Responses of Yield and Protein Composition of Wheat to Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Treatments Application and Planting
2.3. Experimental Design
2.4. Measurement of Temperature and Yield Components
2.5. Amino Acid Analysis
2.6. Analysis of Variance (ANOVA)
3. Results and Discussion
3.1. Organic and Inorganic Fertilizers
3.2. Fertilizer and Soil Moisture
3.3. Growth Condition, Fertilizer Type and Soil Moisture Content
3.4. Amino Acid Content of Wheat Grain
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- OECD-FAO. OECD-FAO Agricultural Outlook 2018–2027; OECD Publisher: Paris, France, 2018. [Google Scholar]
- Mason, N.M.; Jayne, T.S.; Shiferaw, B. Wheat Consumption in Sub-Saharan Africa: Trends, Drivers, and Implications; International Maize and Wheat Improvement Center: Texcoco, Mexico, 2012; No. 1096-2016-88381. [Google Scholar]
- Xiao, D.; Bai, H.; Liu, D.L. Impact of future climate change on wheat production: A simulated case for China’s wheat system. Sustainability 2018, 10, 1277. [Google Scholar] [CrossRef] [Green Version]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Battisti, D.S.; Naylor, R.L. Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science 2009, 323, 240–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rötter, R.P.; Höhn, J.G.; Fronzek, S. Projections of climate change impacts on crop production: A global and a Nordic perspective. Acta Agric. Scand. Sect. A Anim. Sci. 2012, 62, 166–180. [Google Scholar] [CrossRef]
- Wang, X.; Li, X. Irrigation water availability and winter wheat abandonment in the North China Plain (NCP): Findings from a case study in Cangxian County of Hebei Province. Sustainability 2018, 10, 354. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Shah, S.; Hussain, S.; Iqbal, K. Growth, yield and quality response of three wheat (Triticum aestivum L.) varieties to different levels of N, P and K. Int. J. Agric. Biol. 2002, 4, 362–364. [Google Scholar]
- Wadleigh, C.H.; Richards, L.A. Soil Moisture and the Mineral Nutrition of Plants. In Mineral Nutrition of Plants; Truog, E., Ed.; Univ. of Wisconsin Press: Madison, WI, USA, 1951; pp. 411–450. [Google Scholar]
- Eppendorfer, W.H.; Bille, S.W.; Patipanawattana, S. Protein quality and amino acid-protein relationships of maize, sorghum and rice grain as influenced by nitrogen, phosphorus, potassium and soil moisture stress. J. Sci. Food Agric. 1985, 36, 453–462. [Google Scholar] [CrossRef]
- Raza, S.; Farrukh Saleem, M.; Mustafa Shah, G.; Jamil, M.; Haider Khan, I. Potassium applied under drought improves physiological and nutrient uptake performances of wheat (Triticum aestivun L.). Soil J. Sci. Plant Nutr. 2013, 13, 175–185. [Google Scholar]
- Ashraf, M.Y.; Ala, S.A.; Bhatti, A.S. Nutritional imbalance in wheat (Triticum aestivum L.) genotypes grown at soil water stress. Acta Physiol. Plant. 1998, 20, 307–311. [Google Scholar] [CrossRef]
- Porter, J.R.; Gawith, M. Temperatures and the growth and development of wheat: A review. Eur. J. Agron. 1999, 10, 23–36. [Google Scholar] [CrossRef]
