Farmscape Composition and Livelihood Sustainability in Deforested Landscapes of Colombian Amazonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Household Data
2.2. Data Treatment
2.3. Confirmatory Factor Analysis
2.4. Variability among Farms: Principal Component and Cluster Analyses
2.5. Variability among Farm Landscapes: The Farm Landscape Indicator (Farmscape)
3. Results
3.1. General Household Characteristics
3.2. Capitals and the Sustainability Index
3.2.1. Selected Variables
3.2.2. Effect of Farm Characteristics on the Different Capitals
3.3. Variability among Farms
3.4. Variability among Farmscapes
4. Discussion
4.1. Which Indicators (Positive or Negative) Determine the Level of Sustainability in Farm Covariation of Capitals?
4.2. How Does the Farmscape Affect Sustainability?
4.3. How Could We Increase Sustainability?
4.4. Questioning the Conceptual Framework
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hák, T.; Janoušková, S.; Moldan, B. Sustainable Development Goals: A need for relevant indicators. Ecol. Indic. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- Goswami, R.; Saha, S.; Dasgupta, P. Sustainability assessment of smallholder farms in developing countries. Agroecol. Sustain. Food Syst. 2017, 41, 546–569. [Google Scholar] [CrossRef]
- IDEAM. Boletín de Detección Temprana de Deforestación (Cuarto Trimestre de 2019); Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM): Bogotá, Colombia, 2019; p. 2. [Google Scholar]
- Fundación Gaia Amazonas Gaia Amazonas-El Área Destinada a Agricultura y Ganadería Aumentó un 45% en la Amazonía Colombiana. Available online: https://www.gaiaamazonas.org/noticias/2019-10-29_el-area-destinada-a-agricultura-y-ganaderia-aumento-un-45-en-la-amazonia-colombiana/ (accessed on 5 August 2020).
- FEDEGAN. GANADERÍA COLOMBIANA HOJA DE RUTA 2018–2022; Colombian Federation of Ranchers (FEDEGAN): Bogotá, Colombia, 2018. [Google Scholar]
- Hoffmann, C.; García Márquez, J.R.; Krueger, T. A local perspective on drivers and measures to slow deforestation in the Andean-Amazonian foothills of Colombia. Land Use Policy 2018, 77, 379–391. [Google Scholar] [CrossRef]
- Armenteras, D.; Rodríguez, N.; Retana, J. Landscape Dynamics in Northwestern Amazonia: An Assessment of Pastures, Fire and Illicit Crops as Drivers of Tropical Deforestation. PLoS ONE 2013, 8, e54310. [Google Scholar] [CrossRef] [Green Version]
- Metzger, J.P. Landscape dynamics and equilibrium in areas of slash-and-burn agriculture with short and long fallow period (Bragantina region, NE Brazilian Amazon). Landsc. Ecol. 2002, 17, 419–431. [Google Scholar] [CrossRef]
- UNFCCC. Adoption of the Paris Agreement. In Proceedings of the 2015 United Nations Climate Change Conference, Paris, France, 30 November–12 December 2015. [Google Scholar]
- NDC, N. Nationally Determined Contribution (NDC) of Colombia; NDC: Paris, France, 2017. [Google Scholar]
- Revista Semana Caquetá Realizará “Siembratón” para Combatir la Deforestación; Semana Sostenible: Bogotá, Colombia, 2019.
