Segetal Diversity in Selected Legume Crops Depending on Soil Tillage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment and Cultivation Management
2.2. Analysis of Weed Flora
- The tillering stage of legume (BBCH 61–65).
- The seed ripening stage (before the legume harvest) (BBCH 89–92).
2.3. Diversity Indicators
- H’= −Σ pi ln pi
- SI = Σ pi2
- where:
- pi = n/N,
- n—number of individuals in species,
- N—total number of individuals in the sampling area, and
- ln—the natural log.
2.4. Weather Conditions
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilson, R.G. Biology of Weed Seeds in the Soil. W: Weed Management in Agroecosystems: Ecological Approaches; Altieri, M.A., Liebman, M., Eds.; CRC Press, Inc.: Boca Raton, FL, USA, 1988; Volume 3, pp. 25–39. [Google Scholar]
- Sekutowski, T.; Smagacz, J. Share of anthropophytes in the crop sequence: Winter wheat—Maize—Spring wheat depending on tillage system. Acta Agrobot. 2014, 67, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Koller, K. Techniques of Soil Tillage. In Soil Tillage in Agroecosystems; Titi, A.E., Ed.; CRC Press: Boca Raton, FL, USA, 2003; pp. 1–25. [Google Scholar]
- Dzienia, S.; Zimny, L.; Weber, R. Najnowsze kierunki w uprawie roli i technice siewu [The newest trends in soil tillage and techniques of sowing]. Fragm. Agron. 2006, 2, 227–241. (In Polish) [Google Scholar]
- Weber, R. Wpływ okresu stosowania systemów bezpłużnych na właściwości gleby [Soil properties as affected by duration of using no-tillage systems]. Postepy Nauk Rol. 2010, 1, 63–75. (In Polish) [Google Scholar]
- Holland, J.M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Kraska, P. Effect of conservation tillage and catch crops on some chemical properties of rendzina soil. Acta Sci. Pol. Agric. 2011, 10, 77–92. [Google Scholar]
- Jedruszczak, M.; Palys, E.; Kraska, P. Conservation tillage and weeds—Sustainability implication. ISTRO. In Proceedings of the 17th Triennial Conference, Sustainability—Its Impact on Soil Management and Environment, Kiel, Germany, 28 August–3 September 2006; pp. 558–565. [Google Scholar]
- Pullaro, T.C.; Marino, P.C.; Jackson, D.M.; Harrison, H.F.; Keinath, A.P. Effects of killed cover crop mulch on weeds, weed seeds, and herbivores. Agric. Ecosyst. Environ. 2006, 115, 97–104. [Google Scholar] [CrossRef]
- Piskier, T.; Sekutowski, T.R. Wpływ uproszczeń w uprawie roli na liczebność oraz rozmieszczenie nasion chwastów w glebie. J. Res. Appl. Agric. Eng. 2013, 58, 109–117. [Google Scholar]
- Wrzesińska, E.; Pużyński, S.; Komorowska, A. The effect of tillage systems on soil seedbank. Acta Agrobot. 2013, 66, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Podleśny, J.; Podleśna, A. The effect of soil tillage in darkness on weed infestation. Fragm. Agron. 1997, 2b, 539–542. [Google Scholar]
- Bojarszczuk, J.; Podleśny, J.; Nowak, J. The assessment of the diversity of weed flora communities in crops cultivated in selected farms in Lubelskie voivodeship. Prog. Plant Prot. 2018, 58, 216–223. [Google Scholar]
