Physiological Characteristics of Field Bean Seeds (Vicia faba var. minor) Subjected to 30 Years of Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Storage Condition
2.2. Vigour and Viability
2.3. Seed Coat Analyses
2.4. Isolation of Seed Phenols
Synchronous Fluorescence Spectra
2.5. Protein Analysis
2.5.1. Protein Isolation
2.5.2. One-Dimensional (1-D) Electrophoresis
2.5.3. Two-Dimensional (2-D) Electrophoresis
2.6. Statistical Analysis
3. Results
3.1. Seed Viability
3.2. Characteristics of Seed Testae
3.3. Seed Protein Characteristics
3.3.1. 1-D Electrophoresis
3.3.2. 2-D Electrophoresis and Protein Identification
4. Discussion
4.1. Vigour and Viability
4.2. Seed Coat Characteristics
4.3. Characteristics of Protein
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sano, N.; Rajjou, L.; North, H.M.; Debeaujon, I.; Marion-Poll, A.; Seo, M. Staying alive: Molecular aspects of seed longevity. Plant Cell Physiol. 2016, 57, 660–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vioque, J.; Alaiz, M.; Girón-Calle, J. Nutritional and functional properties of Vicia faba protein isolates and related fractions. Food Chem. 2012, 132, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.H.; Hong, T.D.; Roberts, E.H. An intermediate category of seed storage behaviour? I. Coffee. J. Exp. Bot. 1990, 41, 1167–1174. [Google Scholar] [CrossRef]
- Hay, F.R.; Probert, R.J. Seed maturity and the effects of different drying conditions on desiccation tolerance and seed longevity in foxglove (Digitalis purpurea L.). Ann. Bot. 1995, 76, 639–647. [Google Scholar] [CrossRef]
- FAO. Draft Genebank Standards for Plant Genetic Resources for Food and Agriculture. 2013. Available online: http://www.fao.org/3/mf804e/mf804e.pdf (accessed on 20 October 2020).
- Rajjou, L.; Lovigny, Y.; Groot, S.P.C.; Belghazi, M.; Job, C.; Job, D. Proteome-wide characterization of seed aging in Arabidopsis: A comparison between artificial and natural aging protocols. Plant Physiol. 2008, 148, 620–641. [Google Scholar] [CrossRef] [Green Version]
- Copeland, L.O.; McDonald, M.B. Principles of Seed Science and Technology, 4th ed.; Kluwer Academic Publishers: Norwell, MA, USA, 2001; pp. 1–488. [Google Scholar]
- Harman, D. Free Radical Theory of Aging: History; Emerit, I., Chance, B., Eds.; Free Radicals and Aging; Birkhäuser-Verlag: Basel, Switzerland, 1992; pp. 1–10. [Google Scholar]
- Ratajczak, E.; Małecka, A.; Bagniewska-Zadworna, A.; Kalemba, E.M. The production, localization and spreading of reactive oxygen species contributes to the low vitality of long-term stored common beech (Fagus sylvatica L.) seeds. J. Plant Physiol. 2015, 174, 147–156. [Google Scholar] [CrossRef]
- Buitink, J.; Leprince, O. Intracellular glasses and seed survival in the dry state. CR Biol. 2008, 331, 788–795. [Google Scholar] [CrossRef]
- Scarafoni, A.; Ronchi, A.; Duranti, M. γ-Conglutin, the Lupinus albus XEGIP-like protein, whose expression is elicited by chitosan, lacks of the typical inhibitory activity against GH12 endo-glucanases. Phytochemistry 2010, 71, 142–148. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Cueff, G.; Hegedus, D.D.; Rajjou, L.; Bentsink, L. A role for seed storage proteins in Arabidopsis seed longevity. J. Exp. Bot. 2015, 66, 6399–6413. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Maqueda, D.; Hernández-Ledesma, B.; Amigo, L.; Miralles, B.; Gómez-Ruiz, J.Á. Extraction/fractionation techniques for proteins and peptides and protein digestion. In Proteomics in Foods: Principles and Applications, Food Microbiology and Food Safety; Toldrá, F., Nollet, L.M.L., Eds.; Springer: New York, NY, USA, 2013; pp. 21–50. [Google Scholar]
