87.4 | B | 110.3 | A | 25.3 | B | 31.3 | A | |||||||
LSD interaction | |||||||||||||||||||||||
CS × G | 1.0 | 0.3 | 18.1 | NS ⁋ |
Variable | Ash | K | Na | Na/K | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ORG † | CONV ‡ | Mean | ORG | CONV | Mean | ORG | CONV | Mean | ORG | CONV | Mean | |||||||||
Genotype | ||||||||||||||||||||
Anco Marzio | 1.6 ± 0.12 | 1.5 ± 0.09 | 1.6 | c | 4944 ± 60.2 | 3205 ± 17.6 | 4074 | c | 75 ± 0.9 | 75 ± 2.3 | 75 | 0.02 | 0.02 | 0.02 | ||||||
Claudio | 1.7 ± 0.05 | 1.7 ± 0.01 | 1.7 | bc | 3594 ± 205.3 | 5268 ± 380.8 | 4431 | bc | 73 ± 1.4 | 72 ± 2.1 | 72 | 0.02 | 0.01 | 0.01 | ||||||
Core | 1.6 ± 0.07 | 2.2 ± 0.05 | 1.9 | ab | 4963 ± 283.7 | 4508 ± 306.4 | 4736 | b | 77 ± 0.9 | 69 ± 1.3 | 73 | 0.02 | 0.02 | 0.02 | ||||||
Duilio | 1.7 ± 0.02 | 1.7 ± 0.05 | 1.7 | bc | 5240 ± 268.7 | 5161 ± 139.5 | 5200 | a | 76 ± 0.5 | 76 ± 1.7 | 76 | 0.01 | 0.01 | 0.01 | ||||||
Mongibello | 1.9 ± 0.02 | 2.0 ± 0.19 | 1.9 | ab | 5236 ± 267.0 | 3296 ± 213.0 | 4266 | c | 79 ± 2.2 | 74 ± 1.4 | 76 | 0.02 | 0.02 | 0.02 | ||||||
Ramirez | 2.4 ± 0.12 | 2.1 ± 0.15 | 2.2 | a | 3241 ± 90.9 | 3054 ± 29.6 | 3148 | d | 77 ± 1.3 | 74 ± 2.7 | 76 | 0.02 | 0.02 | 0.02 | ||||||
Saragolla | 2.0 ± 0.05 | 2.0 | 2.0 | ab | 3153 ± 25.0 | 3151 ± 209.4 | 3152 | d | 77 ± 0.8 | 68 ± 2.9 | 72 | 0.02 | 0.02 | 0.02 | ||||||
Simeto | 1.7 ± 0.04 | 2.1 ± 0.13 | 1.9 | ab | 5109 ± 106.8 | 3103 ± 301.3 | 4106 | c | 75 ± 2.9 | 77 ± 2.3 | 76 | 0.01 | 0.02 | 0.02 | ||||||
Tirex | 1.7 ± 0.01 | 2.6 ± 0.15 | 2.2 | a | 5140 ± 19.2 | 3068 ± 434.8 | 4104 | c | 73 ± 2.0 | 66 ± 0.5 | 69 | 0.01 | 0.02 | 0.02 | ||||||
Mean | 1.8 | B | 2.0 | A | 4513 | A | 3757 | B | 76 | A | 72 | B | 0.02 | 0.02 | ||||||
LSD interaction | ||||||||||||||||||||
CS × G | 0.3 | NS § | NS | NS |
Variable | TPC | AA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ORG † | CONV ‡ | Mean | ORG | CONV | Mean | |||||||
Genotype | ||||||||||||
Anco Marzio | 2.7 ± 0.06 | 1.7 ± 0.20 | 2.2 | bc | 75 ± 3.5 | 74 ± 2.9 | 74 | cd | ||||
Claudio | 1.9 ± 0.24 | 1.6 ± 0.13 | 1.7 | c | 70 ± 1.0 | 67 ± 2.3 | 69 | e | ||||
Core | 2.2 ± 0.19 | 1.7 ± 0.22 | 2.0 | bc | 73 ± 3.3 | 71 ± 3.3 | 72 | ce | ||||
Duilio | 3.4 ± 0.46 | 2.5 ± 0.38 | 2.9 | a | 87 ± 1.4 | 83 ± 1.8 | 85 | a | ||||
Mongibello | 2.6 ± 0.34 | 1.8 ± 0.03 | 2.2 | bc | 74 ± 3.2 | 74 ± 0.8 | 74 | cd | ||||
Ramirez | 2.5 ± 0.16 | 2.2 ± 0.26 | 2.3 | b | 82 ± 1.0 | 80 ± 0.7 | 81 | b | ||||
Saragolla | 2.7 ± 0.38 | 1.9 ± 0.18 | 2.3 | b | 83 ± 0.8 | 78 ± 1.0 | 80 | b | ||||
Simeto | 2.1 ± 0.22 | 1.5 ± 0.05 | 1.8 | c | 74 ± 3.2 | 66 ± 1.0 | 70 | de | ||||
