Biodiversity of Weeds in Fields of Grain in South-Eastern Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Agrotechnical Treatments
2.2. Cultivation
2.3. Soil Assessment
2.4. Analysis of Weed Infestation in Grains
2.4.1. Quadrat Method
2.4.2. Agro-Phytosociological Method
2.4.3. Weed Community Structure
2.4.4. Soil Conditions
2.5. Meteorological Conditions
2.6. Statistical Analyses
3. Results
3.1. Number and Air-Dried Mass of Weeds in Fields of Grains
3.2. Floristic Composition of Weeds
3.3. Biodiversity Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ALOMY | Alopecurus myosuroides L. |
ANTAR | Anthemis arvensis L. |
APESV | Apera spica-venti L. |
APHAR | Aphanes arvensis L. |
AVRDC | The World Vegetable Center |
BBCH | Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie |
BNI | Biological Nitrification Inhibition |
BRANA | Brassica napus L. |
CENCY | Centaurea cyanus L. |
CGIAR | Consultative Group on International Agricultural Research |
CHEAL | Chenopodium album L. |
CIRAR | Cirsium arvense L. |
CONAR | Convolvulus arvensis L. |
EQUAR | Equisetum arvense L. |
GAELA | Galeopsis ladanum L. |
GALAP | Galium aparine L. |
LAMAM | Lamium amplexicaule L. |
POLAV | Polygonum aviculare L. |
POLCO | Polygonum convolvulus L. |
POLLA | Polygonum lapathifolium L. |
RUMAA | Rumex acetosella L. |
SINAR | Sinapis arvensis L. |
STEME | Stellaria media (L.) Vill./Cyr. |
TAROF | Taraxacum officinale Web. |
VERPE | Veronica persica Poir. |
VICCR | Vicia cracca L. |
VICSA | Vicia sativa L. |
VICTE | Vicia tetrasperma L. |
VIOAR | Viola arvensis Murr. |
WSSA | Weed Science Society of America |
References
- Duer, I.; Feledyn-Szewczyk, B. Species composition and biomass of weeds in winter wheat cultivated under different crop production systems and their contribution to the uptake of mineral components from the soil. Pamiętnik Puławski 2003, 134, 65–77. (In Polish) [Google Scholar]
- Erisman, J.W.; van Eekeren, N.; de Wit, J.; Koopmans, C.H.; Cuijpers, W.; Oerlemans, N.; Koks, B.J. Agriculture and biodiversity: A better balance benefits both. Agric. Food 2016, 1, 157–174. [Google Scholar] [CrossRef]
- Haliniarz, M. The response of selected agrophytocenosis to different doses of biologically active substances of herbicides. In Monography; University of Life Science in Lublin: Lublin, Poland, 2019; p. 207. [Google Scholar]
- Feledyn-Szewczyk, B.; Smagacz, J.; Kwiatkowski, C.A.; Harasim, E.; Woźniak, A. Weed Flora and Soil Seed Bank Composition as Affected by Tillage System in Three-Year Crop Rotation. Agriculture 2020, 10, 186. [Google Scholar] [CrossRef]
- Moreta, D.E.; Mathur, P.N.; van Zonneveld, M.; Amaya, K.; Arango, J.; Selvaraj, M.G.; Dedicova, B. Current Issues in Cereal Crop Biodiversity. Adv. Biochem. Eng. Biotechnol. 2015, 147, 1–35. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B. Biodiversity as an indicator of environmental monitoring. Stud. Rep. IUNG-PIB 2016, 47, 105–124. [Google Scholar]
- Salonen, J.; Ketoja, E. Undersown cover crops have limited weed suppression potential when reducing tillage intensity in organically grown cereals. Org. Agric. 2020, 10, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Gawęda, D.; Cierpiała, R.; Harasim, E.; Haliniarz, M. Effect of tillage systems on yield, weed infestation and seed quality elements of soybean. Acta Agrophys. 2016, 23, 175–187. [Google Scholar]
- Płaza, A.; Ceglarek, F.; Królikowska, A.; Próchnicka, M. The follow-up action of undersown crops and spring barley straw on yielding and structure elements of yield of winter triticale. Folia Pomer. Univ. Technol. Stetin. 2010, 276, 31–38. [Google Scholar]
- Kowalczyk, E.; Patyra, E.; Kwiatek, K. Pyrrolizidine alkaloids as a threat to human and animal health. Vet. Med. 2015, 71, 602–607. [Google Scholar]
- Kwiatkowski, C.A.; Wesołowski, M.; Drabowicz, M.; Misztal-Majewska, B. The effect of adjuvants and reduced rates of crop protection agents on the occurrence of agricultural pests and on winter wheat productivity. Ann. UMCS 2012, E-67, 12–21. [Google Scholar]
- Czuba, R.; Wróbel, S. Weed competitiveness in nutrient uptake by crops. Ann. Soil Sci. 1983, 34, 175–184. [Google Scholar]
- GUS. Statistical Yearbook of the Republic of Poland. 2019. Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/roczniki-statystyczne/rocznik-statystycznyrzeczypospolitej-polskiej-2019,2,19.html (accessed on 26 October 2020).