- Terskikh, V.V.; Zeng, Y.; Feurtado, J.A.; Giblin, M.; Abrams, S.R.; Kermode, A.R. Deterioration of western redcedar (Thuja plicata Donn ex D. Don) seeds: Protein oxidation and in vivo NMR monitoring of storage oils. J. Exp. Bot. 2008, 59, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Murthy, U.M.N.; Sun, W.Q. Protein modification by Amadori and Maillard reactions during seed storage: Roles of sugar hydrolysis and lipid peroxidation. J. Exp. Bot. 2000, 51, 1221–1228. [Google Scholar] [CrossRef]
- Zheng, C.; Yang, M.; Zhou, Q.; Liu, C.S.; Huang, F.H. Changes in the content of canolol and total phenolics, oxidative stability of rapeseed oil during accelerated storage. Eur. J. Lipid Sci. Technol. 2014, 116, 1675–1684. [Google Scholar] [CrossRef]
- Zewdu, A.D.; Solomon, W.K. Moisture-dependent physical properties of tef seed. Biosyst. Eng. 2007, 96, 57–63. [Google Scholar] [CrossRef]
- ISTA. International rules for seed testing. Seed Sci. Technol. 1999, 27, 333. [Google Scholar]
- Nasar-Abbas, S.M.; Siddique, K.H.M.; Plummer, J.A.; White, P.F.; Harris, D.; Dods, K.; D’Antuono, M. Faba bean (Vicia faba L.) seeds darken rapidly and phenolic content falls when stored at higher temperature, moisture and light intensity. LWT Food Sci. Technol. 2009, 42, 1703–1711. [Google Scholar] [CrossRef] [Green Version]
- Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. Quantification of Tannins in Tree Foliage; Joint FAO/IEAE Division of Nuclear Techniques in Food and Agriculture: Vienna, Austria, 2000; pp. 1–26. [Google Scholar]
- Rubio, L.A.; Grant, G.; Dewey, P.; Brown, D.; Annand, M.; Bardocz, S.; Pusztai, A. Nutritional utilization by rats of chickpea (Cicer arietinum) meal and its isolated globulin proteins is poorer than that of defatted soybean or lactalbumin. J. Nutr. 1998, 128, 1042–1047. [Google Scholar] [CrossRef] [Green Version]
- Dobiesz, M.; Piotrowicz-Cieślak, A.I.; Michalczyk, D.J. Physiological and biochemical parameters of lupin seeds subjected to 29 years storage. Crop Sci. 2017, 57, 2149–2159. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Mohammadi, H.; Soltani, A.; Sadeghipour, H.R.; Zeinali, E. Effects of seed aging on subsequent seed reserve utilization and seedling growth in soybean. Int. J. Plant Prod. 2011, 5, 65–70. [Google Scholar]
- Pradhan, B.K.; Badola, H.K. Effect of storage conditions and storage periods on seed germination in eleven populations of Swertia chirayita: A critically endangered medicinal herb in Himalaya. Sci. World J. 2012, 128105. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S.; Jeon, Y.A.; Lee, Y.Y.; Lee, S.Y.; Kim, Y.G. Comparison of seed viability among 42 species stored in a genebank. Korean J. Med. Crop Sci. 2013, 58, 432–438. [Google Scholar] [CrossRef]
- Walters, C.; Wheeler, L.M.; Grotenhuis, J.M. Longevity of seeds stored in a genebank: Species characteristics. Seed Sci. Res. 2005, 15, 1–20. [Google Scholar] [CrossRef]