Tirex | 3.0 ± 0.05 | 2.0 ± 0.24 | 2.5 | b | 77 ± 3.3 | 74 ± 3.2 | 75 | c | ||||
Mean | 2.6 | A | 1.9 | B | 77 | A | 74 | B | ||||
LSD interaction | ||||||||||||
CS × G | NS | NS |
Source of Variation | Degree of Freedom | Mineral Elements | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ca | K | Mg | Na | P | Na/K | Cu | Fe | Mn | Zn | ||
Cropping system (CS) | 1 | 0.9 NS | 25.4 *** | 35.4 ** | 72.9 *** | 33.6 *** | 15.7 NS † | 52.4 *** | 58.7 *** | 77.6 *** | 39.0 *** |
Genotype (G) | 8 | 25.2 *** | 73.9 *** | 20.4 *** | 16.1 NS | 36.3 *** | 21.6 NS | 31.5 ** | 10.8 *** | 10.4 *** | 19.3 *** |
CS × G | 8 | 73.9 *** | 0.7 NS | 44.2 *** | 11.0 NS | 30.1 *** | 62.6 NS | 16.1 * | 30.5 *** | 12.0 ** | 41.7 *** |
Variable | Cu | Fe | Mn | Zn | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ORG † | CONV ‡ | Mean | ORG | CONV | Mean | ORG | CONV | Mean | ORG | CONV | Mean | |||||||||||||
Genotype | ||||||||||||||||||||||||
Anco Marzio | 2.0 ± 0.1 | 2.1 | 2.0 | ab | 16.0 ± 0.3 | 31.1 ± 1.0 | 23.5 | b | 18.7 ± 0.5 | 39.3 ± 0.4 | 29.0 | b | 12.3 ± 0.3 | 23.3 ± 0.4 | 17.8 | bc | ||||||||
Claudio | 2.0 | 2.0 ± 0.1 | 2.0 | ab | 26.3 ± 1.5 | 16.6 ± 0.4 | 21.4 | b | 29.9 ± 0.6 | 18.8 ± 0.5 | 24.4 | c | 25.3 ± 2.4 | 12.5 ± 0.4 | 18.9 | b | ||||||||
Core | 1.8 | 1.9 ± 0.2 | 1.9 | b | 14.7 ± 0.2 | 41.0 ± 2.6 | 27.8 | a | 16.9 ± 0.2 | 23.7 ± 1.0 | 20.3 | d | 11.6 ± 0.2 | 20.2 ± 2.7 | 15.9 | c | ||||||||
Duilio | 1.8 ± 0.2 | 1.9 | 1.8 | b | 14.4 ± 0.8 | 15.7 ± 0.1 | 15.0 | c | 16.5 | 18.5 ± 0.1 | 17.5 | e | 11.4 ± 1.3 | 12.3 ± 0.1 | 11.8 | d | ||||||||
Mongibello | 2.0 | 2.2 | 2.1 | a | 16.6 ± 0.5 | 28.2 ± 1.4 | 22.4 | b | 18.8 | 42.6 ± 1.8 | 30.7 | b | 12.9 ± 0.2 | 25.2 | 19.1 | b | ||||||||
Ramirez | 2.2 | 2.0 ± 0.1 | 2.1 | a | 30.8 ± 2.6 | 24.2 ± 2.4 | 27.5 | a | 28.3 ± 0.7 | 45.4 ± 2.8 | 36.8 | a | 27.2 ± 0.3 | 23.2 ± 0.4 | 25.2 | a | ||||||||
Saragolla | 1.9 ± 0.2 | 2.0 | 1.9 | b | 26.2 ± 2.7 | 16.4 ± 0.1 | 21.3 | b | 23.2 ± 0.1 | 19.0 ± 0.1 | 21.1 | d | 23.1 ± 2.7 | 12.5 ± 0.1 | 17.8 | bc | ||||||||
Simeto | 1.9 ± 0.1 | 2.1 | 2.0 | ab | 15.6 ± 0.4 | 28.1 ± 2.6 | 21.9 | b | 17.9 ± 0.5 | 40.8 ± 2.3 | 29.4 | b | 12.2 ± 0.3 | 24.2 ± 0.2 | 18.2 | bc | ||||||||
Tirex | 2.0 | 2.1 | 2.0 | ab | 16.0 ± 0.2 | 28.3 ± 1.0 | 22.2 | b | 18.5 ± 0.3 | 41.2 ± 1.3 | 29.9 | b | 12.7 ± 0.2 | 25.0 ± 0.1 | 18.8 | b | ||||||||
Mean | 1.9 | B | 2.0 | A | 19.6 | B | 25.5 | A | 21.0 | B | 32.2 | A | 16.5 | B | 19.8 | A | ||||||||
LSD interaction | ||||||||||||||||||||||||
CS × G | 0.07 | 4.7 | 2.9 | 2.5 |