- The EU’s Biodiversity Strategy to 2030. Available online: https//ec.europa.eu/environment/nature/biodiversity/strategy/index_en.htm (accessed on 26 October 2020).
- Mendelowski, S. The Town and Commune of Strzyżów; Roksana: Krosno, Poland, 2008. [Google Scholar]
- Mocek, A. Soil Science; State Scientific Publisher: Warsaw, Poland, 2015. [Google Scholar]
- Duer, I.; Fotyma, M.; Madej, A. Code of Good Agricultural Practice, 3rd ed.; Foundation for Assistance Programs for Agriculture: Warsaw, Poland, 2004; pp. 64–65. ISBN 83-88010-58-1. (In Polish) [Google Scholar]
- Strażyński, P. Recommendations for the Protection of Agricultural Plants. Vol. I; Spring Cereals and Corn. Publisher: Poznań, Poland, 2020; ISBN 978-83-64655-53-1. (In Polish) [Google Scholar]
- List of Registered Plant Protection Products by the Ministry of Agriculture and Rural Development for 2018/2019. Available online: https://www.gov.pl/web/rolnictwo/rejestr-rodkow-ochrony-roslin (accessed on 12 October 2020).
- Ryzak, M.; Bartmiński, P.; Bieganowski, A. Methods of determination of granulometric distribution of mineral soils. Acta Agroph. 2009, 175, 97. [Google Scholar]
- PN-R-04020, 1994+AZ1. Chemical and Agricultural Analysis of Soil; Polish Committee for Standardization: Warszawa, Poland, 2004. [Google Scholar]
- PN-R-04023. Chemical and Agricultural Analysis of Soil. Determination of Available Phosphorus Content in Mineral Soils; Polish Committee for Standardization: Warsaw, Poland, 1996. [Google Scholar]
- PN-ISO 10390:1997. Soil Quality—Determination of pH; Polish Committee for Standardization: Warsaw, Poland, 1997. [Google Scholar]
- Nawrocki, S. (Ed.) Fertilizer Recommendations. Part. I. Limit Numbers for Valuation of Soils in Macro- and Microelements. Part I; Institute of Soil Science and Plant Cultivation: Puławy, Poland, 1985; p. 44. (In Polish) [Google Scholar]
- Hack, V.H.; Bleiholder, H.; Buhr, L.; Meier, U.; Schnock-Fricke, U.; Weber, E.; Witzenberger, A. Einheitliche Codierung der phanologischen Entwicklungsstadien mono- und dikotyler Pflanzen—Erweiterte BBCH-Skala, Allgemein. Nachrichtenbl. Deut. Pflanzenschutzd 1992, 44, 265–270. [Google Scholar]
- Domaradzki, K.; Badowski, M.; Filipiak, K.; Franek, M.; Gołębiowska, H.; Kieloch, R.; Kucharski, M.; Rola, H.; Rola, J.; Sadowski, J. Field experiments. In Methodology Experiments of Biological Evaluation of Herbicides, Bioregulators and Adjuvants; Domaradzki, K., Ed.; Institute of Soil Science and Plant Cultivation Publishing House: Puławy, Poland, 2001; Chapter 1; p. 167. (In Polish) [Google Scholar]
- Zanin, G.; Mosca, G.; Catizone, P. A profile of the potential flora in maize fields of the Po Valley. Weed Res. 1992, 32, 407–418. [Google Scholar] [CrossRef]
- Simpson, R.L.; Leck, M.A.; Parker, V.T. (Eds.) Seed Banks: General Concepts and Methodological Issues. In Ecology of Soil Seed Banks Red; Academic Press Inc.: Cambridge, MA, USA, 1989; pp. 3–8. [Google Scholar]
- WRB. World Reference Database for Soil Resources. 2014. Available online: http://www.fao.org/3/a-i3794e.pdf (accessed on 8 June 2020).
- Skowera, B.; Kopcińska, J.; Kopeć, B. Changes in thermal and precipitation conditions in Poland in 1971–2010. Ann. Warsaw Univ. Life Sci. SGGW Land Reclam. 2014, 46, 153–162. [Google Scholar] [CrossRef]
- SAS. Users Guide; SAS Institute Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Koronacki, J. Statistics, for Students of Technical and Natural Sciences; Scientific and Technical Publishers: Warsaw, Poland, 2009; p. 491. [Google Scholar]
- John, H.M. Handbook of Biological Statistics, 3rd ed.; Sparky House Publishing: Baltimore, MD, USA, 2014; pp. 148–151. [Google Scholar]
- WSSA. Weed Science; 1985; pp. 12–15. Available online: https://www.cambridge.org/core/journals/weed-science/article/terms-definitions-and-abbreviations/BA04ABB16C2B5D7D1CDF3A50E3CA8FE7# (accessed on 26 October 2020).
