Exploring the Topics of Soil Pollution and Agricultural Economics: Highlighting Good Practices
Abstract
:1. Introduction
2. Network Analysis about Literature Related with the Two Topics: Soil Pollution and Agricultural Economics
- Cluster 1: benefit; biodiversity; combination; component; difference; economic incentive; efficiency; environment; environmental pollution; eutrophication; farm income; knowledge; need; nitrogen; objective; order; phosphorus; producer; productivity; term; yield.
- Cluster 2: agricultural land; aquifer; case; change; country; economic return; food; groundwater; increase; problem; process; purpose; range; region; response; solution; sustainability; time.
- Cluster 3: agricultural practice; agricultural production; erosion; evidence; example; field; land; loss; nutrient; runoff; society; soil erosion; soil fertility; water quality.
2.1. Exploring Interrelationships to Improve the Benefits from Interactions between Soil Pollution and Agricultural Economics
2.2. Highlighting the Terms Related with Solutions for the Soil Pollution Problem, Namely in Terms of Agricultural Economics
2.3. Stressing the Networks for Reducing the Losses between Soil Pollution and Agricultural Economics
2.4. Final Remarks from Network Analysis
3. What Has Been Done and What Has to Be Done
4. Exploring Further Literature Associated with the Topics: Soil Pollution and Agricultural Economics
4.1. The Benefits from Agricultural Activities
4.2. The Problems and Solutions within the Relationship between Soil Pollution and the Agricultural Sector
4.3. The Negative Impacts from Agricultural Practices
5. Stressing the Need for Good Practices for Soil Quality and Their Respective Benefits
6. Conclusions
Funding
Conflicts of Interest
References
- Denver, S.; Christensen, T. Organic food and health concerns: A dietary approach using observed data. NJAS Wagening. J. Life Sci. 2015, 74, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Donaldson, A.B.; Flichman, G.; Webster, J.P.G. Integrating agronomic and economic models for policy analysis at the farm level: The impact of CAP reform in two European regions. Agric. Syst. 1995, 48, 163–178. [Google Scholar] [CrossRef]
- Rashford, B.S.; Walker, J.A.; Bastian, C.T. Economics of Grassland Conversion to Cropland in the Prairie Pothole Region. Conserv. Biol. 2011, 25, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Web of Science. Web of Science Platform. Available online: https://apps.webofknowledge.com/WOS_GeneralSearch_input.do?product=WOS&search_mode=GeneralSearch&SID=F3thLlaCM72Vzo9yfmp&preferencesSaved= (accessed on 30 January 2018).
- VOSviewer. VOSviewer—Visualizing Scientific Landscapes. Available online: http://www.vosviewer.com// (accessed on 26 November 2018).
- Van Eck, N.J.; Waltman, L. VOSviewer Manual 2018. Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.8.pdf (accessed on 26 November 2018).
- Martinho, V.J.P.D. Interrelationships between renewable energy and agricultural economics: An overview. Energy Strat. Rev. 2018, 22, 396–409. [Google Scholar] [CrossRef]
- Abler, D. Economic evaluation of agricultural pollution control options for China. J. Integr. Agric. 2015, 14, 1045–1056. [Google Scholar] [CrossRef]
- Brackin, R.; Atkinson, B.S.; Sturrock, C.J.; Rasmussen, A. Roots-eye view: Using microdialysis and microCT to non-destructively map root nutrient depletion and accumulation zones. Plant Cell Environ. 2017, 40, 3135–3142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, L.E.; Mitchell, G.; Holden, J.; Folkard, A.; Wright, N.; Beharry-Borg, N.; Berry, G.; Brierley, B.; Chapman, P.; Clarke, S.J.; et al. Priority water research questions as determined by UK practitioners and policy makers. Sci. Total Environ. 2010, 409, 256–266. [Google Scholar] [CrossRef]
