Evaluation of the Effectiveness of the Use of Biopreparations as Seed Dressings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Soldade, M.; Pedras, C.; Smith, K.C. Sinalexin, a phytoalexin from white mustard elicited by destruxion B and Alternaria brassicae. Phytochemistry 1997, 46, 833–837. [Google Scholar] [CrossRef]
- Piątka, T.; Krzymański, J.; Krótka, K. The first double low variety of white mustard (Sinapis alba L.). Rośl. Oleiste 2010, 31, 177–200. [Google Scholar]
- Sawicka, B.; Kotiuk, E. Mustard spiecies as Multi-functional plants. Acta Sci. Pol.-Agric. 2007, 6, 17–27. [Google Scholar]
- Blake, D.T.; Diosady, L.L. Rapid aqueous extraction of mucilage from whole white mustard seed. Food Res. Int. 2000, 33, 347–356. [Google Scholar] [CrossRef]
- Piątka, T.; Krzymański, J.; Michalski, K.; Krótka, K. Progress in the breeding of withe mustard (Sinapis alba L). Rośl. Oleiste 1998, 19, 456–462. [Google Scholar]
- Slominski, B.A.; Kienzle, H.D.; Jiang, P.; Campbell, L.D.; Pickard, M.; Rakow, G. Chemical Composition and Nutritive Value of Canola-Quality Sinapis alba Mustared. In Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 26–29 September 1999; pp. 416–421. [Google Scholar]
- Caruso, G.; De Pascale, S.; Cozzolino, E.; Giordano, M.; El-Nakhel, C.; Cuciniello, A.; Cenvinzo, V.; Colla, G.; Rouphael, Y. Protein Hydrolysate or Plant Extract-based Biostimulants Enhanced Yield and Quality Performances of Greenhouse Perennial Wall Rocket Grown in Different Seasons. Plants 2019, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Szparaga, A.; Kocira, S.; Kocira, A.; Czerwińska, E.; Świeca, M.; Lorencowicz, E.; Kornas, R.; Koszel, M.; Oniszczuk, T. Modification of growth, yield, and the nutraceutical and antioxidative potential of soybean through the use of synthetic biostimulants. Front. Plant Sci. 2018, 9, 1401. [Google Scholar] [CrossRef]
- Kocira, S.; Szparaga, A.; Kocira, A.; Czerwińska, E.; Depo, K.; Erlichowska, B.; Deszcz, E. Effect of applying a biostimulant containing seaweed and amino acids on the content of fiber fractions in three soybean cultivars. Legume Res. 2019, 42, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Kocira, S.; Szparaga, A.; Kuboń, M.; Czerwińska, E.; Piskier, T. Morphological and Biochemical Responses of Glycine max (L.) Merr. to the Use of Seaweed Extract. Agronomy 2019, 9, 93. [Google Scholar] [CrossRef] [Green Version]
- Selby, C.; Carmichael, E.; Sharma, H.S. Bio-refining of perennial ryegrass (Lolium perenne): Evaluation of aqueous extracts for plant defence elicitor activity using French bean cell suspension cultures. Chem. Biol. Technol. Agric. 2016, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.; Colla, G. Plant-and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Hara, P.; Szparaga, A.; Czerwińska, E. Ecological methods used to control fungi that cause diseases of the crop plant. Rocznik Ochrona Srodowiska 2018, 20, 1764–1775. [Google Scholar]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Dymkowska–Malesa, M.; Szparaga, A.; Czerwińska, E. Evaluation of polychlorinated biphenyls content in chosen vegetables from Warmia and Mazury region. Rocz. Ochr. Sr. 2014, 16, 290–299. [Google Scholar]
- Carillo, P.; Colla, G.; El-Nakhel, C.; Bonini, P.; D’Amelia, L.; Dell’Aversana, E.; Dell’Aversana, E.; Pannico, A.; Giordano, M.; Sifola, M.I.; et al. Biostimulant Application with a Tropical Plant Extract Enhances Corchorus olitorius Adaptation to Sub-Optimal Nutrient Regimens by Improving Physiological Parameters. Agronomy 2019, 9, 249. [Google Scholar] [CrossRef] [Green Version]