- Mira, S.; Estrelles, E.; González-Benito, M.E. Effect of water content and temperature on seed longevity of seven Brassicaceae species after 5 years of storage. Plant Biol. 2015, 17, 153–162. [Google Scholar] [CrossRef]
- Pérez-García, F.; González-Benito, M.E.; Gómez-Campo, C. High viability recorded in ultra-dry seeds of 37 species of Brassicaceae after almost 40 years of storage. Seed Sci. Technol. 2007, 35, 143–153. [Google Scholar] [CrossRef]
- Roudsari, N.M.; Lashgari, N.A.; Momtaz, S.; Farzaei, M.H.; Marques, A.M.; Abdolghaffari, A.H. Natural polyphenols for the prevention of irritable bowel syndrome: Molecular mechanisms and targets; a comprehensive review. DARU 2019, 27, 755–780. [Google Scholar] [CrossRef] [PubMed]
- Esfandiar, Z.; Hosseini-Esfahani, F.; Mirmiran, P.; Yuzbashian, E.; Azizi, F. The association of dietary polyphenol intake with the risk of type 2 diabetes: Tehran lipid and glucose study. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 1643–1652. [Google Scholar] [CrossRef]
- Cheynier, V. Phenolic compounds: From plants to foods. Phytochem. Rev. 2012, 11, 153–177. [Google Scholar] [CrossRef]
- Andrade-Eiroa, Á.; de-Armas, G.; Estela, J.M.; Cerdà, V. Critical approach to synchronous spectrofluorimetry. TrAC Trends Anal. Chem. 2010, 29, 885–901. [Google Scholar] [CrossRef]
- Patra, D.; Mishra, A.K. Recent developments in multi-component synchronous fluorescence scan analysis. TrAC Trend Anal. Chem. 2002, 21, 787–798. [Google Scholar] [CrossRef]
- Morales, F.; Cartelat, A.; Álvarez-Fernández, A.; Moya, I.; Cerovic, Z.G. Time-resolved spectral studies of blue-green fluorescence of artichoke (Cynara cardunculus L. Var. Scolymus) leaves: Identification of chlorogenic acid as one of the major fluorophores and age-mediated changes. J. Agric. Food Chem. 2005, 53, 9668–9678. [Google Scholar] [CrossRef] [Green Version]
- Sergiel, I.; Pohl, P.; Biesaga, M.; Mironczyk, A. Suitability of three-dimensional synchronous fluorescence spectroscopy for fingerprint analysis of honey samples with reference to their phenolic profiles. Food Chem. 2014, 145, 319–326. [Google Scholar] [CrossRef]
- Vásquez-Espinal, A.; Yañez, O.; Osorio, E.; Areche, C.; García-Beltrán, O.; Ruiz, L.M.; Cassels, B.K.; Tiznado, W. Theoretical study of the antioxidant activity of quercetin oxidation products. Front. Chem. 2019, 7, 818. [Google Scholar] [CrossRef]
- Beninger, C.W.; Gu, L.; Prior, R.L.; Junk, D.C.; Vandenberg, A.; Bett, K.E. Changes in polyphenols of the seed coat during after-darkening process in pinto beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2005, 53, 7777–7782. [Google Scholar] [CrossRef]
- Nozzolillo, C.; De Bezada, M. Browning of lentil seeds, concomitant loss of viability, and the possible role of soluble tannins in both phenomena. Can. J. Plant Sci. 1984, 64, 815–824. [Google Scholar] [CrossRef]
- Marquardt, R.R.; Ward, A.T.; Evens, L.E. Comparative properties of tannin-free and tannin-containing cultivars of faba beans (Vicia faba). Can. J. Plant Sci. 1978, 58, 753–760. [Google Scholar] [CrossRef] [Green Version]
