Effects of Organic and Inorganic Fertilizer Application on Growth, Yield, and Grain Quality of Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Plant Materials and Measurements
2.3. Scanning Electron Microscopy Observation
2.4. Statistical Analysis
3. Results
3.1. Growth and Yield Performances
3.2. Physicochemical Properties
3.3. Morphological Observation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kakar, K.; Xuan, T.D.; Haqani, M.I.; Rayee, R.; Wafa, I.K.; Abdiani, S.; Tran, H.D. Current situation and sustainable development for rice cultivation and production in Afghanistan. Agriculture 2019, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Ramzi, A.M.; Kabir, H. Rice production under water management constraints with SRI methods in northeastern Afghanistan. Taiwan Water Conserv. 2013, 61, 76–85. [Google Scholar]
- Kakar, K.; Xuan, T.D.; Abdiani, S.; Wafa, I.K.; Noori, Z.; Attai, S.; Khanh, T.D.; Tran, H.-D. Morphological observation and correlation of growth and yield characteristics with grain quality and antioxidant activities in exotic rice varieties of Afghanistan. Agriculture 2019, 9, 167. [Google Scholar] [CrossRef] [Green Version]
- Agbede, T.M. Tillage and fertilizer effects on some soil properties, leaf nutrient concentrations, growth and sweet potato yield on an Alfisol in southwestern Nigeria. Soil Tillage Res. 2010, 110, 25–32. [Google Scholar] [CrossRef]
- Naik, B.H.; Hosamani, R.M. Influence of Azospirillum on growth and yield of green chilli (Capsicum annum L.) cv. byadagi dabbi at different nitrogen levels. Karnataka J. Agric. Sci. 2003, 16, 108–112. [Google Scholar]
- Puyvast, G.H.; Ramezani, K.P.; Tahernia, S.; Nosratierad, Z.; Olfati, J.A. Municipal solid waste compost increased yield and decreased nitrate amount of broccoli (Brassica oleracea var. Italica). J. Appl. Hortic. 2008, 10, 129–132. [Google Scholar] [CrossRef]
- Savci, S. Investigation of effect of chemical fertilizers on environment. Apcbee Procedia 2012, 1, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Maqbool, A.; Ali, S.; Rizwan, M.; Arif, M.S.; Yasmeen, T.; Riaz, M.; Hussian, A.; Noreen, S.; Abdel-Daim, M.M.; Alkahtani, S. N-fertilizer (urea) enhances the phytoextraction of cadmium through Solanum nigrum L. Int. J. Environ. Res. Public Health 2020, 17, 3850. [Google Scholar] [CrossRef]
- Shimbo, S.; Watanabe, T.; Zhang, Z.W.; Ikeda, M. Cadmium and lead contents in rice and other cereal products in Japan in 1998–2000. Sci. Total Environ. 2001, 281, 165–175. [Google Scholar] [CrossRef]
- Abdiani, S.A.; Kakar, K.; Gulab, G.; Aryan, S. Influence of biofertilizer application methods on growth and yield performances of green pepper. SSRN Electron. J. 2019, 2, 68–74. [Google Scholar] [CrossRef]
- Sharma, N.; Singhvi, R. Effects of chemical fertilizers and pesticides on human health and environment: A review. Int. J. Agric. Environ Biotechnol. 2017, 10, 675–680. [Google Scholar] [CrossRef]
- Mader, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil fertility and biodiversity in organic farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakar, K.; Nitta, Y.; Asagi, N.; Komatsuzaki, M.; Shiotau, F.; Kokubo, T.; Xuan, T.D. Morphological analysis on comparison of organic and chemical fertilizers on grain quality of rice at different planting densities. Plant Prod. Sci. 2019, 22, 510–518. [Google Scholar] [CrossRef]
- Palm, C.A.; Gachengo, C.N.; Delve, R.J.; Cadisch, G.; Giller, K.E. Organic inputs for soil fertility management in tropical agroecosystems: Application of an organic resource database. Agric. Ecosyst. Environ. 2001, 83, 27–42. [Google Scholar] [CrossRef]