- Fageria, N.K. The Use of Nutrients in Crop Plants; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Tack, J.; Barkley, A.; Nalley, L.L. Effect of warming temperatures on US wheat yields. Proc. Natl. Acad. Sci. USA 2015, 112, 6931–6936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.Q.; Zhu, Y.G.; Smith, S.E.; Smith, F.A. Interactions between soil moisture content and phosphorus supply in spring wheat plants grown in pot culture. Plant J. Nutr. 2002, 25, 913–925. [Google Scholar] [CrossRef]
- Albrizio, R.; Todorovic, M.; Matic, T.; Stellacci, A.M. Comparing the interactive effects of water and nitrogen on durum wheat and barley grown in a Mediterranean environment. Field Crop. Res. 2010, 115, 179–190. [Google Scholar] [CrossRef]
- Huang, M.; Dang, T.; Gallichand, J.; Goulet, M. Effect of increased fertilizer applications to wheat crop on soil-water depletion in the Loess Plateau, China. Agric. Water Manag. 2003, 58, 267–278. [Google Scholar] [CrossRef]
- Altenbach, S.B.; Dupont, F.M.; Kothari, K.M.; Chan, R.; Johnson, E.L.; Lieu, D. Temperature, Water and Fertilizer Influence the Timing of Key Events During Grain Development in a US Spring Wheat. Cereal J. Sci. 2003, 37, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Altenbach, S.B. New insights into the effects of high temperature, drought and post-anthesis fertilizer on wheat grain development. J. Cereal Sci. 2012, 56, 39–50. [Google Scholar] [CrossRef]
- Gomez, K.; Gomez, A. Statistical Procedures for Agricultural Research; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Roe, N.E.; Stoffella, P.J.; Graetz, D. Composts from Various Municipal Solid Waste Feedstocks Affect Vegetable Crops. IGrowth, I.; Yields, and Fruit Quality. J. Am. Soc. Hortic. Sci. 2019, 122, 433–437. [Google Scholar] [CrossRef]
- Horrigan, L.; Lawrence, R.S.; Walker, P. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ. Health Perspect. 2002, 110, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Efthimiadou, A.; Bilalis, D.; Karkanis, A.; Froud-Williams, B. Combined organic/inorganic fertilization enhance soil quality and increased yield, photosynthesis and sustainability of sweet maize crop. Aust. Crop J. Sci. 2010, 4, 722–729. [Google Scholar]
- Akram, M. Growth and Yield Components of Wheat Under Water Stress Of Different Growth Stages. Bangladesh J. Agric. Res. 1970, 36, 455–468. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, A.R.; Oweis, T.; Ashrafi, S.; Asadi, H.; Siadat, H.; Liaghat, A. Improving Rainwater Productivity with Supplemental Irrigation in Upper Karkheh River Basin of Iran; International Center for Agricultural Research in the Dry Areas (ICARDA): Aleppo, Syria, 2010; p. 123. [Google Scholar]
- Day, L.; Augustin, M.A.; Batey, I.L.; Wrigley, C.W. Wheat-gluten uses and industry needs. Trends Food Sci. Technol. 2006, 17, 82–90. [Google Scholar] [CrossRef]
- Campbell, C.A.; Davison, H.R.; Warder, F.G. Effects of fertilizer N and soil moisture on yield, yield components, protein content and N accumulation in the abovegroud parts of spring wheat. Can. Soil J. Sci. 1977, 57, 311–327. [Google Scholar] [CrossRef] [Green Version]