- Lederer, J.; Ogwang, F.; Karungi, J. Knowledge identification and creation among local stakeholders in CDM waste composting projects: A case study from Uganda. Resour. Conserv. Recycl. 2017, 122, 339–352. [Google Scholar] [CrossRef]
- Lahori, A.H.; Zhanyu, G.; Zengqiang, Z.; Ronghua, L.; Mahar, A.; Awasthi, M.K.; Feng, S.; Sial, T.A.; Kumbhar, F.; Ping, W.; et al. Use of Biochar as an Amendment for Remediation of Heavy Metal-Contaminated Soils: Prospects and Challenges. Pedosphere 2017, 27, 991–1014. [Google Scholar] [CrossRef]
- Luo, C.; Chen, L.; Zhao, H.; Guo, S.; Wang, G. Challenges facing socioeconomic development as a result of China’s environmental problems, and future prospects. Ecol. Eng. 2013, 60, 199–203. [Google Scholar] [CrossRef]
- Vazquez-Nunez, E.; Pena-Castro, J.M.; Fernandez-Luqueno, F.; Cejudo, E.; de la Rosa-Alvarez, M.G.; Garcia-Castaneda, M.C. A Review on Genetically Modified Plants Designed to Phytoremediate Polluted Soils: Biochemical Responses and International Regulation. Pedosphere 2018, 28, 697–712. [Google Scholar] [CrossRef]
- Willis, C. Economics. Res. J. Water Pollut. Control Fed. 1990, 62, 318–320. [Google Scholar]
- Bonnieux, F.; Carpentier, A.; Weaver, R. Reducing soil contamination: Economic incentives and potential benefits. Agric. Ecosyst. Environ. 1998, 67, 275–288. [Google Scholar] [CrossRef]
- Martinho, V.J.P.D. Output Impacts of the Single Payment Scheme in Portugal: A Regression with Spatial Effects. Outlook Agric. 2015, 44, 109–118. [Google Scholar] [CrossRef]
- Evans, R. Reducing soil erosion and the loss of soil fertility for environmentally-sustainable agricultural cropping and livestock production systems. Ann. Appl. Biol. 2005, 146, 137–146. [Google Scholar] [CrossRef]
- Horan, R.D.; Ribaudo, M.O. Policy objectives and economic incentives for controlling agricultural sources of nonpoint pollution. J. Am. Water Resour. Assoc. 1999, 35, 1023–1035. [Google Scholar] [CrossRef]
- Smethurst, P.J.; Petrone, K.C.; Langergraber, G.; Baillie, C. Plantation buffers for streams in agricultural catchments: Developing the knowledge base for natural resource managers and farm-foresters. In Proceedings of the 18th world IMACS Congress and MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Cairns, Australia, 13–17 July 2009; pp. 2436–2442. [Google Scholar]
- Iho, A.; Ahlvik, L.; Ekholm, P.; Lehtoranta, J.; Kortelainen, P. Optimal Phosphorus Abatement Redefined: Insights from Coupled Element Cycles. Ecol. Econ. 2017, 137, 13–19. [Google Scholar] [CrossRef]
- Janssen, S.; Louhichi, K.; Kanellopoulos, A.; Zander, P.; Flichman, G.; Hengsdijk, H.; Meuter, E.; Andersen, E.; Belhouchette, H.; Blanco, M.; et al. A Generic Bio-Economic Farm Model for Environmental and Economic Assessment of Agricultural Systems. Environ. Manag. 2010, 46, 862–877. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, J.M.; Williamson, J.C.; Williams, A.P.; Withers, P.J.A.; Hockley, N.; Harris, I.M.; Hughes, J.W.; Taylor, R.L.; Jones, D.L.; Healey, J.R. Sustainable nutrient management at field, farm and regional level: Soil testing, nutrient budgets and the trade-off between lime application and greenhouse gas emissions. Agric. Ecosyst. Environ. 2014, 188, 48–56. [Google Scholar] [CrossRef]
- Govindasamy, R.; Cochran, M.; Buchberger, E. Economic-Implications of Phosphorus Loading Policies for Pasture Land Applications of Poultry Litter. Water Resour. Bull. 1994, 30, 901–910. [Google Scholar] [CrossRef]
- Haruvy, N.; Hadas, A.; Hadas, A. Cost assessment of various means of averting environmental damage and groundwater contamination from nitrate seepage. Agric. Water Manag. 1997, 32, 307–320. [Google Scholar] [CrossRef]