- Lemerle, D.; Smith, A.; Verbeek, B.; Rudd, S.; Martin, P. Breeding for competitive cultivars of wheat. In Proceedings of the III International Weed Science Congress, Foz do Iguassu, Brazil, 6–11 June 2000; pp. 11–75. [Google Scholar]
- Jug, I.; Jug, D.; Sabo, M.; Stipesevc, B.; Stosic, M. Winter wheat yield and yield components as affected by soil tillage systems. Turk. J. Agric. For. 2011, 35, 1–7. [Google Scholar]
- De Vita, P.; Di Paolo, E.; Fecondo, G.; Di Fonzo, N.; Pisante, M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res. 2007, 92, 69–78. [Google Scholar] [CrossRef]
- Rieger, S.; Richner, W.; Streit, B.; Frossard, E.; Liedgens, M. Growth, yield, and yield components of winter wheat and the effects of tillage intensity, proceeding crops, and N fertilization. Eur. J. Agron. 2008, 28, 405–411. [Google Scholar] [CrossRef]
- Streit, B.; Rieger, S.; Stamp, P.; Richner, W. Weed populations in winter wheat as affected by crop sequence, intensity of tillage and time of herbicide application in a cool and humid climate. Weed Res. 2002, 43, 20–32. [Google Scholar] [CrossRef]
- Ozpinar, S. Effects of tillage systems on weed population and economics for winter wheat production under the Mediterranean dryland conditions. Soil Tillage Res. 2006, 87, 1–8. [Google Scholar] [CrossRef]
- Woźniak, A.; Soroka, M.; Stępniowska, A.; Makarski, B. Chemical composition of pea (Pisum sativum L.) seeds depending on tillage systems. J. Elem. 2006, 19, 1143–1152. [Google Scholar] [CrossRef]
- Małecka-Jankowiak, I.; Blecharczyk, A.; Swędrzyńska, D.; Sawinska, J.; Piechota, T. The effect of long-term tillage systems on some soil properties and yield of pea. Acta Sci. Pol. Agric. 2016, 15, 37–50. [Google Scholar]
- Yin, X.; Al-Kaisi, M.M. Periodic response of soybean yields and economic returns to long term no tillage. Agron. J. 2004, 96, 723–733. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://commons.wikimedia.org/w/index.php?curid=89531 (accessed on 1 August 2018).
- Mirek, Z.; Piękoś-Mirkowa, H.; Zając, A.; Zając, M. Flowering Plants and Pteridophytes of Poland a Checklist. In Krytyczna Lista Roślin Naczyniowych Polski. W.; Szafer Institute of Botany, Polish Academy of Science: Kraków, Poland, 2002; p. 442. [Google Scholar]
- Patriquin, D.G.; Bains, D.; Lewis, J.; Macdougall, A. Weed control in organic farming systems. In Weed Control in Agroecosystems: Ecological Approaches; Altieri, M.A., Liebman, M., Eds.; CRS Press: Boca Raton, FL, USA, 1988; pp. 303–317. [Google Scholar]
- Shannon, C.E. A mathematical theory of communications. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.H. Measurement of diversity. Nature 1949, 168, 668. [Google Scholar] [CrossRef]
- Peigné, J.; Ball, B.C.; Roger-Estrade, J.; David, C. Is conservation tillage suitable for organic farming? A review. Soil Use Manag. 2007, 23, 129–144. [Google Scholar] [CrossRef]
- Gruber, S.; Claupein, W. Effect of tillage intensity on weed infestation in organic farming. Soil Tillage Res. 2009, 105, 104–111. [Google Scholar] [CrossRef]