Variable | Ca | Mg | P | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ORG † | CONV ‡ | Mean | ORG | CONV | Mean | ORG | CONV | Mean | ||||||||||
Genotype | ||||||||||||||||||
Anco Marzio | 345 ± 12.4 | 215 ± 3.8 | 280 | c | 1598 ± 18.0 | 1411 ± 21.5 | 1505 | bc | 1650 ± 26.3 | 2661 ± 33.1 | 2156 | d | ||||||
Claudio | 275 ± 5.8 | 471 ± 11.0 | 373 | b | 1260 ± 27.7 | 1578 ± 28.9 | 1419 | bc | 1621 ± 20.0 | 1739 ± 18.0 | 1680 | e | ||||||
Core | 255 ± 2.7 | 211 ± 11.1 | 233 | c | 1626 ± 26.5 | 1431 ± 14.4 | 1529 | b | 1587 ± 15.5 | 2313 ± 33.8 | 1950 | de | ||||||
Duilio | 250 ± 16.8 | 499 ± 15.5 | 375 | b | 1518 ± 27.1 | 1487 ± 27.2 | 1502 | bc | 1407 ± 24.4 | 2602 ± 18.4 | 1840 | de | ||||||
Mongibello | 521 ± 3.1 | 230 ± 5.5 | 376 | b | 1511 ± 29.4 | 1304 ± 26.3 | 1408 | cd | 3384 ± 25.7 | 1991 ± 17.3 | 2687 | c | ||||||
Ramirez | 307 ± 12.5 | 211 ± 10.1 | 259 | c | 1311 ± 20.1 | 1279 ± 12.4 | 1295 | d | 1101 ± 14.2 | 2300 ± 16.1 | 1701 | e | ||||||
Saragolla | 224 ± 11.8 | 626 ± 13.4 | 425 | a | 1229 ± 16.0 | 1615 ± 14.2 | 1422 | bc | 3762 ± 38.1 | 2314 ± 25.7 | 3038 | bc | ||||||
Simeto | 452 ± 15.6 | 213 ± 17.0 | 333 | b | 1595 ± 19.5 | 1332 ± 12.4 | 1464 | bc | 3410 ± 32.7 | 3283 ± 30.1 | 3347 | b | ||||||
Tirex | 311 ± 23.6 | 186 ± 11.1 | 248 | c | 1958 ± 17.3 | 1368 ± 13.4 | 1663 | a | 2321 ± 22.2 | 5821 ± 36.3 | 4071 | a | ||||||
Mean | 327 | A | 318 | B | 1512 | A | 1423 | B | 2213 | B | 2781 | A | ||||||
LSD interaction | ||||||||||||||||||
CS × G | 52 | 167 | 571 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandino, G.; Mattiolo, E.; Lombardo, S.; Lombardo, G.M.; Mauromicale, G. Organic Cropping System Affects Grain Chemical Composition, Rheological and Agronomic Performance of Durum Wheat. Agriculture 2020, 10, 46. https://doi.org/10.3390/agriculture10020046
Pandino G, Mattiolo E, Lombardo S, Lombardo GM, Mauromicale G. Organic Cropping System Affects Grain Chemical Composition, Rheological and Agronomic Performance of Durum Wheat. Agriculture. 2020; 10(2):46. https://doi.org/10.3390/agriculture10020046
Chicago/Turabian StylePandino, Gaetano, Emanuela Mattiolo, Sara Lombardo, Grazia Maria Lombardo, and Giovanni Mauromicale. 2020. "Organic Cropping System Affects Grain Chemical Composition, Rheological and Agronomic Performance of Durum Wheat" Agriculture 10, no. 2: 46. https://doi.org/10.3390/agriculture10020046
APA StylePandino, G., Mattiolo, E., Lombardo, S., Lombardo, G. M., & Mauromicale, G. (2020). Organic Cropping System Affects Grain Chemical Composition, Rheological and Agronomic Performance of Durum Wheat. Agriculture, 10(2), 46. https://doi.org/10.3390/agriculture10020046