- Hong-Yun, H.; Lian-Ge, Z. Farmers’ Character and Behavior of Fertilizer Application—Evidence from a Survey of Xinxiang County, Henan Province, China. Agric. Sci. China 2009, 8, 1238–1245. [Google Scholar]
- Van Vuuren, W.; Giraldez, J.C.; Stonehouse, D.P. The social returns of agricultural practices for promoting water quality improvement. Can. J. Agric. Econ. Rev. Can. Agroecon. 1997, 45, 219–234. [Google Scholar] [CrossRef]
- Westra, J.V.; Zimmerman, J.K.H.; Vondracek, B. Bioeconomic analysis of selected conservation practices on soil erosion and freshwater fisheries. J. Am. Water Resour. Assoc. 2005, 41, 309–322. [Google Scholar] [CrossRef]
- Hediger, W. Sustainable farm income in the presence of soil erosion: An agricultural Hartwick rule. Ecol. Econ. 2003, 45, 221–236. [Google Scholar] [CrossRef]
- Li, H.; Cruse, R.M.; Bingner, R.L.; Gesch, K.R.; Zhang, X. Evaluating ephemeral gully erosion impact on Zea mays L. yield and economics using AnnAGNPS. Soil Tillage Res. 2016, 155, 157–165. [Google Scholar] [CrossRef]
- Kamel, S.; Dahl, C. The economics of hybrid power systems for sustainable desert agriculture in Egypt. Energy 2005, 30, 1271–1281. [Google Scholar] [CrossRef]
- Lichtenberg, E.; Shortle, J.; Wilen, J.; Zilberman, D. Natural Resource Economics and Conservation: Contributions of Agricultural Economics and Agricultural Economists. Am. J. Agric. Econ. 2010, 92, 469–486. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Manhas, S.S.; Sharma, R.M.; Lohan, S.K. Potential of Variable Rate Application Technology in India. AMA Agric. Mech. Asia Afr. Lat. Am. 2014, 45, 74–81. [Google Scholar]
- Varallyay, G.; Buzas, I.; Kadar, I.; Nemeth, T. New Plant Nutrition Advisory System in Hungary. Commun. Soil Sci. Plant Anal. 1992, 23, 2053–2073. [Google Scholar] [CrossRef]
- Ungureanu, G.; Ignat, G.; Boghita, E.; Costuleanu, L.; Vintu, C.R.; Bodescu, D.; Bejinariu, C. Good Management Practices in Managing the Most Important Factors to Ensure Dureble Soil Quality. Rev. Chim. 2017, 68, 2350–2357. [Google Scholar]
- Bouwer, H. Integrated water management for the 21st century: Problems and solutions. J. Irrig. Drainage Eng. ASCE 2002, 128, 193–202. [Google Scholar] [CrossRef]
- Bouwer, H. Integrated water management for the 21st century: Problems and Solutions. J. Food Agric. Environ. 2003, 1, 118–127. [Google Scholar] [CrossRef]
- Zia, H.; Harris, N.R.; Merrett, G.V.; Rivers, M.; Coles, N. The impact of agricultural activities on water quality: A case for collaborative catchment-scale management using integrated wireless sensor networks. Comput. Electron. Agric. 2013, 96, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Dinar, A.; Zilberman, D. The Economics of Resource-Conservation, Pollution-Reduction Technology Selection—The Case of Irrigation Water. Resour. Energy 1991, 13, 323–348. [Google Scholar] [CrossRef]
- Wang, L.; Butcher, A.S.; Stuart, M.E.; Gooddy, D.C.; Bloomfield, J.P. The nitrate time bomb: A numerical way to investigate nitrate storage and lag time in the unsaturated zone. Environ. Geochem. Health 2013, 35, 667–681. [Google Scholar] [CrossRef] [Green Version]
- Botterweg, P.; Leek, R.; Romstad, E.; Vatn, A. Erosion control under different political and economic conditions. Soil Tillage Res. 1998, 46, 31–40. [Google Scholar] [CrossRef]
- Prato, T.; Fulcher, C. Protecting soil and water resources through multiobjective decision making. In Multiple Objective Decision Making for Land, Water and Environmental Management; El Swaify, S.A., Yakowitz, D.S., Eds.; Lewis Publishers: Boston, MA, USA, 1998; pp. 385–394. [Google Scholar]