- Demjanová, E.; Macák, M.; Dalovic, I.; Majernik, F.; Tyr, S.; Smatana, S. Effects of tillage systems and crop rotation on weed density, weed species composition and weed biomass in maize. Agron. Res. 2009, 7, 785–792. [Google Scholar]
- Woźniak, A.; Wesołowski, M.; Soroka, M. Effect of long-term reduced tillage on grain yield, grain quality and weed infestation of spring wheat. J. Agric. Sci. Technol. 2015, 17, 899–908. [Google Scholar]
- Vakali, C.; Zaller, J.G.; Köpke, U. Reduced tillage effects on soil properties and growth of cereals and associated weeds under organic farming. Soil Tillage Res. 2011, 111, 133–141. [Google Scholar] [CrossRef]
- Armengot, L.; Berner, A.; Blanco-Moreno, J.M.; Mäder, P.; Sans, F.X. Long-term feasibility of reduced tillage in organic farming. Agron. Sustain. Dev. 2015, 35, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, A. Effect of tillage system on the structure of weed infestation of winter wheat. Span. J. Agric. Res. 2019, 16, 1009. [Google Scholar] [CrossRef]
- Clements, D.R.; Benoit, D.L.; Murphy, S.D.; Swanton, C.J. Tillage Effects on Weed Seed Return and Seedbank Composition; Cambridge University Press: Cambridge, UK, 1996; pp. 314–322. [Google Scholar]
- Bilalis, D.; Efthimiadis, P.; Sidiras, N. Effect of three tillage systems on weed flora in a 3-year rotation with four crops. J. Agron. Crop Sci. 2001, 186, 135–141. [Google Scholar] [CrossRef]
- Santín-Montanyá, M.I.; Martín-Lammerding, D.; Walter, I.; Zambrana, E.; Tenorio, J.L. Effects of tillage, crop systems and fertilization on weed abundance and diversity in 4-year dry land winter wheat. Eur. J. Agron. 2013, 48, 43–49. [Google Scholar] [CrossRef]
- Gawęda, D.; Haliniarz, M.; Bronowicka-Mielniczuk, U.; Łukasz, J. Weed infestation and health of the soybean crop depending on cropping system and tillage system. Agriculture 2020, 10, 208. [Google Scholar] [CrossRef]
- Sebayang, H.T.; Rifai, A.P. The effect of soil tillage system and weeding time on the growth of weed and yield of soybean (Glycine max (L.) Merril). J. Degrad. Min. Lands Manag. 2018, 5, 1237–1243. [Google Scholar] [CrossRef] [Green Version]
- Gawęda, D.; Haliniarz, M.; Cierpiała, R.; Klusek, I. Yield, Weed infestation and seed quality of soybean (Glycine max (L.) Merr.) under different tillage systems. J. Agric. Sci. 2017, 23, 268–275. [Google Scholar]
- Sebayang, H.T.; Fatimah, S. The effect of tillage systems and dosages of cow manure on weed and soybeans yield (Glycine max, Merrill). J. Degrad. Min. Lands Manag. 2019, 7, 1959–1963. [Google Scholar] [CrossRef]
- Woźniak, A.; Rachoń, L. Effect of tillage systems on pea crop infestation with weeds. Arch. Agron. Soil Sci. 2019, 65, 877–885. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Smagacz, J.; Kwiatkowski, C.A.; Harasim, E.; Woźniak, A. Weed flora and soil seed bank composition as affected by tillage system in three-year crop rotation. Agriculture 2020, 10, 186. [Google Scholar] [CrossRef]