- Dougherty, C.T.; Scott, W.R.; Langer, R.H.M. Effects of sowing rate, irrigation, and nitrogen on the components of yield of spring-sown semi dwarf and standard New Zealand wheats. N. Zeal. J. Agric. Res. 1975, 18, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Hou, R.; Ouyang, Z.; Li, Y.; Wilson, G.V.; Li, H. Is the change of winter wheat yield under warming caused by shortened reproductive period? Ecol. Evol. 2012, 2, 2999–3008. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, E.; Silva, P.; Silva, H. Wheat Growth and Physiology; Doc. Repos.; FAO Corp.: Roma, Italy, 2009; pp. 1–31. [Google Scholar]
- Russell, G.; Wilson, G.W. An Agro-Pedo-Climatological Knowledge-Base of Wheat in Europe; European Commission: Luxembourg, 1994. [Google Scholar]
- Tyagi, V.; Singh, R.K.; Nagargade, M. Effect of hydrogel, NPK and irrigation levels on yield, nutrient uptake and water use efficiency of wheat (Triticum aestivum L.). Res. Crop. 2015, 16, 653–656. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, D.; Sharma, H. Growth, yield and water-use efficiency of wheat (Triticum* aestivum) as influenced by irrigation and nitrogen. Indian Agron. J. 1994, 39, 220–224. [Google Scholar]
- McDonald, G.K.; Sutton, B.G.; Ellison, F.W. The effect of sowing date, irrigation and cultivar on the growth and yield of wheat in the Namoi River Valley, New South Wales. Irrig. Sci. 1984, 5, 123–135. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate impacts on agriculture: Implications for crop production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef] [Green Version]
- Chang, J. Climate and Agriculture and Ecological Survey; Chang, J., Ed.; University of Hawaii: Honolulu, HI, USA, 1968. [Google Scholar]
- Chakrabarti, B.; Singh, S.D.; Kumar, V.; Harit, R.C.; Misra, S. Growth and yield response of wheat and chickpea crops under high temperature. Indian Plant J. Physiol. 2013, 18, 7–14. [Google Scholar] [CrossRef]
- Savin, R.; Slafer, G.A. Developmental base temperature in different phenological phases of wheat (Triticum aestivum). J. Exp. Bot. 1991, 42, 1077–1082. [Google Scholar]
- Coventry, D.R.; Yadav, A.; Poswal, R.S.; Sharma, R.K.; Gupta, R.K.; Chhokar, R.S.; Gill, S.C.; Kumar, V.; Kumar, A.; Mehta, A.; et al. Irrigation and nitrogen scheduling as a requirement for optimising wheat yield and quality in Haryana, India. Field Crop. Res. 2011, 123, 80–88. [Google Scholar] [CrossRef]
- Zhao, C.X.; He, M.R.; Wang, Z.L.; Wang, Y.F.; Lin, Q. Effects of different water availability at post-anthesis stage on grain nutrition and quality in strong-gluten winter wheat. C. R. Biol. 2009, 332, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Zhongmin, D.; Yanping, Y.; Zhang, M. Starch granule size distribution in wheat grains under irrigated and rainfed conditions. Acta Agron. Sin. 2008. [Google Scholar]
- Dubetz, S. Effect of soil type, soil mositure, and nitrogen fertilizer on the growth of spring wheat. Can. Soil J. Sci. 1961, 41, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Hutcheon, W.L.; Rennie, D.A. The relation of soil moisture stress and nutrient availability to the growth characteristics and quality of wheat. Trans. 7th int. Congr. Soil Sci. 1960, 3, 488–495. [Google Scholar]