- PPG. The Pteridophyte Phylogeny Group. A community-derived classification for extant lycophytes and ferns. J. Syst. Evol. 2016, 54, 563–603. [Google Scholar] [CrossRef]
- Twardowski, J.P.; Pastuszko, K. Field margins in winter wheat agrocenosis as reservoirs of beneficial ground beetles (Col., Carabidae). J. Res. Appl. Agric. Eng. 2008, 53, 123–127. [Google Scholar]
- Kieloch, R. Influence of cultivar and agrotechnics on the formation of weed infestation in agricultural crops. Stud. Rep. JUNG-PIB 2020, 61, 51–63. [Google Scholar]
- Haliniarz, M.; Gawęda, D.; Nowakowicz-Dębek, B.; Najda, A.; Chojnacka, S.; Łukasz, J.; Wlazło, Ł.; Różańska-Boczula, M. Evaluation of the Weed Infestation, Grain Health, and Productivity Parameters of Two Spelt Wheat Cultivars Depending on Crop Protection Intensification and Seeding Densities. Agriculture 2020, 10, 229. [Google Scholar] [CrossRef]
- Grundy, A.C.; Mead, A.; Bond, W.; Clark, G.; Burston, S. The impact of herbicide management on long-term changes in the diversity and species composition of weed populations. Weed Res. 2010, 51, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Pawlonka, Z.; Skrzyczyńska, J.; Ługowska, M. Influence of tillage methods and nitrogen fertilisation on weed emergence and development in winter triticale. Acta Sci. Pol. Agric. 2007, 6, 49–57. [Google Scholar]
- Stępień, A. Effect of different fertilisation methods on weed infestation and yielding of spring wheat. Acta Sci. Pol. Agric. 2004, 36, 45–54. [Google Scholar]
- Sawicka, B.; Barbaś, P.; Dąbek-Gad, M. The problem of weed infestation in the conditions of using growth bioregulators and foliar fertilization in potato cultivation. Sci. Nat. Technol. 2011, 5, 1–12. [Google Scholar]
- Bojarszczuk, J.; Podleśny, J.; Nowak, J. The assessment of the diversity of weed flora communities in crops cultivated in selected farms in Lubelskie voivodeship. Prog. Plant Prot. Postępy Ochr. Roślin 2018, 58, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Kotlarz, J.; Kubiak, K.; Kacprzak, M.; Czapski, P. Estimation of tree species diversity of forest stands based on their spectral reflectance. Sylwan 2016, 160, 1036–1045. [Google Scholar]
- Stešević, D.; Jovović, Z. Contribution to the knowledge on the weed flora in potato crop in the vicinity of ikšić (Montenegro). Herbologia 2011, 12, 1–6. [Google Scholar]
- Staniak, M.; Bojarszczuk, J.; Księżak, J. Weed infestation of spring cereals cultivated in pure sowing and undersown with serradella (Ornithopus sativus L.) in organic farm. Water. Environ. Rural. Areas 2013, 2, 121–131. [Google Scholar]
Cultivated Plant | Forecrop | Fertilization |
---|---|---|
*(A) | ||
Winter wheat | Rape | N—160 kg·ha−1, P2O5—66 kg·ha−1, K2O—66 kg·ha−1, S—40 kg·ha−1, MgO—9 kg·ha−1 |
Spring wheat | Corn | N—120 kg·ha−1, P2O5—56 kg·ha−1, K2O—50 kg·ha−1, S—45 kg·ha−1, MgO—9 kg·ha−1 |