- Desheva, G. The longevity of crop seeds stored under long-term condition in the National Gene Bank of Bulgaria. Agriculture 2016, 62, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Collado, E.; Artés-Hernández, F.; Navarro, L.; Artés, F.; Aguayo, E.; Fernández, J.A.; Gómez, P.A. Overall quality of minimally processed faba bean seeds stored in MAP. Acta Hortic. 2018, 1194, 513–518. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X.; Hou, W.; Li, P.; Sha, W.; Tian, Y. Structure and function of seed storage proteins in faba bean (Vicia faba L.). 3Biotechnology 2017, 7, 74. [Google Scholar] [CrossRef] [Green Version]
- Palma, A.; D’Aquino, S. Changes in physical-chemical parameters in minimally processed faba bean (Vicia faba L.). Acta Hortic. 2018, 1209, 225–230. [Google Scholar] [CrossRef]
- Warsame, A.O.; O’Sullivan, D.M.; Tosi, P. Seed storage proteins of faba bean (Vicia faba L.): Current status and prospects for genetic improvement. J. Agric. Food Chem. 2018, 66, 12617–12626. [Google Scholar] [CrossRef]
- Mbofung, G.C.Y.; Goggi, A.S.; Leandro, L.F.S.; Mullen, R.E. Effects of storage temperature and relative humidity on viability and vigor of treated soybean seeds. Crop Sci. 2013, 53, 1086–1095. [Google Scholar] [CrossRef] [Green Version]
- Dobiesz, M.; Piotrowicz-Cieślak, A.I. Proteins in relation to vigor and viability of white lupin (Lupinus albus L.) seed stored for 26 years. Front. Plant Sci. 2017, 8, 1392. [Google Scholar] [CrossRef] [PubMed]
- Sathish, S.; Rayees, A.; Senthil, N.; Arulkumar, N.; Soo, P.H.; Kalaiselvi, S.; Umarani, R.; Raveendran, M.; Bhaskaran, M.; Sup, K.G. Proteomic analysis of ageing in black gram (Vigna mungo L.) seeds its relation to seed viability. Plant Omics 2015, 8, 201–211. [Google Scholar]
- Shaban, M. Biochemical aspects of protein changes in seed physiology and germination. Int. J. Adv. Biol. Biomed. Res. 2013, 1, 885–898. [Google Scholar]
- Księżak, J.; Bojarszczuk, J.; Staniak, M. Evaluation of the concentration of nutrients in the seeds of faba bean (Vicia faba L. major) and pea (Pisum sativum L.) depending on habitat conditions. Pol. J. Environ. Stud. 2018, 27, 1133–1143. [Google Scholar] [CrossRef]
- Rubio, L.A.; Pérez, A.; Ruiz, R.; Guzmán, M.Á.; Aranda-Olmedo, A.; Clemente, A. Characterization of pea (Pisum sativum) seed protein fractions. J. Sci. Food Agric. 2014, 94, 280–287. [Google Scholar] [CrossRef]
- Bittencourt, A.L.; Soares, M.F.D.M.; Pires, R.R.; Honmoto, C.S.; Tanaka, M.K.; Jacob, C.M.A.; Abdalla, D.S.P. Immunogenicity and allergenicity of 2S, 7S and 11S soy protein fractions. Braz. J. Pharm. Sci. 2007, 43, 597–606. [Google Scholar] [CrossRef] [Green Version]
- Molina, M.I.; Circosta, A.; Añón, M.C.; Petruccelli, S. Mature Amaranthus hypochondriacus seeds contain non-processed 11S precursors. Phytochemistry 2008, 69, 58–65. [Google Scholar] [CrossRef]
- Gao, J.; Fu, H.; Zhou, X.; Chen, Z.; Luo, Y.; Cui, B.; Chen, G.; Liu, J. Comparative proteomic analysis of seed embryo proteins associated with seed storability in rice (Oryza sativa L.) during natural aging. Plant Physiol. Bioch. 2016, 103, 31–44. [Google Scholar] [CrossRef]
- Shewry, P.R.; Napier, J.A.; Tatham, A.S. Seed storage proteins: Structures and biosynthesis. Plant Cell 1995, 7, 945–956. [Google Scholar] [CrossRef] [Green Version]
- Van Parijs, J.; Broekaert, W.F.; Goldstein, I.J.; Peumans, W.J. Hevein: An antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta 1991, 183, 258–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, L.J.; Fernandes dos Santos Dias, D.C.; Sekita, M.C.; Finger, F.L. Lipid peroxidation and antioxidant enzymes of Jatropha curcas L. seeds stored at different maturity stages. Acta Sci. Agron. 2018, 40, e34978. [Google Scholar] [CrossRef] [Green Version]