- Michalak, I.; Chojnacka, K.; Dmytryk, A.; Wilk, R.; Gramza, M.; Rój, E. Evaluation of supercritical extracts of algae as biostimulants of plant growth in field trials. Front. Plant Sci. 2016, 7, 1591. [Google Scholar] [CrossRef] [Green Version]
- Trevisan, S.; Manoli, A.; Quaggiotti, S. A Novel Biostimulant, Belonging to Protein Hydrolysates, Mitigates Abiotic Stress Effects on Maize Seedlings Grown in Hydroponics. Agronomy 2019, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Szparaga, A.; Kuboń, M.; Kocira, S.; Czerwińska, E.; Pawłowska, A.; Hara, P.; Kobus, Z.; Kwaśniewski, D. Towards Sustainable Agriculture—Agronomic and Economic Effects of Biostimulant Use in Common Bean Cultivation. Sustainability 2019, 11, 4575. [Google Scholar] [CrossRef] [Green Version]
- Ertani, A.; Francioso, O.; Tinti, A.; Schiavon, M.; Pizzeghello, D.; Nardi, S. Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Front. Plant Sci. 2018, 9, 428. [Google Scholar] [CrossRef]
- Szparaga, A.; Kocira, S. Generalized logistic functions in modelling emergence of Brassica napus L. PLoS ONE 2018, 13, e0201980. [Google Scholar] [CrossRef]
- Michałek, W.; Kocira, A.; Findura, P.; Szparaga, A.; Kocira, S. The Influence of Biostimulant Asahi SL on the Photosynthetic Activity of Selected Cultivars of Phaseolus vulgaris L. Rocz. Ochr. Sr. 2018, 20, 1286–1301. [Google Scholar]
- Di Filippo–Herrera, D.A.; Muñoz-Ochoa, M.; Hernández–Herrera, R.M.; Hernández–Carmona, G. Biostimulant activity of individual and blended seaweed extracts on the germination and growth of the mung bean. J. Appl. Phycol. 2019, 31, 2025–2037. [Google Scholar] [CrossRef]
- Sas–Piotrowska, B.; Piotrowski, W.; Karczmarek-Cichosz, R. Longevity and healthiness of Oat (Avena sativa L.) seeds treated with plant extracts. J. Plant Prot. Res. 2005, 45, 181–193. [Google Scholar]
- ISTA. International Rules for Seed Testing; International Seed Testing Association: Zurich, Switzerland, 2010. [Google Scholar]
- Kocira, S.; Szparaga, A.; Czerwińska, E. Analysis of the Ecological Method of Treatment in the Aspect of Increasing the Vitality and Healthiness of Spring Barley Grains Hordeum vulgare L. Rocz. Ochr. Sr. 2018, 20, 1746–1763. [Google Scholar]
- Sen, A.; Batra, A. Evaluation of antimicrobial activity of different solvent extracts of medicinal plant: Melia azedarach L. Int. J. Curr. Pharm Res. 2012, 4, 67–73. [Google Scholar]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Barbour, E.K.; Al Sharif, M.; Sagherian, V.K.; Habre, A.N.; Talhouk, R.S.; Talhouk, S.N. Screening of selected indigenous plants of Lebanon for antimicrobial activity. J. Ethnopharmacol. 2004, 93, 1–7. [Google Scholar] [CrossRef]
- Mayachiew, P.; Devahastin, S. Antimicrobial and antioxidant activities of Indian gooseberry and galangal extracts. LWT Food Sci. Technol. 2008, 41, 1153–1159. [Google Scholar] [CrossRef]
- Preethi, R.; Devanathan, V.V.; Loganathan, M. Antimicrobial and antioxidant efficacy of some medicinal plants against food borne pathogens. Adv. Bio. Res. 2010, 4, 122–125. [Google Scholar]
- Ismail, A.M.; Mohamed, E.A.; Marghany, M.R.; Abdel–Motaal, F.F.; Abdel–Farid, I.B.; El-Sayed, M.A. Preliminary phytochemical screening, plant growth inhibition and antimicrobial activity studies of Faidherbia albida legume extracts. J. Saudi Soc. Agric. Sci. 2019, 15, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Shihabudeen, M.S.; Priscilla, D.H.; Thirumurugan, K. Antimicrobial activity and phytochemical analysis of selected Indian folk medicinal plants. Int. J. Pharm Sci. Res. 2010, 1, 430–434. [Google Scholar]