Spring triticale | Winter rape | N—50 kg·ha−1, P2O5—40 kg·ha−1, K2O—40 kg·ha−1 |
(B) | ||
Winter wheat | Corn | N—120 kg·ha−1, P2O5—60 kg·ha−1, K2O—60 kg·ha−1 |
Spring wheat | Potato | N—90 kg·ha−1, P2O5—40 kg·ha−1, K2O—40 kg·ha−1, S—40 kg·ha−1, MgO—15 kg·ha−1 |
Spring triticale | Winter rape | N—50 kg·ha−1, P2O5—30 kg·ha−1, K2O—30 kg·ha−1 |
(C) | ||
Winter wheat | Rape | N—60 kg·ha−1, P2O5—40 kg·ha−1, K2O—40 kg·ha−1 |
Spring wheat | Corn | N—120 kg·ha−1, P2O5—45 kg; K2O—45 kg·ha−1, S—45 kg·ha−1, MgO—20 kg·ha−1 |
Spring triticale | Rape | N—60 kg·ha−1, P2O5—55 kg·ha−1, K2O—60 kg·ha−1 |
(D) | ||
Winter wheat | Potato | N—90 kg·ha−1, P2O5—50 kg·ha−1, K2O—50 kg·ha−1 |
Spring wheat | Fodder beet | N—70 kg·ha−1, P2O5—42 kg·ha−1, K2O—42 kg·ha−1 |
Spring triticale | Rape | N—50 kg·ha−1, P2O5—34 kg·ha−1, K2O—34 kg·ha−1 |
(E) | ||
Winter wheat | Oat | N—130 kg·ha−1, P2O5—50 kg·ha−1, K2O—50 kg·ha−1 |
Spring wheat | Winter rape | N—90 kg·ha−1, P2O5—40 kg·ha−1, K2O—40 kg·ha−1 |
Spring triticale | Winter rape | N—80 kg·ha−1, P2O5—45 kg·ha−1, K2O—50 kg·ha−1 |
Mechanical Treatments | Chemical Treatments |
---|---|
Shallow ploughing, presowing, ploughing | Apyros 75 WG (sulfosulfuron) + Starane 333 EC (fluroksypyr) 26.5 g·ha−1 + 0.8 dm3 ha −1 |
Cultivator, prewinter ploughing, spring harrowing | Chwastox MP 600 SL (mekoprop-P) + Agritox Turbo 750 SL(MCPA + dicamba) 1 dm3 ha−1 + 1.25 dm3 ha−1 |
Shallow ploughing, harrowing, presowing, ploughing | Chwastox MP 600 SL (mekoprop-P) + Starane 330 EC (fluroksypyr) 1 dm3 ha−1 + 0.8 dm3 ha−1 |
Preparation Trade Names | Active Substances | Content of Active Substances | Dosage | Utility Forms | Grace * |
---|---|---|---|---|---|
Herbicides | |||||
Apyros 75 WG | Sulfosulfuron | 75% | 26.5g·ha−1 | Granules for water suspension | Not applicable |
Starane 333 EC | Fluroxypyr | 31.56% | 0.8 dm3 ha−1 | Concentrate for water suspension | Not applicable |
Chwastox MP 600 SL | Mecoprop-P | 52.9% | 1 dm3 ha−1 | Concentrate for water suspension | Not applicable |
Agritox Turbo 750 SL | MCPA + Dicamba | 55.71% 7.59% | 1.25 dm3 ha−1 | Concentrate for water suspension | Not applicable |
Farms * | Percentage of Fraction with Diameter (mm Diameter) | Grain Size Subgroup | ||
---|---|---|---|---|
Sand | Silt | Clay | ||
2.0–0.05 mm | 0.05–0.002 mm | <0.002 mm | ||
A | 72.95 | 18.47 | 8.58 | Sandy loam |
B | 65.08 | 25.21 | 9.71 | Sandy loam |
C | 75.05 | 18.56 | 6.39 | Sandy loam |
D | 70.40 | 19.94 | 9.66 | Sandy loam |
E | 72.60 | 16.97 | 10.43 | Sandy loam |
Average | 71.22 | 19.83 | 8.95 | Sandy loam |
Farms * | Macronutrients (mg·100−1 of Soil) | CaCO3 (g kg−1) | Humus (g kg−1) | pH (KCL) | Micronutrients (mg kg−1 of Soil) | |||||
---|---|---|---|---|---|---|---|---|---|---|
P2O5 | K2O | Mg | Cu | Mn | Zn | Fe | ||||