- Sahua, B.; Sahua, A.K.; Thomasb, V.S.; Naithania, C. Reactive oxygen species, lipid peroxidation, protein oxidation and antioxidative enzymes in dehydrating Karanj (Pongamia pinnata) seeds during storage. S. Afr. J. Bot. 2017, 112, 383–390. [Google Scholar] [CrossRef]
- Gill, S.S.; Anjum, N.A.; Gill, R.; Yadav, S.; Hasanuzzaman, M.; Fujita, M.; Mishra, P.; Sabat, S.C.; Tuteja, N. Superoxide dismutase—Mentor of abiotic stress tolerance in crop plants. Environ. Sci. Pollut. Res. 2015, 22, 10375–10394. [Google Scholar] [CrossRef] [PubMed]
- Guéguen, J.; Cerletti, P. Proteins of some legume seeds, soybean, pea, faba bean and lupin. In New and Developing Sources of Food Proteins; Hudson, B.J.F., Ed.; Chapman and Hall: New York, NY, USA, 1994; pp. 145–183. [Google Scholar]
- Xin, X.; Lin, X.H.; Zhou, Y.C.; Chen, X.L.; Liu, X.; Lu, X.X. Proteome analysis of maize seeds: The effect of artificial ageing. Physiol. Plant. 2011, 143, 126–138. [Google Scholar] [CrossRef]
Nadwiślański | Dino | |||
---|---|---|---|---|
−14 °C | +20 °C | −14 °C | +20 °C | |
Germination, % | 98 ± 1A | 0 B | 91 ± 1 A | 0 B |
Density, kg/m3 | 1379.3 ± 4.3 | 1414.7 ± 4.7 | 1373.8 ± 3.3 | 1402.1 ± 3.6 |
Length mm: | ||||
Root | 124.3 ± 5.3 A | 0 B | 110.1 ± 4.6 A | 0 B |
Stem | 45.3 ± 3.8 A | 0 B | 51.2 ± 8.7 A | 0 B |
Seedling fresh mass, mg | 1843 ± 290A | 0 B | 1998 ± 223 A | 0 B |
Seedling dry mass, mg | 460 ± 69 A | 0 B | 522.1 ± 39 A | 0 B |
Water content, % | 10.6 ± 0.4 A | 6.6 ± 0.1 B | 8.6 ± 0.1 A | 6.5 ± 0.3 B |
Electroconductivity, mS × g−1 | 327 ± 16.5 A | 1955 ± 23 B | 416 ± 18 A | 1815 ± 20 B |
Total protein content, % | 28.7 ± 1.4 A | 25.6 ± 1.2 B | 27.5 ± 1.2 A | 25.4 ± 1.8 B |
Nadwiślański | Dino | |||
---|---|---|---|---|
−14 °C | +20 °C | −14 °C | +20 °C | |
Total free phenolics, mg tannic acid × g−1 | 60.64 ± 1.1 | 2.66 ± 0.2 | 62.21 ± 0.9 | 2.81 ± 0.2 |
Non-tannin phenolics, mg tannic acid × g−1 | 18.22 ± 1.5 | 1.54 ± 0.1 | 18.40 ± 1.7 | 1.57 ± 0.1 |
Total tannins, mg tannic acid × g−1 | 42.46 ± 3.5 | 1.12 ± 0,1 | 43.80 ± 2.4 | 1.24 ± 0.1 |
Proanthocyanidins, mg leucocyanidin × g−1 | 38.60 ± 1.9 | 5.11 ± 0.3 | 37.30 ± 2.7 | 4.80 ± 0.3 |
Spot | Protein Identification | Species | Protein ID | Molecular Function | Score |
---|---|---|---|---|---|
1 | Lectin | Vicia faba | P02871,1 | carbohydrate and metal ion binding | 298 |
2 | Lectin | Vicia faba | P02871,1 | carbohydrate and metal ion binding | 278 |
3 | Lectin | Vicia faba | P02871,1 | carbohydrate and metal ion binding | 382 |
4 | Lectin | Vicia faba | P02871,1 | carbohydrate and metal ion binding | 302 |
5 | Hypothetical protein TSUD_263810 | Trifolium subterraneum | GAU38157,1 | unknown | 291 |
6 | Vicilin | Vicia faba | P08438,1 | nutrient reservoir activity | 334 |
7 | Albumin-1C | Pisum sativum | P62928,1 | nutrient reservoir activity and toxin | 63 |
8 | Lectin | Lathyrus sativum | CAD27485,1 | carbohydrate and metal ion binding | 24 |
9 | Lectin | Vicia faba | P02871,1 | carbohydrate and metal ion binding | 328 |
10 | Superoxide dismutase (Cu–Zn) | Pisum sativum | Q02610,2 | destroys radicals | 474 |