- Nostro, A.; Germano, M.P.; D’angelo, V.; Marino, A.; Cannatelli, M.A. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett. Appl. Microbiol. 2000, 30, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Tomas–Barberan, F.; Iniesta–Sanmartìn, E.; Tomas–Lorente, F.; Rumbero, A. Antimicrobial phenolic compounds from three Spanish Helichrysum species. Phytochemistry 1990, 29, 1093–1095. [Google Scholar] [CrossRef]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Betoni, J.E.C.; Mantovani, R.P.; Barbosa, L.N.; Di Stasi, L.C.; Fernandes Junior, A. Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases. Mem. Inst. Oswaldo Cruz 2006, 101, 387–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czerwińska, E.; Szparaga, A.; Deszcz, E. Estimation of effect of dressing in plant extracts on germination capacity of tallow lupine and field pea seed. Zeszyty Naukowe Uniwersytetu Przyrodniczego we Wrocławiu Rolnictwo 2015, 612, 7–17. [Google Scholar]
- Szparaga, A.; Czerwińska, E.; Piskier, T. The effect of treating the seeds of Brassica oleracea L. with aqueous extracts on the germination capacity and seed healthiness. J. Res. Appl. Agric. Eng. 2017, 62, 162–167. [Google Scholar]
Herbal plant species | Degree of infestation of seeds by fungal pathogens in the first term | Degree of infestation of seeds by fungal pathogens in the second term |
---|---|---|
Levisticum officinale L. | 1.25 | 17.00 |
Coriandrum sativum L. | 1.00 | 1.00 |
Pinus sylvestris L. | 1.25 | 5.50 |
Satureja hortensis L. | 1.75 | 13.62 |
Lavandula vera L. | 1.50 | 1.25 |
Linum usitatissimum L. | 1.50 | 54.87 |
Quercus robur L. | 1.00 | 83.50 |
Arctium lappa L. | 1.00 | 54.25 |
Calendula officinalis L. | 1.00 | 69.37 |
Juglans regia L. | 1.87 | 81.37 |
Salix alba L. | 3.00 | 24.25 |
Origanum majorana L. | 21.62 | 69.75 |
Archangelica officinalis L. | 12.62 | 62.37 |
Ribes nigrum L. | 12.37 | 27.00 |
Camelia sinensis L. | 10.00 | 53.50 |
Artemisia absinthium L. | 3.50 | 16.12 |
Verbascum thapsiforme L. | 2.25 | 25.25 |
Hyssopus officinalis L. | 1.37 | 52.87 |
Juniperus communis L. | 1.00 | 8.50 |
Carum carvi L. | 1.00 | 33.50 |
Control | 2.50 | 53.50 |
LSD = 3.55% | LSD = 24.97% |
Preparation of plant extract | Number of seeds infected by mould in the first term. | Number of seeds infected by mould in the second term |
---|---|---|
Macerate | 3.70 | 40.79 |
Decoction | 4.49 | 34.67 |
Control | 2.50 | 53.50 |
LSD = no statistically significant differences | LSD = no statistically significant differences |
Herbal plant species | Degree of infestation of seeds by fungal pathogens in the first term | Degree of infestation of seeds by fungal pathogens in the second term | ||
---|---|---|---|---|
Macerate | Decoction | Macerate | Decoction | |
Levisticum officinale L. | 1.50 | 1.00 | 7.00 | 27.00 |
Coriandrum sativum L. | 1.00 | 1.00 | 1.00 | 1.00 |
Pinus sylvestris L. | 1.00 | 1.50 | 1.75 | 9.25 |
Satureja hortensis L. | 1.25 | 2.25 | 26.25 | 1.00 |
Lavandula vera L. | 1.00 | 2.00 | 1.00 | 1.50 |
Linum usitatissimum L. | 1.50 | 1.50 | 41.50 | 68.25 |
Quercus robur L. | 1.00 | 1.00 | 86.50 | 80.50 |
Arctium lappa L. | 1.00 | 1.00 | 76.50 | 32.00 |
Calendula officinalis L. | 1.00 | 1.00 | 57.00 | 81.75 |
Juglans regia L. | 2.00 | 1.75 | 90.50 | 72.25 |
Salix alba L. | 1.25 | 4.75 | 17.00 | 31.50 |
Origanum majorana L. | 10.50 | 32.75 | 51.25 | 88.25 |
Archangelica officinalis L. | 14.75 | 10.50 | 71.25 | 53.50 |
Ribes nigrum L. | 11.50 | 13.25 | 27.25 | 26.75 |
Camelia sinensis L. | 12.50 | 7.50 | 50.50 | 56.50 |
Artemisia absinthium L. | 6.00 | 1.00 | 6.50 | 25.75 |
Verbascum thapsiforme L. | 1.50 | 3.00 | 32.25 | 18.25 |
Hyssopus officinalis L. | 1.75 | 1.00 | 88.75 | 17.00 |
Juniperus communis L. | 1.00 | 1.00 | 16.00 | 1.00 |
Carum carvi L. | 1.00 | 1.00 | 66.00 | 1.00 |
Control | 2.50 | 53.50 | ||
LSD = 5.025% | LSD = 35.35% |