- Scoones, I. Sustainable Rural Livelihoods: A Framework for Analysis; IDS Working Paper No. 72; Institute of Development Studies: Brighton, UK, 1998; Volume 23. [Google Scholar]
- Chambers, R.; Conway, G. Sustainable Rural Livelihoods: Practical Concepts for the 21st Century; Institute of Development Studies: Brighton, UK, 1992. [Google Scholar]
- Friend, R.; Funge-Smith, S.J. Focusing Small-Scale Aquaculture and Aquatic Resource Management on Poverty Alleviation. (FAO/NACA Expert Consultation, Bangkok, Thailand, 12–14 February 2002); FAO: Rome, Italy; NACA: Bangkok, Thailand, 2002. [Google Scholar]
- Ota, L.; Herbohn, J.; Gregorio, N.; Harrison, S. Reforestation and smallholder livelihoods in the humid tropics. Land Use Policy 2020, 92, 104455. [Google Scholar] [CrossRef]
- Pandey, R.; Jha, S.K.; Alatalo, J.M.; Archie, K.M.; Gupta, A.K. Sustainable livelihood framework-based indicators for assessing climate change vulnerability and adaptation for Himalayan communities. Ecol. Indic. 2017, 79, 338–346. [Google Scholar] [CrossRef]
- Pokharel, B.K.; Nurse, M. Forests and People’s Livelihood: Benefiting the Poor from Community Forestry. J. For. Livelihood 2004, 4, 19–29. [Google Scholar]
- Suich, H. The livelihood impacts of the Namibian community based natural resource management programme: A meta-synthesis. Environ. Conserv. 2010, 37, 45–53. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Yang, Y.; Yang, Q.; Kush, J.; Xu, Y.; Xu, L. Assessment of sustainable livelihoods of different farmers in hilly red soil erosion areas of southern China. Ecol. Indic. 2016, 64, 123–131. [Google Scholar] [CrossRef]
- Thulstrup, A.W. Livelihood Resilience and Adaptive Capacity: Tracing Changes in Household Access to Capital in Central Vietnam. World Dev. 2015, 74, 352–362. [Google Scholar] [CrossRef]
- DANE Censo Nacional Agropecuario 2014. Available online: https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/censo-nacional-agropecuario-2014 (accessed on 3 August 2020).
- US Census Bureau CSPro Software. Available online: https://www.census.gov/data/software/cspro.html (accessed on 3 August 2020).
- Swindale, A.; Bilinksy, P. Puntaje de Diversidad Dietética en el Hogar (HDDS) para la Medición del Acceso a los Alimentos en el Hogar: Guía de Indicadores (VERSIÓN 2); Food and Nutrition Technical Assistance III Project (FANTA): Washington, DC, USA, 2006; Volume 17. [Google Scholar]
- Hoyle, R.H. Handbook of Structural Equation Modeling; Guilford Press: New York, NY, USA, 2012. [Google Scholar]
- Yang, W.; Mckinnon, M.C.; Turner, W.R. Quantifying human well-being for sustainability research and policy. Ecosyst. Health Sustain. 2015, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 2002; Volume 5. [Google Scholar]
- Tinsley, H.E.; Brown, S.D. Handbook of Applied Multivariate Statistics and Mathematical Modeling; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Smukler, S.M.; Sánchez-Moreno, S.; Fonte, S.J.; Ferris, H.; Klonsky, K.; O’Geen, A.T.; Scow, K.M.; Steenwerth, K.L.; Jackson, L.E. Biodiversity and multiple ecosystem functions in an organic farmscape. Agric. Ecosyst. Environ. 2010, 139, 80–97. [Google Scholar] [CrossRef]
- Grimaldi, M.; Oszwald, J.; Dolédec, S.; del Pilar Hurtado, M.; de Souza Miranda, I.; de Sartre, X.A.; de Assis, W.S.; Castañeda, E.; Desjardins, T.; Dubs, F.; et al. Ecosystem services of regulation and support in Amazonian pioneer fronts: Searching for landscape drivers. Landsc. Ecol. 2014, 29, 311–328. [Google Scholar] [CrossRef]