- Pleijel, H.; Mortensen, L.; Fuhrer, J.; Ojanperä, K.; Danielsson, H. Grain protein accumulation in relation to grain yield of spring wheat (Triticum aestivum L.) grown in open-top chambers with different concentrations of ozone, carbon dioxide and water availability. Agric. Ecosyst. Environ. 1999, 72, 265–270. [Google Scholar] [CrossRef]
- Kibite, S.; Evans, L.E. Causes of negative correlations between grain yield and grain protein concentration in common wheat. Euphytica 1984, 33, 801–810. [Google Scholar] [CrossRef]
Treatment | Growth Condition | Fertilizer Type | Soil Moisture Content (%) | ||||
---|---|---|---|---|---|---|---|
Greenhouse | Field | Organic | Inorganic | 30 | 60 | 100 | |
T1 | ✓ | _ | ✓ | _ | ✓ | _ | |
T2 | ✓ | _ | ✓ | _ | _ | ✓ | |
T3 | ✓ | _ | ✓ | _ | _ | _ | ✓ |
T4 | ✓ | _ | _ | ✓ | ✓ | _ | _ |
T5 | ✓ | _ | _ | ✓ | _ | ✓ | |
T6 | ✓ | _ | _ | ✓ | _ | _ | ✓ |
T7 | _ | ✓ | ✓ | _ | ✓ | _ | _ |
T8 | _ | ✓ | ✓ | _ | _ | ✓ | |
T9 | _ | ✓ | ✓ | _ | _ | _ | ✓ |
T10 | _ | ✓ | _ | ✓ | ✓ | _ | _ |
T11 | _ | ✓ | _ | ✓ | _ | ✓ | |
T12 | _ | ✓ | _ | ✓ | _ | _ | ✓ |
Treatment | Plant Height (cm) | Tiller Number Hole−1 | Plant Weight (g) | Panicle Length (cm) | Grain Number Panicle−1 | Grain Weight Panicle−1 (g) | Grain Yield Plant−1 (g) | Harvest Index (%) |
---|---|---|---|---|---|---|---|---|
Organic | 73.55 a | 10.00 a | 16.55 a | 7.16 a | 25.80 a | 1.00 b | 4.81 b | 30.00 b |
Inorganic | 73.60 a | 11.00 a | 17.30 a | 7.22 a | 29.30 a | 1.10 a | 6.29 a | 36.00 a |
Treatment | Plant Height (cm) | Tiller Number Hole−1 | Plant Weight (g) | Panicle Length (cm) | Grain Number Panicle−1 | Grain Weight Panicle−1 (g) | Grain Yield Plant−1 (g) | Harvest Index (%) |
---|---|---|---|---|---|---|---|---|
O30 | 68.05 c | 9.00 a | 11.98 d | 6.91 de | 20.40 d | 0.87 c | 3.09 c | 26.00 c |
O60 | 74.05 b | 11.00 a | 17.17 bc | 7.11 cd | 24.50 cd | 0.95 c | 4.92 bc | 29.00 c |
O100 | 78.55 a | 12.00 a | 20.39 ab | 7.46 ab | 32.70 ab | 1.20 b | 6.41 ab | 31.00 bc |
I30 | 67.30 c | 10.00 a | 13.73 cd | 6.78 e | 22.40 cd | 0.95 c | 4.56 bc | 33.00 b |
I60 | 74.50 b | 11.00 a | 16.67 bc | 7.29b c | 27.70 bc | 1.10 b | 6.23 b | 37.00 a |
I100 | 79.00 a | 12.00 a | 21.49 a | 7.60 a | 37.90 a | 1.35 a | 8.07 a | 38.00 a |
Treatment | Plant Height (cm) | Tiller Number Hole−1 | Plant Weight (g) | Panicle Length (cm) | Grain Number Panicle−1 | Grain Weight Panicle−1 (g) | Grain Yield Plant−1 (g) | Harvest Index |
---|---|---|---|---|---|---|---|---|
T1 | 68.80 c | 13.00 b | 15.94 de | 7.07 def | 17.20 f | 0.85 d | 3.72 fgh | 23.00 e |
T2 | 75.20 b | 14.00 ab | 21.65 b | 7.034 ef | 21.00 ef | 0.96 bcd | 5.65 de | 26.00 de |
T3 | 81.30 a | 15.00 a | 25.88 a | 7.54 bc | 29.20 cd | 1.28 a | 7.15 bc | 28.00 cde |
T4 | 67.80 c | 14.00 ab | 19.25 bc | 6.62 g | 17.80 f | 0.93 cd | 6.13 cd | 32.00 bcd |
T5 | 76.20 b | 14.00 ab | 20.87 b | 6.71 fg | 25.20 de | 1.09 bc | 7.47 b | 36.00 ab |
T6 | 82.00 a | 15.00 a | 26.46 a | 6.80 efg | 34.20 bc | 1.40 a | 9.56 a | 36.00 ab |
T7 | 67.30 c | 5.00 e | 8.02 g | 6.74 fg | 23.70 def | 0.90 d | 2.48 h | 31.00 bcde |
T8 | 72.90 b | 7.00 cd | 12.90 ef | 7.18 cde | 28.00 cd | 0.94 bcd | 4.20 fg | 33.00 abc |
T9 | 75.80 b | 8.90 c | 14.91 def | 7.38 cd | 36.10 ab | 1.11 b | 5.67 de | 38.00 ab |
T10 | 66.80 c | 5.90 de | 8.21 g | 6.94 efg | 27.00 de | 0.96 bcd | 2.95 gh | 36.00 ab |