- Pimentel, D. Ethanol Fuels—Energy Security, Economics, and the Environment. J. Agric. Environ. Ethics 1991, 4, 1–13. [Google Scholar] [CrossRef]
- Del Prado, A.; Scholefield, D. Use of SIMS(DAIRY) modelling framework system to compare the scope on the sustainability of a dairy farm of animal and plant genetic-based improvements with management-based changes. J. Agric. Sci. 2008, 146, 195–211. [Google Scholar] [CrossRef]
- Naramngam, S.; Tong, S.T.Y. Environmental and economic implications of various conservative agricultural practices in the Upper Little Miami River basin. Agric. Water Manag. 2013, 119, 65–79. [Google Scholar] [CrossRef]
- Kaur, J.; Mahal, S.S. Influence of paddy straw mulch on crop productivity and economics of bed and fiat sown wheat (Triticum aestivum) under different irrigation schedules. J. Environ. Biol. 2017, 38, 243–250. [Google Scholar] [CrossRef]
- Yakowitz, D.; Stone, J.; Lane, L.; Heilman, P.; Masterson, J.; Abolt, J.; Imam, B. A Decision-Support System for Evaluating the Effects of Alternative Farm-Management Systems on Water-Quality and Economics. Water Sci. Technol. 1993, 28, 47–54. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, D.; Hu, K.; Willett, I.R.; Langford, J. Policy incentives for reducing nitrate leaching from intensive agriculture in desert oases of Alxa, Inner Mongolia, China. Agric. Water Manag. 2009, 96, 1114–1119. [Google Scholar] [CrossRef]
- Pena-Haro, S.; Llopis-Albert, C.; Pulido-Velazquez, M.; Pulido-Velazquez, D. Fertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case study, Spain. J. Hydrol. 2010, 392, 174–187. [Google Scholar] [CrossRef]
- Song, J.; Gramig, B.M.; Cibin, R.; Chaubey, I. Integrated Economic and Environmental Assessment of Cellulosic Biofuel Production in an Agricultural Watershed. BioEnergy Res. 2017, 10, 509–524. [Google Scholar] [CrossRef]
- Rein, F.A. An economic analysis of vegetative buffer strip implementation—Case study: Elkhorn Slough, Monterey Bay, California. Coast. Manag. 1999, 27, 377–390. [Google Scholar] [CrossRef]
- Sharpley, A.; Wang, X. Managing agricultural phosphorus for water quality: Lessons from the USA and China. J. Environ. Sci. 2014, 26, 1770–1782. [Google Scholar] [CrossRef] [PubMed]
- Whalen, J.K.; Chang, C.; Clayton, G.W. Cattle manure and lime amendments to improve crop production of acidic soils in northern Alberta. Can. J. Soil Sci. 2002, 82, 227–238. [Google Scholar] [CrossRef]
- Ventrella, D.; Virzi, N.; Intrigliolo, F.; Palumbo, M.; Cambrea, M.; Platania, A.; Sciacca, F.; Licciardello, S.; Troccoli, A.; Russo, M.; et al. Environmental effectiveness of GAEC cross-compliance standard 2.1 “Maintaining the level of soil organic matter through management of stubble and crop residues” and economic evaluation of the competitiveness gap for farmers. Ital. J. Agron. 2015, 10, 697. [Google Scholar] [CrossRef] [Green Version]
- Shivran, A.C.; Jat, N.L.; Singh, D.; Rajput, S.S. Influence of integrated nutrient management on yield, quality and economics of cumin (Cuminum cyminum) production under semi-arid conditions. Indian J. Agric. Sci. 2017, 87, 29–35. [Google Scholar]
- Schlapp, J.; Schreider, S. Survey of Farmer Management of Phosphorus Application in the Hopkins River Catchment, for Use in Game-theoretic Modeling. In Proceedings of the MODSIM 2007: International Congress on Modelling and Simulation: Land, Water and Environmental Management: Integrated Systems for Sustainability; Oxley, L., Kulasiri, D., Eds.; University of Canterbury: Christchurch, New Zealand, 2007; pp. 2361–2367. [Google Scholar]
- DeLonge, M.S.; Miles, A.; Carlisle, L. Investing in the transition to sustainable agriculture. Environ. Sci. Policy 2016, 55, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef]