A * | 5.5–14.1 | 17.0–28.1 | 3.8–13.7 | 0.02 | 1.79–2.69 | 5.3–6.7 | 5.61 | 177.1 | 14.4 | 1581 |
B | 5.1–17.0 | 11.7–28.3 | 2.5–15.0 | 0.03 | 1.45–1.70 | 4.9–7.4 | 5.71 | 172.9 | 14.5 | 1572 |
C | 10.6–16.3 | 11.4–20.1 | 2.8–6.4 | 0.02 | 1.98–2.75 | 4.6–5.6 | 5.61 | 177.1 | 14.4 | 1569 |
D | 5.2–12.4 | 15.2–25.6 | 3.1–8.7 | 0.03 | 2.13–2.65 | 4.4–6.1 | 5.34 | 169.2 | 15.1 | 1610 |
E | 8.5–29.0 | 13.4–22.0 | 1.8–7.3 | 0.02 | 2.01–2.78 | 5.1–6.2 | 5.68 | 172.3 | 14.9 | 1597 |
Mean | 5.1–29.0 | 11.4–28.3 | 1.8–15.0 | 0.02–0.03 | 1.45–2.78 | - | 5.59 | 173.7 | 14.7 | 1586 |
Year | Month | Rainfall (mm) | Sum of Rainfall (mm) | Temperature (°C) | Average Temperature (°C) | Sielianinov Hydrothermal Coefficient | ||||
---|---|---|---|---|---|---|---|---|---|---|
Decade of the Month | Decade of the Month | |||||||||
1 | 2 | 3 | 1 | 2 | 3 | |||||
2013/2014 | September | 35.1 | 41.4 | 47.9 | 124.4 | 14.3 | 14.2 | 10.6 | 13.0 | 3.2 |
October | 21.2 | 24.6 | 32.2 | 78 | 10.1 | 8.6 | 12.5 | 10.4 | 2.5 | |
November | 18.1 | 20.8 | 16.1 | 55.0 | 5.1 | 5.0 | 4.6 | 4.9 | 3.7 | |
December | 6.2 | 16.9 | 8.1 | 31.2 | 2.9 | 3.0 | 3.1 | 3.0 | - | |
January | 5.9 | 4.2 | 7.5 | 17.6 | 2.1 | 2.0 | 2.4 | 2.2 | - | |
February | 6.5 | 1.5 | 2.0 | 10.0 | -2.5 | -2.8 | -2.3 | -2.5 | - | |
March | 4.4 | 7.2 | 5.8 | 17.4 | 1.8 | 2.2 | 1.9 | 2.0 | - | |
April | 7.8 | 7.2 | 6.4 | 21.4 | 15.1 | 14.1 | 17.3 | 15.5 | 0.5 | |
May | 19.1 | 20.2 | 8.9 | 48.2 | 17.6 | 18.9 | 19.8 | 18.8 | 0.9 | |
June | 12 | 16.5 | 13.5 | 42 | 18.4 | 18.9 | 25.4 | 20.9 | 0.7 | |
July | 27.2 | 20.8 | 14.5 | 62.6 | 20.1 | 21.6 | 22.2 | 21.3 | 1.0 | |
August | 33.2 | 45.1 | 15.3 | 93.6 | 20.8 | 21.9 | 22.1 | 21.6 | 1.4 | |
Total | 601.4 | |||||||||
2014/2015 | September | 11.2 | 10.1 | 12.7 | 34.0 | 15.6 | 15.8 | 16.9 | 16.1 | 0.7 |
October | 11.3 | 16.8 | 11.7 | 39.8 | 11.6 | 11.8 | 12.1 | 11.8 | 1.1 | |
November | 2.8 | 3.0 | 3.6 | 9.4 | 5.9 | 6.3 | 6.2 | 6.1 | 0.5 | |
December | 13.4 | 16.1 | 10.9 | 40.4 | 1.2 | 1.4 | 1.9 | 1.5 | - | |
January | 10.1 | 9.7 | 11.2 | 31.0 | -1.2 | -1.8 | -1.7 | -1.6 | - | |
February | 3.62 | 7.45 | 5.53 | 16.6 | 4.3 | 4.6 | 4.8 | 4.6 | - | |
March | 8.0 | 9.2 | 8.6 | 25.8 | 7.6 | 7.8 | 7.1 | 7.5 | - | |
April | 22.5 | 23.8 | 25.1 | 71.4 | 10.8 | 9.8 | 11.2 | 10.6 | 2.2 | |
May | 46.8 | 75.2 | 62.1 | 184.1 | 13.7 | 13.8 | 13.6 | 13.7 | 4.5 | |
June | 6.0 | 7.1 | 6.5 | 19.6 | 20.4 | 23.1 | 25.4 | 23.0 | 0.3 | |
July | 40.3 | 45.1 | 42.7 | 128.1 | 19.8 | 19.3 | 21.5 | 20.2 | 2.1 | |
August | 14.0 | 21.0 | 25.0 | 60.0 | 20.1 | 19.6 | 22.2 | 20.6 | 1.0 | |
Total | 660.2 | |||||||||
2015/2016 | September | 22.5 | 14.5 | 29 | 66.0 | 15.4 | 15.1 | 16.1 | 15.53 | 1.4 |
October | 10.1 | 13.8 | 18.7 | 42.6 | 12.5 | 12.6 | 12.8 | 12.6 | 1.1 | |
November | 19.2 | 21.4 | 17.2 | 57.8 | 8.6 | 7.6 | 8.7 | 8.3 | 2.3 | |
December | 11.4 | 15.0 | 18.7 | 45.1 | 4.0 | 5.1 | 3.6 | 4.2 | - | |