11 | Lectin | Vicia faba | P02871,1 | carbohydrate and metal ion binding | 272 |
Spot | Protein Identification | Species | Protein ID | Score |
---|---|---|---|---|
12 | Convicilin | Vicia faba | CAP06335,1 | 2219 |
13 | Vicilin | Vicia faba | P08438,1 | 2304 |
14 | Vicilin | Vicia faba | P08438,1 | 1231 |
15 | Vicilin | Vicia faba | P08438,1 | 1425 |
16 | Legumin propolypeptide alpha chain | Papilionoideae | AAB24084,1 | 1037 |
17 | Legumin A2 primary translation product | Vicia faba var. minor | CAA38758,1 | 1125 |
18 | Legumin type B | Vicia faba | P05190,1 | 504 |
19 | Legumin A2 primary translation product | Vicia faba var. minor | CAA38758,1 | 717 |
20 | Legumin propolypeptide beta chain | Papilionoideae | AAB24085,1 | 360 |
21 | Vicilin | Pisum sativum | P13918,2 | 533 |
22 | Legumin A2 primary translation product | Vicia faba var. minor | CAA38758,1 | 560 |
23 | Vicilin | Vicia faba | P08438,1 | 1003 |
Spot | Protein Identification | Species | Protein ID | Score |
---|---|---|---|---|
24 | Convicilin | Vicia faba | CAP06335,1 | 2060 |
25 | Legumin A2 primary translation product | Vicia faba var. minor | CAA38758,1 | 1441 |
26 | Vicilin | Vicia faba | P08438,1 | 771 |
27 | Vicilin | Vicia faba | P08438,1 | 1206 |
28 | Vicilin | Vicia faba | P08438,1 | 1358 |
29 | Vicilin | Vicia faba | P08438,1 | 1832 |
30 | Vicilin | Vicia faba | P08438,1 | 575 |
31 | Vicilin | Vicia faba | P08438,1 | 637 |
32 | Vicilin | Vicia norbonensis | CAA96514,1 | 270 |
33 | Vicilin | Vicia faba | P02871,1 | 216 |
34 | Vicilin | Vicia faba | P08438,1 | 1126 |
35 | Vicilin | Vicia faba var. minor | CAA68525,1 | 639 |
36 | Vicilin | Vicia faba | P08438,1 | 867 |
Phenolic Acids | λex, nm | Δλ, nm |
---|---|---|
Caffeic acid | 365–375 | 80–95 |
Chlorogenic acid | 355–365 | 90–110 |
2,5-Dihydroxybenzoic acid | 305–325 | 130–150 |
Ferulic acid | 355–365 | 60–95 |
Gallic acid | 305–315 | 60–90 |
Homogentisic acid | 280–290 | 50–60 |
4-Hydroxybenzoic acid | 275–280 | 40–60 |
Vanillic acid | 260–280 | 60–95 |
Syringic acid | 260–280 | 85–105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piotrowicz-Cieślak, A.I.; Krupka, M.; Michalczyk, D.J.; Smyk, B.; Grajek, H.; Podyma, W.; Głowacka, K. Physiological Characteristics of Field Bean Seeds (Vicia faba var. minor) Subjected to 30 Years of Storage. Agriculture 2020, 10, 545. https://doi.org/10.3390/agriculture10110545
Piotrowicz-Cieślak AI, Krupka M, Michalczyk DJ, Smyk B, Grajek H, Podyma W, Głowacka K. Physiological Characteristics of Field Bean Seeds (Vicia faba var. minor) Subjected to 30 Years of Storage. Agriculture. 2020; 10(11):545. https://doi.org/10.3390/agriculture10110545
Chicago/Turabian StylePiotrowicz-Cieślak, Agnieszka I., Magdalena Krupka, Dariusz J. Michalczyk, Bogdan Smyk, Hanna Grajek, Wiesław Podyma, and Katarzyna Głowacka. 2020. "Physiological Characteristics of Field Bean Seeds (Vicia faba var. minor) Subjected to 30 Years of Storage" Agriculture 10, no. 11: 545. https://doi.org/10.3390/agriculture10110545
APA StylePiotrowicz-Cieślak, A. I., Krupka, M., Michalczyk, D. J., Smyk, B., Grajek, H., Podyma, W., & Głowacka, K. (2020). Physiological Characteristics of Field Bean Seeds (Vicia faba var. minor) Subjected to 30 Years of Storage. Agriculture, 10(11), 545. https://doi.org/10.3390/agriculture10110545