- Lavelle, P.; Rodríguez, N.; Arguello, O.; Bernal, J.; Botero, C.; Chaparro, P.; Gómez, Y.; Gutiérrez, A.; del Hurtado, M.P.; Loaiza, S.; et al. Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of Colombia. Agric. Ecosyst. Environ. 2014, 185, 106–117. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.R.; Chan, K.M.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Ortiz-Burgos, S. Shannon-Weaver Diversity Index. In Encyclopedia of Estuaries; Kennish, M.J., Ed.; Springer: Dordrecht, The Netherlands, 2016; pp. 572–573. [Google Scholar]
- Velasquez, E.; Lavelle, P.; Andrade, M. GISQ, a multifunctional indicator of soil quality. Soil Biol. Biochem. 2007, 39, 3066–3080. [Google Scholar] [CrossRef]
- Lavelle, P.; Dolédec, S.; de Sartre, X.A.; Decaëns, T.; Gond, V.; Grimaldi, M.; Oszwald, J.; Hubert, B.; Ramirez, B.; Veiga, I.; et al. Unsustainable landscapes of deforested Amazonia: An analysis of the relationships among landscapes and the social, economic and environmental profiles of farms at different ages following deforestation. Glob. Environ. Chang. 2016, 40, 137–155. [Google Scholar] [CrossRef]
- Dray, S.; Dufour, A.-B. The ade4 Package: Implementing the Duality Diagram for Ecologists. J. Stat. Softw. 2007, 22, 1–20. [Google Scholar] [CrossRef] [Green Version]
- FAO. Escala Latinoamericana y Caribeña de Seguridad Alimentaria (ELCSA)—Manual de uso y Aplicación; FAO: Rome, Italy, 2012; p. 78. [Google Scholar]
- Burris, V. Sustainability of small scale farming in a mountain region: Case study of the khaling rai population of the Solukhumbu, Nepal. Future Food J. Food Agric. Soc. 2014, 2, 9–21. [Google Scholar]
- Londoño, Á.M. Adopción Potencial de Alternativas Biológicas por Cultivadores de Plátano del Quindío; Universidad Nacional de Colombia: Palmira, Colombia, 2016. [Google Scholar]
- Murgueitio, E.; Calle, Z.; Uribe, F.; Calle, A.; Solorio, B. Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For. Ecol. Manag. 2011, 261, 1654–1663. [Google Scholar] [CrossRef]
- Rodrigues, A.S.L.; Ewers, R.M.; Parry, L.; Souza, C.; Verissimo, A.; Balmford, A. Boom-and-Bust Development Patterns Across the Amazon Deforestation Frontier. Science 2009, 324, 1435–1437. [Google Scholar] [CrossRef]
- Ibrahim, M.; Villanueva, C.; Casasola, F.; Rojas, J. Sistemas silvopastoriles como una herramienta para el mejoramiento de la productividad y restauración de la integridad ecológica de paisajes ganaderos. Pastos Y Forrajes 2006, 29, 383–419. [Google Scholar]
- Landholm, D.M.; Pradhan, P.; Wegmann, P.; Sánchez, M.A.R.; Salazar, J.C.S.; Kropp, J.P. Reducing deforestation and improving livestock productivity: Greenhouse gas mitigation potential of silvopastoral systems in Caquetá. Environ. Res. Lett. 2019, 14, 114007. [Google Scholar] [CrossRef]
- Broom, D.M.; Galindo, F.A.; Murgueitio, E. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. R. Soc. B Biol. Sci. 2013, 280, 20132025. [Google Scholar] [CrossRef] [Green Version]
- Pagiola, S.; Ramírez, E.; Gobbi, J.; de Haan, C.; Ibrahim, M.; Murgueitio, E.; Ruíz, J.P. Paying for the environmental services of silvopastoral practices in Nicaragua. Ecol. Econ. 2007, 64, 374–385. [Google Scholar] [CrossRef]
- Zabala, A. Motivations and Incentives for Pro-Environmental Behaviour: The Case of Silvopasture Adoption in the Tropical Forest Frontier. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2015. [Google Scholar]
- Zabala, A.; García-Barrios, L.; Pascual, U. Understanding the Role of Livelihoods in the Adoption of Silvopasture in the Tropical Forest Frontier. In Proceedings of the 15th Annual BIOECON Conference, Cambridge, UK, 18–20 September 2013; p. 21. [Google Scholar]