January | 6.9 | 2.5 | 5.2 | 14.6 | 1.2 | 1.8 | 1.9 | 1.6 | - | |
February | 12.9 | 18.2 | 23.1 | 54.2 | 4.6 | 4.3 | 4.8 | 4.6 | - | |
March | 6.8 | 5.6 | 4.2 | 16.6 | 5.4 | 7.2 | 8.0 | 6.9 | - | |
April | 26.3 | 19.6 | 24.1 | 70.0 | 9.8 | 8.7 | 11.6 | 10.0 | 2.3 | |
May | 21.8 | 47.1 | 38.2 | 107.1 | 11.6 | 12.6 | 12.9 | 12.4 | 2.9 | |
June | 55.7 | 49.8 | 53.1 | 158.6 | 16.9 | 17.3 | 17.2 | 17.1 | 3.1 | |
July | 15.4 | 9.4 | 10.2 | 35.0 | 20.2 | 19.6 | 21.3 | 20.4 | 0.6 | |
August | 19.7 | 11.1 | 15.2 | 46.0 | 21.6 | 20.6 | 21.8 | 21.3 | 0.7 | |
Total | 713.6 |
Farms * | Number of Weeds (No m−2) | Air-Dried Mass of Weeds (g m−2) | ||||
---|---|---|---|---|---|---|
Winter Wheat | Spring Wheat | Spring Triticale | Winter Wheat | Spring Wheat | Spring Triticale | |
A | 8.0c | 76.8a | 28.8b | 9.1a | 17.7a | 42.8a |
B | 2.0d | 23.2c | 72.0a | 0.3e | 1.9d | 13.6b |
C | 30.4a | 42.0b | 21.6bc | 3.8c | 8.2b | 2.4 cd |
D | 15.6b | 6.4d | 34.8b | 7.5b | 2.8d | 6.2c |
E | 13.6b | 20.8c | 16.8cd | 2.3d | 5.9c | 4.0c |
LSD0.05 | 3.55 | 8.6 | 8.5 | 1.2 | 1.9 | 3.5 |
No | Species * | Number of Weeds (No m−2) | LSD0.05 | Air-Dried Mass of Weeds (g m−2) | LSD0.05 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | A | B | C | D | E | ||||
1 | ANTAR | 0.0 | 1.2 | 8.8 | 5.2 | 0.0 | 0.8 | 0.0 | 0.2 | 1.9 | 0.4 | 0.0 | 0.1 |
2 | APHAR | 0.0 | 0.0 | 0.0 | 2.4 | 0.0 | ns | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | ns |
3 | CIRAR | 0.0 | 0.0 | 4.0 | 3.2 | 3.2 | 0.5 | 0.0 | 0.0 | 0.5 | 0.7 | 0.4 | 0.1 |
4 | CONAR | 1.6 | 0.0 | 0.0 | 4.8 | 0.0 | 0.3 | 4.2 | 0.0 | 0.0 | 5.9 | 0.0 | 0.5 |
5 | EQUAR | 2.4 | 0.0 | 8.0 | 0.0 | 3.2 | 2.7 | 0.6 | 0.0 | 1.3 | 0.0 | 0.8 | 0.1 |
6 | POLLA | 0.0 | 0.0 | 1.6 | 0.0 | 0.0 | ns | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ns |
7 | POLCO | 0.0 | 0.0 | 0.0 | 0.0 | 3.2 | ns | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | ns |
8 | RUMAA | 3.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 3.8 | 0.0 | 0.0 | 0.0 | 0.0 | ns |
9 | VICCR | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | ns | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | ns |
10 | VICTE | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | ns | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ns |
11 | VIOAR | 0.8 | 0.8 | 0.0 | 0.0 | 4.0 | 0.2 | 0.5 | 0.1 | 0.1 | 0.0 | 1.0 | ns |
Sum of species | 4 | 2 | 5 | 4 | 5 | - | 4 | 2 | 5 | 4 | 5 | - | |
* | 97.8 | 96.5 | 87.7 | 92.4 | 95.1 | - | - | - | - | - | - | - | |
** | 0.0 | 0.0 | 0.0 | 0.9 | 0.0 | - | - | - | - | - | - | - | |
*** | 2.0 | 3.5 | 11.2 | 6.7 | 4.2 | - | - | - | - | - | - | - | |
**** | 0.2 | 0.0 | 1.1 | 0.0 | 0.7 | - | - | - | - | - | - | - |
No | Species * | The Number of Weeds (No m−2) | LSD0.05 | Air-Dried Mass of Weeds (g m−2) | LSD0.05 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | A | B | C | D | E | ||||