Herbal plant species | Degree of infestation of seeds by bacterial pathogens in the first term | Degree of infestation of seeds by bacterial pathogens in the second term |
---|---|---|
Levisticum officinale L. | 3.75 | 41.00 |
Coriandrum sativum L. | 49.75 | 49.75 |
Pinus sylvestris L. | 19.62 | 96.12 |
Satureja hortensis L. | 7.37 | 82.75 |
Lavandula vera L. | 4.25 | 91.25 |
Linum usitatissimum L. | 2.37 | 26.37 |
Quercus robur L. | 1.37 | 2.25 |
Arctium lappa L. | 2.87 | 39.50 |
Calendula officinalis L. | 1.00 | 4.00 |
Juglans regia L. | 1.00 | 4.75 |
Salix alba L. | 1.00 | 1.00 |
Origanum majorana L. | 1.25 | 2.37 |
Archangelica officinalis L. | 1.25 | 1.87 |
Ribes nigrum L. | 1.00 | 1.50 |
Camelia sinensis L. | 1.00 | 3.87 |
Artemisia absinthium L. | 19.50 | 35.12 |
Verbascum thapsiforme L. | 15.50 | 19.00 |
Hyssopus officinalis L. | 10.37 | 32.62 |
Juniperus communis L. | 34.00 | 77.62 |
Carum carvi L. | 40.00 | 52.62 |
Control | 2.75 | 10.87 |
LSD = 12.52% | LSD = 20.24% |
Preparation of plant extract | Number of seeds infected by mould in the first term. | Number of seeds infected by mould in the second term |
---|---|---|
Macerate | 12.86 | 31.20 |
Decoction | 8.97 | 35.34 |
Control | 2.75 | 10.87 |
LSD = no statistically significant differences | LSD = no statistically significant differences |
Herbal plant species | Degree of infestation of seeds by bacterial pathogens in the first term | Degree of infestation of seeds by bacterial pathogens in the second term | ||
---|---|---|---|---|
Macerate | Decoction | Macerate | Decoction | |
Levisticum officinale L. | 3.50 | 3.25 | 53.25 | 28.75 |
Coriandrum sativum L. | 39.25 | 21.28 | 59.25 | 40.25 |
Pinus sylvestris L. | 23.50 | 15.75 | 99.50 | 92.75 |
Satureja hortensis L. | 6.25 | 8.50 | 72.75 | 92.75 |
Lavandula vera L. | 3.50 | 5.00 | 89.75 | 92.75 |
Linum usitatissimum L. | 3.00 | 1.75 | 45.75 | 7.10 |
Quercus robur L. | 1.75 | 1.10 | 1.00 | 3.51 |
Arctium lappa L. | 4.75 | 1.00 | 23.75 | 55.25 |
Calendula officinalis L. | 1.00 | 1.00 | 1.11 | 7.00 |
Juglans regia L. | 1.00 | 1.12 | 1.00 | 8.50 |
Salix alba L. | 1.40 | 1.00 | 1.00 | 1.17 |
Origanum majorana L. | 1.51 | 1.08 | 3.75 | 1.10 |
Archangelica officinalis L. | 1.09 | 1.25 | 1.23 | 2.75 |
Ribes nigrum L. | 1.00 | 1.00 | 1.14 | 2.00 |
Camelia sinensis L. | 1.20 | 1.21 | 5.50 | 2.25 |
Artemisia absinthium L. | 37.50 | 19.50 | 51.75 | 24.50 |
Verbascum thapsiforme L. | 29.50 | 15.50 | 41.25 | 22.75 |
Hyssopus officinalis L. | 2.75 | 10.37 | 1.00 | 64.25 |
Juniperus communis L. | 3.25 | 34.07 | 68.00 | 87.25 |
Carum carvi L. | 41.25 | 40.62 | 58.75 | 89.50 |
Control | 2.75 | 10.87 | ||
LSD = 4.93% | LSD = 28.63% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocira, S.; Hara, P.; Szparaga, A.; Czerwińska, E.; Beloev, H.; Findura, P.; Bajus, P. Evaluation of the Effectiveness of the Use of Biopreparations as Seed Dressings. Agriculture 2020, 10, 90. https://doi.org/10.3390/agriculture10040090
Kocira S, Hara P, Szparaga A, Czerwińska E, Beloev H, Findura P, Bajus P. Evaluation of the Effectiveness of the Use of Biopreparations as Seed Dressings. Agriculture. 2020; 10(4):90. https://doi.org/10.3390/agriculture10040090
Chicago/Turabian StyleKocira, Sławomir, Patryk Hara, Agnieszka Szparaga, Ewa Czerwińska, Hristo Beloev, Pavol Findura, and Peter Bajus. 2020. "Evaluation of the Effectiveness of the Use of Biopreparations as Seed Dressings" Agriculture 10, no. 4: 90. https://doi.org/10.3390/agriculture10040090
APA StyleKocira, S., Hara, P., Szparaga, A., Czerwińska, E., Beloev, H., Findura, P., & Bajus, P. (2020). Evaluation of the Effectiveness of the Use of Biopreparations as Seed Dressings. Agriculture, 10(4), 90. https://doi.org/10.3390/agriculture10040090