- Shi, L.; Han, L.; Yang, F.; Gao, L. The Evolution of Sustainable Development Theory: Types, Goals, and Research Prospects. Sustainability 2019, 11, 7158. [Google Scholar] [CrossRef] [Green Version]
- Neumayer, E. Weak versus Strong Sustainability: Exploring the Limits of Two Opposing Paradigms; Edward Elgar Publishing: Cheltenham, UK, 2013. [Google Scholar]
- Huang, L.; Wu, J.; Yan, L. Defining and measuring urban sustainability: A review of indicators. Landsc. Ecol. 2015, 30, 1175–1193. [Google Scholar] [CrossRef]
- Loiseau, E.; Saikku, L.; Antikainen, R.; Droste, N.; Hansjürgens, B.; Pitkänen, K.; Leskinen, P.; Kuikman, P.; Thomsen, M. Green economy and related concepts: An overview. J. Clean. Prod. 2016, 139, 361–371. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.S.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Reid, W.V.; Mooney, H.A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Cropper, A.; Dasgupta, P.; Hassan, R.; Leemans, R.; May, R.M.; et al. Nature: The many benefits of ecosystem services. Nature 2006, 443, 749. [Google Scholar] [CrossRef] [PubMed]
- Scoones, I. Livelihoods perspectives and rural development. J. Peasant Stud. 2009, 36, 171–196. [Google Scholar] [CrossRef]
- De Haan, L.; Zoomers, A. Exploring the Frontier of Livelihoods Research. Dev. Chang. 2005, 36, 27–47. [Google Scholar] [CrossRef]
n | Males | Females | Average Age (Years) | Average Education (Years) | Main Occupation | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Freq. | % | Freq. | % | Mean | Mean | Cattle Rancher | Farmer | ||||
(S.D.) | (S.D.) | Freq. | % | Freq. | % | ||||||
Livestock | 176 | 151 | 50.5 | 22 | 57.9 | 52.2 | 5.53 | 120 | 82.8 | 39 | 25.3 |
(13.3) | (4.28) | ||||||||||
Subsistence crops | 165 | 148 | 49.5 | 16 | 42.1 | 47.6 | 4.49 | 25 | 17.2 | 115 | 74.7 |
(13.7) | (3.73) | ||||||||||
Total | 341 | 299 | 100.0 | 38 | 100.0 | 50 | 5.03 | 145 | 100.0 | 154 | 100.0 |
(13.7) | (4.05) |
Capital | Cattle Ranching | Small-Scale Family Agriculture |
---|---|---|
Financial | Livestock unit | Family labor |
Milk production | Number of crops | |
Number of cows producing milk | Financial problems | |
Cattle ranching is the main occupation | Costs for agriculture and animal supplies | |
Distance to town | Use of herbicides | |
Pasture areas | Extraction of firewood | |
Human | Maximum educational level | Household Dietary Diversity Score |
Pasture management | Good practices in crop management | |
Food supply to household | Home consumption | |
Application of best production practices | Productive activities | |
Social | Farmer association membership/participation | Household size |
Education level of the household head | Training | |
Marital status | Association | |
Social acceptance | Maximum education level | |
- | Communication | |
Physical | Technological level of the home | Technological level of the home |
Material goods | Materiality index of housing | |
Total farm area | Total farm area | |
Technological level of the farm | Electricity | |
- | Distance to town | |
Natural | Number of tree species extracted from the forest (timber forest products) | Number of tree species extracted from the forest (timber forest products) |
Reforestation | Reforestation | |
Number of areas related to natural resources | Activities with natural resources | |
Number of species extracted/hunted (no timber forest products) | Extraction of firewood | |
- | Fallow areas |
Capital | Cattle Ranching System | Small-Scale Agriculture System | ||
---|---|---|---|---|
Financial | Number of cows producing milk | 0.79 | Familiar workforce | 0.84 |