T11 | 72.80 b | 7.00 cd | 12.47 f | 7.87 b | 30.20 bcd | 1.11 b | 4.67 ef | 37.00 ab |
T12 | 76.00 b | 8.00 c | 16.52 cd | 8.41 a | 41.50 a | 1.30 a | 6.58 bcd | 40.00 a |
Amino Acids (mg/g) | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | T11 | T12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aspartic acid | 4.497 | 3.543 | 3.027 | 4.047 | 3.124 | 0.889 | 2.048 | 1.731 | 1.734 | 5.692 | 4.678 | 4.262 |
Threonine | 2.471 | 1.852 | 1.529 | 2.149 | 1.584 | 0.264 | 0.770 | 0.609 | 0.638 | 3.723 | 2.229 | 2.034 |
Serine | 2.775 | 2.086 | 1.673 | 2.469 | 1.741 | 0.334 | 0.720 | 0.599 | 0.729 | 3.865 | 2.308 | 2.092 |
Glutamic acid | 26.983 | 18.835 | 13.905 | 23.609 | 14.458 | 1.988 | 6.883 | 3.926 | 5.665 | 25.434 | 23.514 | 23.217 |
Glycine | 2.319 | 1.586 | 1.216 | 1.827 | 1.214 | 0.140 | 0.257 | 1.283 | 0.262 | 2.827 | 1.245 | 1.095 |
Alanine | 5.301 | 4.345 | 3.849 | 4.939 | 4.075 | 2.916 | 5.148 | 4.592 | 3.638 | 8.246 | 6.958 | 6.764 |
Cystine | 0.832 | 0.549 | 0.428 | 0.664 | 0.434 | 0.397 | 0.561 | 0.511 | 0.480 | 0.732 | 0.864 | 0.781 |
Valine | 5.265 | 4.088 | 3.431 | 4.729 | 3.586 | 1.971 | 3.598 | 3.184 | 2.614 | 5.997 | 5.579 | 5.517 |
Methionine | 1.257 | 0.928 | 0.772 | 1.025 | 0.778 | 0.188 | 0.544 | 0.460 | 0.338 | 1.001 | 1.199 | 1.124 |
Isoleucine | 4.530 | 3.346 | 2.715 | 3.998 | 2.843 | 1.512 | 2.955 | 2.627 | 1.965 | 4.215 | 4.666 | 4.604 |
Leucine | 8.457 | 6.258 | 5.045 | 7.536 | 5.294 | 2.162 | 4.872 | 4.256 | 3.226 | 7.569 | 8.588 | 8.435 |
Tyrosine | 2.476 | 1.811 | 1.398 | 2.199 | 1.422 | 0.568 | 1.502 | 1.345 | 0.974 | 2.759 | 3.278 | 3.197 |
Phenylalanine | 5.315 | 3.738 | 2.937 | 4.808 | 3.100 | 1.037 | 2.684 | 2.335 | 1.787 | 4.692 | 5.415 | 5.296 |
Lysine | 2.410 | 1.949 | 1.765 | 2.102 | 1.806 | 0.247 | 0.606 | 0.502 | 0.646 | 1.489 | 1.916 | 1.760 |
Ammonia | 4.052 | 2.994 | 2.357 | 3.658 | 2.496 | 2.817 | 4.025 | 3.631 | 2.577 | 5.517 | 5.429 | 4.996 |
Histidine | 2.476 | 1.805 | 1.425 | 2.166 | 1.498 | 0.423 | 1.000 | 0.827 | 0.673 | 2.894 | 2.487 | 2.231 |
Arginine | 4.841 | 3.798 | 3.276 | 4.385 | 3.409 | 1.532 | 2.988 | 2.546 | 2.197 | 4.228 | 4.956 | 4.808 |
Proline | 11.280 | 8.018 | 6.087 | 10.240 | 6.412 | 4.441 | 8.081 | 7.323 | 5.094 | 13.493 | 12.985 | 12.666 |
Total amino acid | 97.54 | 71.53 | 56.84 | 86.55 | 59.23 | 23.83 | 49.24 | 42.29 | 35.24 | 104.37 | 98.29 | 94.88 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nsafon, B.E.K.; Lee, S.-C.; Huh, J.-S. Responses of Yield and Protein Composition of Wheat to Climate Change. Agriculture 2020, 10, 59. https://doi.org/10.3390/agriculture10030059
Nsafon BEK, Lee S-C, Huh J-S. Responses of Yield and Protein Composition of Wheat to Climate Change. Agriculture. 2020; 10(3):59. https://doi.org/10.3390/agriculture10030059
Chicago/Turabian StyleNsafon, Benyoh Emmanuel Kigha, Sang-Chul Lee, and Jeung-Soo Huh. 2020. "Responses of Yield and Protein Composition of Wheat to Climate Change" Agriculture 10, no. 3: 59. https://doi.org/10.3390/agriculture10030059
APA StyleNsafon, B. E. K., Lee, S. -C., & Huh, J. -S. (2020). Responses of Yield and Protein Composition of Wheat to Climate Change. Agriculture, 10(3), 59. https://doi.org/10.3390/agriculture10030059