- Legere, A.C.S.F.; Stevenson, F.C.; Benoit, D.L. Diversity and assembly of weed communities: Contrasting responses across cropping systems. Weed Res. 2005, 45, 303–315. [Google Scholar] [CrossRef]
- Sans, F.X.; Berner, A.; Armengot, L.; Mäder, P. Tillage effects on weed communities in an organic winter wheat–sunflower–spelt cropping sequence. Weed Res. 2011, 51, 413–421. [Google Scholar] [CrossRef]
- Mancinelli, R.; Muleo, R.; Marinari, S.; Radicetti, E. How Soil Ecological Intensification by Means of Cover Crops Affects Nitrogen Use Effciency in Pepper Cultivation. Agriculture 2019, 9, 145. [Google Scholar] [CrossRef] [Green Version]
- Campiglia, E.; Radicetti, E.; Mancinelli, R. Floristic composition and species diversity of weed community after 10 years of different cropping systems and soil tillage in a Mediterranean environment. Weed Res. 2018, 58, 273–283. [Google Scholar] [CrossRef]
- Velykis, A.; Satkus, A. Weed infestation and changes in field pea (Pisum sativum L.) yield as affected by reduced tillage of a clay loam soil. Zemdirbyste 2010, 97, 73–82. [Google Scholar]
Specification | Month | Sum/ Average III-VIII | |||||
---|---|---|---|---|---|---|---|
III | IV | V | VI | VII | VIII | ||
2017 | |||||||
Precipitation (mm) | 35.8 | 69.1 | 34.4 | 32.6 | 86.3 | 55.3 | 313.5 |
Temperature °C | 5.7 | 7.5 | 13.9 | 18.1 | 18.6 | 19.6 | 13.9 |
2018 | |||||||
Precipitation (mm) | 14.1 | 25.3 | 97.4 | 44.6 | 118.5 | 70.6 | 370.5 |
Temperature °C | −0.1 | 13.3 | 17.0 | 18.4 | 20.4 | 20.2 | 14.9 |
2019 | |||||||
Precipitation (mm) | 22.2 | 37.5 | 51.5 | 51.2 | 20.2 | 69.8 | 252.4 |
Temperature °C | 5.4 | 9.8 | 13.1 | 21.7 | 18.7 | 20.2 | 14.8 |
* Average precipitation from multi-year (mm) | 30.0 | 39.0 | 57.0 | 71.0 | 84.0 | 75.0 | 356.0 |
Mean temperature from multi-year °C | 1.6 | 7.7 | 13.4 | 16.7 | 18.3 | 17.3 | 12.5 |
Tillage System | Crop Species | |||||
---|---|---|---|---|---|---|
Pea | Narrow-Leaved Lupine | |||||
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | |
NT | 17.2 c | 28.2 c | 22.9 c | 18.2 c | 30.5 c | 27.1 c |
RT | 15.1 b | 25.6 b | 19.2 b | 16.0 b | 22.0 b | 20.1 b |
CT | 12.0 a | 16.9 a | 15.2 a | 13.5 a | 19.2 a | 18.0 a |
Mean | 14.8 | 23.6 | 19.1 | 15.9 | 23.9 | 21.7 |
Tillage System | Crop Species | |||||
---|---|---|---|---|---|---|
Pea | Narrow-Leaved Lupine | |||||
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | |
NT | 27.9 c | 24.6 c | 25.9 c | 29.0 c | 25.9 c | 28.7 c |
RT | 22.2 b | 20.0 b | 24.3 b | 20.2 b | 21.6 b | 25.9 b |
CT | 16.9 a | 14.2 a | 13.2 a | 17.8 a | 15.8 a | 14.9 a |
Mean | 22.3 | 19.6 | 21.1 | 22.3 | 21.1 | 23.2 |
Weed Species | A/P * | Pea | Narrow-Leaved Lupine | ||||
---|---|---|---|---|---|---|---|
Tillage System | |||||||
NT | RT | CT | NT | RT | CT | ||
Echinochloa crus-galli (L.) P. Beauv. | A | 2.5 b | 2.0 b | 1.0 a | 2.0 a | - | 3.0 b |
Elymus repens (L.) Gould | P | 4.0 | - | - | 2.0 | - | - |
Sum of Monocotyledonous weeds | 6.5 c | 2.0 b | 1.0 a | 4.0 a | - | 3.0 b | |
Anthemis arvensis L. | A | ||||||
Aphanes arvensis L. | A | 3.0 | 2.0 | ||||
Centaurea cyanus L. | A | - | - | 4.5 | 5.0 b | 3.0 a | |