- Kakar, K.; Xuan, T.D.; Quan, N.V.; Wafa, I.K.; Tran, H.D.; Khanh, T.D.; Dat, T.D. Efficacy of N-methyl-N-nitrosourea mutation on physicochemical properties, phytochemicals, and momilactones A and B in rice. Sustainability 2019, 11, 6862. [Google Scholar] [CrossRef] [Green Version]
- Kakar, K.; Xuan, T.D.; Quan, N.V.; Wafa, I.K.; Tran, H.D.; Khanh, T.D.; Dat, T.D. Efficacy of N-methyl-N-nitrosourea (MNU) mutation on enhancing the yield and quality of rice. Agriculture 2019, 9, 212. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, M.A.; McCouch, S.R.; Hall, R.D. Not just a grain of rice: The quest for quality. Trends Plant Sci. 2009, 14, 133–139. [Google Scholar] [CrossRef]
- Zhou, H.; Xia, D.; He, Y. Rice grain quality—Traditional traits for high quality rice and health-plus substances. Mol. Breed 2020, 40, 1–17. [Google Scholar] [CrossRef]
- Banerjee, A.; Datta, J.K.; Mondal, N.K. Impact of different combined doses of fertilizers with plant growth regulators on growth, yield attributes and yield of mustard (Brassica campestris cv. B9) under old alluvial soil of Burdwan, West Bengal, India. Frontiers Agric. China 2010, 4, 341–351. [Google Scholar] [CrossRef]
- Gulab, G.; Abdiani, S.A.; Kakar, K.; Aryan, S. Effects of urea foliar application on growth and yield of green pepper. IJIRSS 2019, 2, 25–30. [Google Scholar]
- Fagage, S.O.; De Datta, S.K. Leaf area index, tillering capacity, and grain yield of tropical rice as affected by plant density and nitrogen level. Agron. J. 1971, 63, 503–506. [Google Scholar] [CrossRef]
- Badshah, M.A.; Naimei, T.; Zou, Y.; Ibrahim, M.; Wang, K. Yield and tillering response of super hybrid rice Liangyoupeijiu to tillage and establishment methods. Crop J. 2014, 2, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.; Huang, C.; Chen, G.; Xiong, L.; Liu, Q.; Yang, W. Determination of rice panicle numbers during heading by multi-angle imaging. Crop J. 2015, 3, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Moe, K.; Moh, S.M.; Htwe, A.Z.; Kajihara, Y.; Yamakawa, T. Effects of integrated organic and inorganic fertilizers on yield and growth parameters of rice varieties. Rice Sci. 2019, 26, 309–318. [Google Scholar] [CrossRef]
- Rayee, R.; Xuan, T.D.; Kakar, K.; Haqani, M.I. Antioxidant activity, quality parameters and grain characteristics of rice varieties of Afghanistan. Int. Lett. Nat. Sci. 2019, 73, 26. [Google Scholar] [CrossRef]
- He, Y.; Chen, F.; Shi, Y.; Guan, Z.; Zhang, N.; Campanella, O.H. Physico-chemical properties and structure of rice cultivars grown in Heilongjiang province of China. Food Sci. Human Wellness 2020. [Google Scholar] [CrossRef]
- Chiba, M.; Terao, T.; Watanabe, H.; Matsumura, O.; Takahashi, Y. Improvement in rice grain quality by deep-flood irrigation and its underlying mechanisms. Jpn. Agric. Res. Q. JARQ 2017, 51, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Ascheri, D.P.R.; Boeno, J.A.; Bassinello, P.Z.; Ascheri, J.L.R. Correlation between grain nutritional content and pasting properties of pre-gelatinized red rice flour. Revista Ceres 2012, 59, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.H.; Yun, B.W.; Kim, K.M. Analysis of QTLs associated with the rice quality related gene by double haploid populations. Int. J. Genomics 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kaur, P.; Pal, P.; Virdi, A.S.; Kaur, A.; Singh, N.; Mahajan, G. Protein and starch characteristics of milled rice from different cultivars affected by transplantation date. J. Food Sci. Technol. 2016, 53, 3186–3196. [Google Scholar] [CrossRef] [Green Version]
- Juliano, B.O.; Villareal, C.P. Grain Quality Evaluation of World Rices; International Rice Research Institute: Manila, Philippines, 1993; pp. 1–91. [Google Scholar]