- Burkart, M.R. Diffuse pollution from intensive agriculture: sustainability, challenges, and opportunities. Water Sci. Technol. 2007, 55, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Martinho, V.J.P.D. Best management practices from agricultural economics: Mitigating air, soil and water pollution. Sci. Total Environ. 2019, 688, 346–360. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.P.; Schoeneboom, J.C.; Oliveira, S.A.; Vinas, R.S.; de Medeiros, G.A. A socio-eco-efficiency analysis of integrated and non-integrated crop-livestock-forestry systems in the Brazilian Cerrado based on LCA. J. Clean. Prod. 2018, 171, 1460–1471. [Google Scholar] [CrossRef] [Green Version]
- Bechini, L.; Costamagna, C.; Zavattaro, L.; Grignani, C.; Bijttebier, J.; Ruysschaert, G. Barriers and drivers towards the incorporation of crop residue in the soil. Analysis of Italian farmers’ opinion with the theory of planned behaviour. Ital. J. Agron. 2015, 10, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Stan, V.; Fintineru, G.; Mihalache, M. Multicriteria Analysis of the Effects of Field Burning Crop Residues. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 2014, 42, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Jeon, W.T.; Choi, B.; Abd El-Azeem, S.A.M.; Ok, Y.S. Effect of different seeding methods on green manure biomass, soil properties and rice yield in rice-based cropping systems. Afr. J. Biotechnol. 2011, 10, 2024–2031. [Google Scholar]
- Vaneeckhaute, C.; Ghekiere, G.; Michels, E.; Vanrolleghem, P.A.; Tack, F.M.G.; Meers, E. Assessing Nutrient Use Efficiency and Environmental Pressure of Macronutrients in Biobased Mineral Fertilizers: A Review of Recent Advances and Best Practices at Field Scale. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 128, pp. 137–180. [Google Scholar]
- Barao, L.; Alaoui, A.; Ferreira, C.; Basch, G.; Schwilch, G.; Geissen, V.; Sukkel, W.; Lemesle, J.; Garcia-Orenes, F.; Morugan-Coronado, A.; et al. Assessment of promising agricultural management practices. Sci. Total Environ. 2019, 649, 610–619. [Google Scholar] [CrossRef]
- Benbi, D.K. Carbon footprint and agricultural sustainability nexus in an intensively cultivated region of Indo-Gangetic Plains. Sci. Total Environ. 2018, 644, 611–623. [Google Scholar] [CrossRef]
- Alobwede, E.; Leake, J.R.; Pandhal, J. Circular economy fertilization: Testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions. Geoderma 2019, 334, 113–123. [Google Scholar] [CrossRef]
- Torabian, S.; Farhangi-Abriz, S.; Denton, M.D. Do tillage systems influence nitrogen fixation in legumes? A review. Soil Tillage Res. 2019, 185, 113–121. [Google Scholar] [CrossRef]
- Kavitha, B.; Reddy, P.V.L.; Kim, B.; Lee, S.S.; Pandey, S.K.; Kim, K.-H. Benefits and limitations of biochar amendment in agricultural soils: A review. J. Environ. Manag. 2018, 227, 146–154. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinho, V.J.P.D. Exploring the Topics of Soil Pollution and Agricultural Economics: Highlighting Good Practices. Agriculture 2020, 10, 24. https://doi.org/10.3390/agriculture10010024
Martinho VJPD. Exploring the Topics of Soil Pollution and Agricultural Economics: Highlighting Good Practices. Agriculture. 2020; 10(1):24. https://doi.org/10.3390/agriculture10010024
Chicago/Turabian StyleMartinho, Vítor João Pereira Domingues. 2020. "Exploring the Topics of Soil Pollution and Agricultural Economics: Highlighting Good Practices" Agriculture 10, no. 1: 24. https://doi.org/10.3390/agriculture10010024
APA StyleMartinho, V. J. P. D. (2020). Exploring the Topics of Soil Pollution and Agricultural Economics: Highlighting Good Practices. Agriculture, 10(1), 24. https://doi.org/10.3390/agriculture10010024