Livestock unit | 0.71 | Monthly expenses for agriculture (inputs) | 0.75 | |
Milk production (cow/day/liter) | 0.61 | Number of crops | 0.59 | |
Pastures Areas | 0.45 | Herbicide use | 0.43 | |
Occupation of the household head (rancher) | 0.34 | Financial problems | −0.30 | |
Distance to populated centers (Kilometers) | −0.56 | |||
Human | Good productive practices | 0.86 | Productive activities | 0.95 |
Pasture management | 0.79 | Home use activities | 0.64 | |
Maximum educational level | 0.19 | Household Dietary Diversity Score (HDDS) | 0.63 | |
Food Supply | −0.21 | Agricultural practices applied to crops | 0.47 | |
Social | Social acceptance | 0.62 | The home received training | 0.87 |
Marital status | 0.27 | Membership of an association | 0.77 | |
Livestock association | 0.18 | Home communication media (television, cellphone, computer, stereo) | 0.42 | |
Household size | 0.28 | |||
Education of the household head | 0.25 | |||
Physical | Total farm area | 0.54 | The technological level of home | 0.72 |
The technological level of home | 0.53 | Housing quality index | 0.62 | |
The technological level of the farm | 0.40 | Electric power | 0.57 | |
Housing quality index | 0.39 | Total farm area | 0.36 | |
Distance to populated centers (Kilometers) | −0.28 | |||
Natural | Non-timber forest products | 0.96 | Collection of firewood | 0.70 |
Timber-forest products | 0.66 | The farm has been reforested | 0.65 | |
Different areas where it extracts natural resources | 0.63 | Timber-forest products | 0.56 | |
The farm has been reforested | 0.59 | Number of activities with natural resources made by the household | 0.52 | |
Percentage of resting areas | −0.31 | |||
Sustainability Index | Financial capital | 0.83 | Human capital | 0.93 |
Human capital | 0.80 | Natural capital | 0.89 | |
Physical capital | 0.80 | Social capital | 0.86 | |
Natural capital | 0.71 | Physical capital | 0.57 | |
Social capital | 0.60 | Financial capital | 0.49 | |
Number of observations: | 164 | 139 | ||
Degrees of freedom: | 185 | 225 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez Marulanda, L.; Lavelle, P.; Rudbeck Jepsen, M.; Castro-Nunez, A.; Francesconi, W.; Camilo, K.; Vanegas-Cubillos, M.; Antonio Romero, M.; Suárez, J.C.; Solarte, A.; et al. Farmscape Composition and Livelihood Sustainability in Deforested Landscapes of Colombian Amazonia. Agriculture 2020, 10, 588. https://doi.org/10.3390/agriculture10120588
Pérez Marulanda L, Lavelle P, Rudbeck Jepsen M, Castro-Nunez A, Francesconi W, Camilo K, Vanegas-Cubillos M, Antonio Romero M, Suárez JC, Solarte A, et al. Farmscape Composition and Livelihood Sustainability in Deforested Landscapes of Colombian Amazonia. Agriculture. 2020; 10(12):588. https://doi.org/10.3390/agriculture10120588
Chicago/Turabian StylePérez Marulanda, Lisset, Patrick Lavelle, Martin Rudbeck Jepsen, Augusto Castro-Nunez, Wendy Francesconi, Karen Camilo, Martha Vanegas-Cubillos, Miguel Antonio Romero, Juan Carlos Suárez, Antonio Solarte, and et al. 2020. "Farmscape Composition and Livelihood Sustainability in Deforested Landscapes of Colombian Amazonia" Agriculture 10, no. 12: 588. https://doi.org/10.3390/agriculture10120588
APA StylePérez Marulanda, L., Lavelle, P., Rudbeck Jepsen, M., Castro-Nunez, A., Francesconi, W., Camilo, K., Vanegas-Cubillos, M., Antonio Romero, M., Suárez, J. C., Solarte, A., & Quintero, M. (2020). Farmscape Composition and Livelihood Sustainability in Deforested Landscapes of Colombian Amazonia. Agriculture, 10(12), 588. https://doi.org/10.3390/agriculture10120588