- Noori, Z.; Kakar, K.; Fujii, T.; Ji, B. Growth and yield characteristics of upland rice cultivar NERICA-4 grown under paddy field condition. Int. J. Agron. Agri. Res. 2017, 10, 59–68. [Google Scholar]
- Noori, Z.; Qarluq, A.G.; Kakar, K.; Abdiani, S.; Nawakht, N.A. Comparison of physicochemical properties, grain quality, and ultrastructure of rice cultivars. IJIRSS 2020, 3, 31–42. [Google Scholar]
- Abacar, J.D.; Zhao-Miao, L.; Xin-Cheng, Z.; Cheng-Qiang, D.; She, T.; Zheng-Hui, L.; Shao-Hua, W.; Yan-Feng, D. Variation in yield and physicochemical quality traits among mutants of Japonica rice cultivar Wuyujing 3. Rice Sci. 2016, 23, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Hoshikawa, K. Science of the Rice Plant, 2nd ed.; Nobunkyo: Tokyo, Japan, 1993; pp. 383–389. [Google Scholar]
- Crusciol, C.A.C.; Arf, O.; Soratto, R.P.; Mateus, G.P. Grain quality of upland rice cultivars in response to cropping systems in the Brazilian tropical savanna. Sci. Agric. 2008, 65, 468–473. [Google Scholar] [CrossRef] [Green Version]
- Qiao, J.; Liu, Z.; Deng, S.; Ning, H.; Yang, X.; Lin, Z.; Li, G.; Wang, Q.; Wang, S.; Ding, Y. Occurrence of perfect and imperfect grains of six japonica rice cultivars as affected by nitrogen fertilization. Plant Soil 2011, 349, 191–202. [Google Scholar] [CrossRef]
- Xi, M.; Lin, Z.; Zhang, X.; Liu, Z.; Li, G.; Wang, Q.; Wang, S.; Ding, Y. Endosperm structure of white-belly and white-core rice grains shown by scanning electron microscopy. Plant Prod. Sci. 2014, 17, 285–290. [Google Scholar] [CrossRef]
- Pfister, B.; Zeeman, S.C. Formation of starch in plant cells. Cell. Mol. Life Sci. 2016, 73, 2781–2807. [Google Scholar] [CrossRef] [Green Version]
- Ellis, R.P.; Cochrane, M.P.; Dale, M.F.B.; Duffus, C.M.; Lynn, A.; Morrison, I.M.; Prentice, R.D.M.; Swanston, J.S.; Tiller, S.A. Starch production and industrial use. J. Sci. Food Agric. 1998, 77, 289–311. [Google Scholar] [CrossRef]
- Zhou, Z.; Robards, K.; Helliwell, S.; Blanchard, C. Composition and functional properties of rice. Int. J. Food Sci. Technol. 2002, 37, 849–868. [Google Scholar] [CrossRef]
- Shapter, F.M.; Henry, R.J.; Lee, L.S. Endosperm and starch granule morphology in wild cereal relatives. Plant Genet. Resour. 2008, 6, 85. [Google Scholar] [CrossRef]
- Jane, J.L.; Chen, Y.Y.; Lee, L.F.; McPherson, A.E.; Wong, K.S.; Radosavljevic, M.; Kasemsuwan, T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 1999, 76, 629–637. [Google Scholar] [CrossRef]
- Zakaria, S.; Matsuda, T.; Tajima, S.; Nitta, Y. Effect of high temperature at ripening stage on the reserve accumulation in seed in some rice cultivars. Plant Prod. Sci. 2002, 5, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Kasem, S.; Waters, D.L.E.; Rice, N.F.; Shapter, F.M.; Henry, R.J. The endosperm morphology of rice and its wild relatives as observed by scanning electron microscopy. Rice 2011, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Padhye, V.W.; Salunkhe, D.K. Extraction and characterization of rice proteins. Cereal Chem. 1979, 56, 389–393. [Google Scholar]
- Leesawatwong, M.; Jamjod, S.; Kuo, J.; Dell, B.; Rerkasem, B. Nitrogen fertilizer alters milling quality and protein distribution in head rice. Proceeding of the 4th International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004. [Google Scholar]
- Nakamura, Y.; Kato, N.; Nakamura, Y.N. Histological observations on grains of food crops and stems of vegetable and fiber crops applied by organic and inorganic (chemical) fertilizers. Mem. Fac. Agric. Ehime Univ. 2007, 52, 1–8. [Google Scholar]