1 | ANTAR | 0.0 | 0.0 | 4.0 | 0.0 | 4.8 | 0.4 | 0.0 | 0.0 | 0.8 | 1.1 | 1.0 | 0.1 |
2 | APESV | 0.0 | 0.8 | 0.7 | 0.0 | 1.6 | 0.2 | 0.0 | 0.1 | 0.1 | 0.0 | 0.1 | ns |
3 | APHAR | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 | ns | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | ns |
4 | BRANA | 67.2 | 0.0 | 0.0 | 0.0 | 0.0 | ns | 10.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 |
5 | CIRAR | 6.4 | 0.0 | 11.5 | 0.8 | 4.0 | 0.5 | 6.2 | 0.0 | 2.3 | 0.2 | 4.3 | 0.7 |
6 | EQUAR | 0.8 | 0.0 | 3.5 | 1.6 | 2.4 | 0.4 | 0.2 | 0.0 | 0.7 | 1.0 | 0.9 | 0.2 |
7 | GAELA | 0.0 | 2.4 | 1.5 | 0.0 | 1.6 | 0.3 | 0.0 | 0.3 | 0.3 | 0.0 | 0.2 | ns |
8 | GALAP | 0.0 | 0.8 | 0.6 | 0.0 | 0.0 | ns | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | ns |
9 | POLAV | 0.8 | 0.0 | 1.1 | 3.2 | 0.0 | 0.3 | 0.2 | 0.0 | 0.2 | 0.5 | 0.0 | ns |
10 | POLCO | 0.0 | 4.0 | 1.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.1 | 0.2 | 0.0 | 0.0 | ns |
11 | POLLA | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | ns | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | ns |
12 | RUMAA | 0.0 | 0.0 | 5.6 | 0.0 | 0.0 | ns | 0.0 | 0.0 | 1.1 | 0.0 | 0.0 | ns |
13 | SINAR | 0.0 | 15.2 | 3.3 | 0.0 | 6.4 | 1.3 | 0.0 | 0.8 | 0.6 | 0.0 | 0.4 | ns |
14 | VIOAR | 1.6 | 0.0 | 1.7 | 0.8 | 0.0 | 0.2 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | ns |
Sum of species | 5 | 5 | 13 | 4 | 6 | - | 5 | 5 | 13 | 4 | 6 | - | |
* | 93.8 | 95.6 | 88.3 | 96.9 | 94.5 | - | - | - | - | - | - | - | |
** | 0.0 | 0.1 | 0.2 | 0.0 | 0.2 | - | - | - | - | - | - | - | |
*** | 6.0 | 4.3 | 10.8 | 2.9 | 4.0 | - | - | - | - | - | - | - | |
**** | 0.2 | 0.0 | 0.7 | 0.2 | 1.3 | - | - | - | - | - | - | - |
No | Species | The Number of Weeds (No m−2) | LSD0.05 | Air-Dried Mass of Weeds (g m−2) | LSD0.05 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | A | B | C | D | E | ||||
1 | ANTAR | 0.8 | 0.6 | 6.4 | 0.0 | 3.2 | 0.4 | 0.2 | 0.1 | 1.2 | 0.0 | 0.5 | 0.1 |
2 | APESV | 2.4 | 1.1 | 0.0 | 2.2 | 1.6 | 0.3 | 0.2 | 0.2 | 0.0 | 0.4 | 0.2 | ns |
3 | BRANA | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | ns | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 |
4 | CENCY | 0.0 | 0.0 | 4.8 | 2.3 | 0.0 | 0.4 | 0.0 | 0.0 | 0.4 | 0.5 | 0.0 | ns |
5 | CHEAL | 0.0 | 0.7 | 2.4 | 2.1 | 0.0 | 0.3 | 0.0 | 0.1 | 0.4 | 0.4 | 0.1 | ns |
6 | CIRAR | 3.2 | 5.2 | 0.0 | 1.3 | 0.0 | 0.5 | 1.3 | 1.0 | 0.0 | 0.2 | 0.0 | 0.1 |
7 | GAELA | 0.0 | 1.1 | 0.0 | 0.6 | 0.0 | ns | 0.0 | 0.2 | 0.0 | 0.1 | 0.0 | ns |
8 | GALAP | 0.0 | 0.0 | 1.6 | 0.0 | 0.0 | ns | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ns |
9 | EQUAR | 2.4 | 9.1 | 0.0 | 4.1 | 2.4 | 0.8 | 1.1 | 1.7 | 0.4 | 0.7 | 1.1 | 0.3 |
10 | LAMAM | 0.8 | 1.0 | 0.0 | 1.3 | 0.8 | 0.2 | 0.3 | 0.2 | 0.0 | 0.2 | 0.2 | ns |
11 | POLLA | 0.8 | 0.0 | 4.8 | 0.0 | 4.8 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ns |