Chenopodium album L. | A | 5.0 b | 3.0 a | 5.5 b | 5.0 a | 5.0 a | |
Cirsium arvense (L.) Scop | P | 4.5 a | 5.5 b | 4.0 a | 0.5 a | 5.0 b | 7.0 c |
Convolvulus arvensis | P | ||||||
Geranium dissectum L. | A | 4.5 | - | - | 4.0 | ||
Plantago major L. | A | 2.5 a | 2.0 a | 4.0 | |||
Polygonum aviculare L. | A | 3.0 | 4.5 b | 1.5 a | |||
Polygonum persicaria L. | A | 3.5 a | 3.5 a | 4.5 b | 4.0 b | 2.0 a | |
Senecio vulgaris L. | A | 1.5 | 4.5 | ||||
Sonchus arvensis L. | A | 4.0 b | 6.0 c | 2.5 a | 1.5 a | 6.0 b | 2.5 a |
Sonchus asper L. | A | 5.5 | 4.5 | ||||
Stellaria media (L.) Vill. | A | 3.0 a | 4.0 a | - | 5.5 | ||
Viola arvensis Murr. | A | - | 3.5 | - | 4.0 | ||
Sum of Dicotyledonous weeds | 28.5 b | 30.0 b | 20.0 a | 34.5 b | 28.5 | 23.0 a | |
Eguisetum arvense L. | P | 3.0 a | - | 3.0 a | 5.0 a | 5.0 a | - |
Total | 38.0 c | 32.0 b | 24.0 a | 43.5 c | 33.5 b | 26.0 a | |
Number of species | 11 | 9 | 7 | 12 | 8 | 8 |
Weed Species | A/P * | Pea | Narrow-Leaved Lupine | ||||
---|---|---|---|---|---|---|---|
Tillage System | |||||||
NT | RT | CT | NT | RT | CT | ||
Echinochloa crus-galli (L.) P. Beauv | A | 2.0 a | - | 2.5a | 3.5 b | 5.5 c | 0.5 a |
Elymus repens (L.) Gould | P | 0.3 | - | - | - | - | - |
Sum of Monocotyledonous weeds | 2.3 a | - | 2.5 a | 3.5 b | 5.5 c | 0.5 a | |
Anthemis arvensis L. | A | - | 6.0 | - | 4.0 | - | 5.0 |
Artemisia vulgaris L. | P | - | 1.5 a | 5.0 b | 1.0 a | - | 4.0 b |
Centaurea cyanus L. | A | 7.5 | - | - | 3.0 a | 5.0 b | - |
Chenopodium album L. | A | 1.5 a | - | 6.0 b | 4.0 b | 3.5 b | 2.5 a |
Cirsium arvense (L.) Scop | P | 7.0 b | - | 4.5 a | - | - | 5.0 |
Fallopia convolvulus (L.) Á. Löve | A | - | 5.5 | - | 1.5 a | 5.5 b | - |
Galium aparine L. | A | - | - | - | 2.5 | - | - |
Geranium dissectum L. | A | 1.5 a | 1.5 a | - | 5.0 b | 3.0 a | - |
Plantago major L.) | A | 4.0 a | 6.5 b | - | 4.5 a | 6.5 b | - |
Solanum nigrum L | A | 2.0 | - | - | - | 4.5 | - |
Viola arvensis Murr. | A | 3.0 a | 7.0 c | 5.0 b | 8.0 b | 5.0 a | 7.0 b |
Sum of Dicotyledonous weeds | 26.5 | 28.0 | 20.5 | 33.5 | 21.5 | 23.5 | |
Eguisetum arvense L. | P | 5.5 | - | - | - | 3.5 a | 2.5 a |
Total | 34.3 c | 28.0 b | 23.0 a | 37.0 c | 30.5 b | 26.5 a | |
Number of species | 10 | 6 | 5 | 10 | 9 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojarszczuk, J.; Podleśny, J. Segetal Diversity in Selected Legume Crops Depending on Soil Tillage. Agriculture 2020, 10, 635. https://doi.org/10.3390/agriculture10120635
Bojarszczuk J, Podleśny J. Segetal Diversity in Selected Legume Crops Depending on Soil Tillage. Agriculture. 2020; 10(12):635. https://doi.org/10.3390/agriculture10120635
Chicago/Turabian StyleBojarszczuk, Jolanta, and Janusz Podleśny. 2020. "Segetal Diversity in Selected Legume Crops Depending on Soil Tillage" Agriculture 10, no. 12: 635. https://doi.org/10.3390/agriculture10120635
APA StyleBojarszczuk, J., & Podleśny, J. (2020). Segetal Diversity in Selected Legume Crops Depending on Soil Tillage. Agriculture, 10(12), 635. https://doi.org/10.3390/agriculture10120635