- Qi, R.; Li, J.; Lin, Z.; Li, Z.; Li, Y.; Yang, X.; Zhang, J.; Zhao, B. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Appl. Soil Ecol. 2016, 102, 36–45. [Google Scholar] [CrossRef]
Treatments | Description | Nitrogen (kg/ha) | Phosphorus (kg/ha) |
---|---|---|---|
RD | The recommended dose for traditional farming (120 kg/ha urea and 100 kg/ha DAP) | 73.2 | 46.0 |
AM | Animal manure only (5 tons per ha) | 30.0 | 25.0 |
AMRD | Animal manure and 50% recommended dose of nitrogen and phosphorus | 66.6 | 48.0 |
SD | Sawdust only (5 tons per ha) | 20.0 | 10.0 |
SDRD | Sawdust and 50% recommended dose of nitrogen and phosphorus | 56.0 | 33.0 |
Soil Properties | Description and Quantity |
---|---|
Texture group | Sandy clay loam |
Clay particles | 24.82% |
Silt particles | 27.14% |
Sand particles | 48.04% |
pH | 7.61 |
Electrical conductivity | 0.04 dS/m |
Total Nitrogen | 1.32% |
Phosphorus | 3.24 mg/kg |
Potassium | 114.03 mg/kg |
Calcium carbonates | 22.01% |
Treatments | Plant Length (cm) | Tiller No. Hill−1 | Leaf Number Plant−1 | Panicle Length (cm) |
---|---|---|---|---|
RD | 110.3 ± 0.9 a | 14.0 ± 0.2 b | 15.1 ± 0.7 a | 20.3 ± 0.3 b |
AM | 112.5 ± 0.2 a | 16.0 ± 0.6 ab | 16.5 ± 0.5 a | 24.2 ± 0.8 ab |
AMRD | 115.6 ± 0.7 a | 19.0 ± 0.1 a | 16.9 ± 0.2 a | 26.1 ± 0.7 a |
SD | 112.2 ± 0.3 a | 15.0 ± 0.9 b | 15.4 ± 0.8 a | 22.2 ± 0.1 b |
SDRD | 114.3 ± 0.8 a | 18.0 ± 0.4 a | 16.8 ± 0.6 a | 25.8 ± 0.5 a |
Treatments | Panicle No. Hill−1 | Spikelet No. Panicle−1 | Ripened Grain Ratio (%) | 1000 Grain Weight (g) | Grain Yield (t ha−1) |
---|---|---|---|---|---|
RD | 11.4 ± 0.3 c | 106.5 ± 0.6 b | 86.2 ± 0.5 a | 20.3 ± 0.2 a | 4.7 ± 0.7 b |
AM | 12.7 ± 0.5 b | 106.2 ± 0.8 b | 86.1 ± 0.8 a | 20.5 ± 0.3 a | 5.3 ± 0.5 b |
AMRD | 15.9 ± 0.7 a | 110.7 ± 0.1 a | 87.7 ± 0.3 a | 20.9 ± 0.7 a | 7.2 ± 0.9 a |
SD | 13.0 ± 0.2 b | 105.3 ± 0.7 b | 85.9 ± 0.7 a | 20.4 ± 0.6 a | 5.4 ± 0.6 b |
SDRD | 15.6 ± 0.9 a | 109.4 ± 0.3 a | 86.7 ± 0.9 a | 20.7 ± 0.8 a | 6.8 ± 0.7 a |
Treatments | Protein Content (%) | Amylose Content (%) | Lipid Content (%) | Perfect Grain (%) | Imperfect Grain (%) | Broken Grain (%) |
---|---|---|---|---|---|---|
RD | 7.6 ± 0.02 b | 20.9 ± 0.02 c | 7.8 ± 0.03 c | 54.3 ± 0.45 b | 40.2 ± 0.08 a | 0.9 ± 0.02 a |
AM | 8.0 ± 0.05 ab | 21.5 ± 0.07 b | 8.2 ± 0.06 bc | 55.1 ± 0.58 b | 39.1 ± 0.04 a | 0.7 ± 0.05 a |
AMRD | 8.7 ± 0.01 a | 23.0 ± 0.03 a | 9.7 ± 0.02 a | 60.7 ± 0.36 a | 33.7 ± 0.07 b | 0.5 ± 0.02 a |
SD | 7.9 ± 0.06 b | 21.9 ± 0.06 b | 8.4 ± 0.07 bc | 54.9 ± 0.64 b | 38.4 ± 0.06 a | 0.6 ± 0.06 a |
SDRD | 8.3 ± 0.03 a | 22.6 ± 0.08 a | 8.9 ± 0.04 b | 57.4 ± 0.45 ab | 35.5 ± 0.03 ab | 0.6 ± 0.05 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakar, K.; Xuan, T.D.; Noori, Z.; Aryan, S.; Gulab, G. Effects of Organic and Inorganic Fertilizer Application on Growth, Yield, and Grain Quality of Rice. Agriculture 2020, 10, 544. https://doi.org/10.3390/agriculture10110544
Kakar K, Xuan TD, Noori Z, Aryan S, Gulab G. Effects of Organic and Inorganic Fertilizer Application on Growth, Yield, and Grain Quality of Rice. Agriculture. 2020; 10(11):544. https://doi.org/10.3390/agriculture10110544
Chicago/Turabian StyleKakar, Kifayatullah, Tran Dang Xuan, Zubair Noori, Shafiqullah Aryan, and Gulbuddin Gulab. 2020. "Effects of Organic and Inorganic Fertilizer Application on Growth, Yield, and Grain Quality of Rice" Agriculture 10, no. 11: 544. https://doi.org/10.3390/agriculture10110544
APA StyleKakar, K., Xuan, T. D., Noori, Z., Aryan, S., & Gulab, G. (2020). Effects of Organic and Inorganic Fertilizer Application on Growth, Yield, and Grain Quality of Rice. Agriculture, 10(11), 544. https://doi.org/10.3390/agriculture10110544