12 | POLCO | 1.6 | 1.2 | 0.0 | 0.7 | 0.0 | 0.2 | 0.3 | 0.2 | 0.0 | 0.1 | 0.0 | ns |
13 | POLAV | 0.0 | 5.5 | 0.0 | 3.1 | 0.0 | 0.4 | 1.6 | 1.1 | 0.0 | 0.6 | 0.0 | 0.2 |
14 | STEME | 3.2 | 5.5 | 0.0 | 1.2 | 0.0 | 0.5 | 2.0 | 1.0 | 0.0 | 0.1 | 0.0 | 0.2 |
15 | TAROF | 0.8 | 10.6 | 0.0 | 5.8 | 0.0 | 0.9 | 10.4 | 2.0 | 0.0 | 1.0 | 0.0 | 0.7 |
16 | VICCR | 4.0 | 5.8 | 0.0 | 2.2 | 4.0 | 0.6 | 1.9 | 1.1 | 0.0 | 0.4 | 1.9 | 0.3 |
17 | VICSA | 0.0 | 1.0 | 1.6 | 0.7 | 0.0 | 0.2 | 0.3 | 0.2 | 0.0 | 0.1 | 0.0 | ns |
18 | VIOAR | 4.0 | 12.0 | 0.0 | 3.6 | 0.0 | 1.0 | 3.6 | 2.3 | 0.0 | 0.6 | 0.0 | 0.3 |
19 | VICTE | 0.0 | 0.8 | 0.0 | 0.0 | 0.0 | ns | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | ns |
20 | VERPE | 0.8 | 10.8 | 0.0 | 3.6 | 0.0 | 0.8 | 4.4 | 2.1 | 0.0 | 0.5 | 0.0 | 0.4 |
Sum of species | 13 | 16 | 6 | 15 | 6 | - | 13 | 16 | 6 | 15 | 6 | - | |
* | 81.0 | 94.1 | 89.2 | 93.3 | 95.4 | - | - | - | - | - | - | - | |
** | 0.9 | 0.0 | 0.0 | 0.0 | 0.1 | - | - | - | - | - | - | - | |
*** | 16.1 | 4.9 | 11.2 | 6.2 | 4.3 | - | - | - | - | - | - | - | |
**** | 2.0 | 1.0 | 0.0 | 1.1 | 1.0 | - | - | - | - | - | - | - |
Species | Farms * | Average | ||||
---|---|---|---|---|---|---|
A | B | C | D | E | ||
Shannon index (H’) | ||||||
Winter wheat | 0.56 | 0.29 | 0.64 | 0.64 | 0.14 | 0.45 |
Spring wheat | 0.22 | 0.45 | 0.97 | 0.53 | 0.72 | 0.58 |
Spring triticale | 0.92 | 0.90 | 0.68 | 1.00 | 0.72 | 0.84 |
Simpson index (D) | ||||||
Winter wheat | 0.20 | 0.04 | 0.24 | 0.24 | 0.18 | 0.18 |
Spring wheat | 0.76 | 0.46 | 0.09 | 0.20 | 0.15 | 0.33 |
Spring triticale | 0.05 | 0.10 | 0.18 | 0.07 | 0.16 | 0.11 |
Simpson’s Reciprocal Index | ||||||
Winter wheat | 5.00 | 25.00 | 4.17 | 4.17 | 5.56 | 8.78 |
Spring wheat | 1.31 | 2.17 | 10.11 | 5.00 | 6.66 | 5.05 |
Spring triticale | 20.00 | 10.00 | 5.55 | 14.28 | 6.25 | 11.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawicka, B.; Krochmal-Marczak, B.; Barbaś, P.; Pszczółkowski, P.; Ćwintal, M. Biodiversity of Weeds in Fields of Grain in South-Eastern Poland. Agriculture 2020, 10, 589. https://doi.org/10.3390/agriculture10120589
Sawicka B, Krochmal-Marczak B, Barbaś P, Pszczółkowski P, Ćwintal M. Biodiversity of Weeds in Fields of Grain in South-Eastern Poland. Agriculture. 2020; 10(12):589. https://doi.org/10.3390/agriculture10120589
Chicago/Turabian StyleSawicka, Barbara, Barbara Krochmal-Marczak, Piotr Barbaś, Piotr Pszczółkowski, and Marek Ćwintal. 2020. "Biodiversity of Weeds in Fields of Grain in South-Eastern Poland" Agriculture 10, no. 12: 589. https://doi.org/10.3390/agriculture10120589
APA StyleSawicka, B., Krochmal-Marczak, B., Barbaś, P., Pszczółkowski, P., & Ćwintal, M. (2020). Biodiversity of Weeds in Fields of Grain in South-Eastern Poland. Agriculture, 10(12), 589. https://doi.org/10.3390/agriculture10120589