Sodium Hypochlorite Treatment: The Impact on Bacteria and Endotoxin Concentrations in Drinking Water Pipes of A Pig Nursery
Abstract
:1. Introduction
2. Material and Methods
2.1. Animals and Housing Conditions
2.2. Sampling Points
2.3. Disinfection
2.4. Water Sampling
2.5. Microbiological Analyses
2.6. Endotoxin Detection
2.7. Statistics
3. Results
3.1. Bacterial Contents and Endotoxin Concentrations in Water Samples from Treated and Untreated Pipes
3.2. Detection of Coliform Bacteria in Treated and Untreated Pipes
3.3. Identification of Presumed Coliforms, Including E. coli
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thacker, P.A. Water in swine nutrition. In Swine Nutrition, 2nd ed.; Lewis, A.J., Southern, L.L., Eds.; CRC Press: New York, NY, USA, 2001; pp. 381–398. [Google Scholar]
- Thalin, P.A.; Brumm, M.C. Water: The forgotten nutrient. In Swine Nutrition; Miller, E.R., Ullrey, D.E., Austin, A.J., Eds.; Butterworths-Heinemann: Stoneham, MA, USA, 1991; pp. 315–324. [Google Scholar]
- Kober, J.A. Water: The most limiting nutrient. Agri.-Pract. 1993, 14, 39–42. [Google Scholar]
- Patience, J.F. The importance of water in pork production. Anim. Front. 2012, 2, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Mateus-Vargas, R.H.; Kemper, N.; Volkmann, N.; Kietzmann, M.; Meissner, J.; Schulz, J. Low-frequency electromagnetic fields as an alternative to sanitize water of drinking systems in poultry production? PLoS ONE 2019, 14, e0220302. [Google Scholar] [CrossRef]
- Dewulf, J.; Immerseel, F.; Postma, M.; Rooster, H.; Damiaans, B.; Sarrazin, S.; Abma, E.; Maes, D. Biosecurity in Animal Production and Veterinary Medicine; ACCO: New York, NY, USA, 2018. [Google Scholar]
- LeJeune, J.T.; Besser, T.E.; Merrill, N.L.; Rice, D.H.; Hancock, D.D. Livestock drinking water microbiology and the factors influencing the quality of drinking water offered to cattle. J. Dairy Sci. 2001, 84, 1856–1862. [Google Scholar] [CrossRef]
- Fairbrother, J.M.; Nadeau, E. Escherichia coli: On-farm contamination of animals. Rev. Sci. Technol. 2006, 25, 555–569. [Google Scholar] [CrossRef]
- Stull, C.L.; Farley, J.L.; Galey, F.D.; Cullor, J.S.; Wilson, R.A.; Hays, V.W.; Wilson, L.L. Assessment of Bacteria and Mycotoxins in Feed and Coliforms in Water Offered to High and Low Performing Commercial Growing Hogs in California. Prof. Anim. Sci. 1999, 15, 94–99. [Google Scholar] [CrossRef]
- Schulz, J.; Spindler, B.; Verspohl, J.; Sudendey, C.; Kemper, N. Tränkwasserqualität in Nutztierhaltungen: Welche Probleme gibt es und wie entstehen sie? Der Prakt. Tierarzt 2014, 95, 649–651. [Google Scholar]
- National Research Council. Nutrient Requirements of Swine, 11th ed.; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Kraft, A. Electrochemical Water Disinfection: A Short Review. Platin. Metals Rev. 2008, 52, 177–785. [Google Scholar] [CrossRef]
- Bukhari, Z.; Clancy, J.L.; Hary, T.M.; Bolton, J.; Dussert, B.; Marshall, M.M. Medium-pressure UV for oocysts inactivation. J. Am. Water Works Assoc. 1999, 91, 86–94. [Google Scholar] [CrossRef]
- Clancy, J.L.; Bukhari, Z.; Hargy, T.M.; Bolton, J.R.; Dussert, B.W.; Marilyn, M. Using UV to inactivate cryptosporidium. J. Am. Water Works Assoc. 2000, 92, 97. [Google Scholar] [CrossRef]
- Kruithof, J.C.; Van der Leer, R.C.; Hijnen, W.A.M. Practical experiences with UV disinfection in The Netherlands. J. Water SRT-Aqua 1992, 41, 88–94. [Google Scholar]
- Harris, G.D.; Adams, V.D.; Sorensen, D.L.; Curtis, M.L. Ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria. Water Res. 1987, 21, 687–692. [Google Scholar] [CrossRef]
- Shrivastava, R.; Upreti, R.K.; Jain, S.R.; Prasad, K.N.; Seth, P.K.; Chaturvedi, U.C. Suboptimal chlorine treatment of drinking water leads to selection of multidrug-resistant Pseudomonas aeruginosa. Ecotoxicol. Environ. Saf. 2004, 58, 277–283. [Google Scholar] [CrossRef]
- Ratnayaka, D.D.; Brandt, M.J.; Johnson, K.M. Chemistry, Microbiology and Biology of Water. Water Supply 2009, 6, 195–266. [Google Scholar]
- Gerba, C.P.; Kennedy, D. Enteric virus survival during household laundering and impact of disinfection with sodium hypochlorite. Appl. Environ. Microbiol. 2007, 73, 4425–4428. [Google Scholar] [CrossRef] [Green Version]
- Abadias, M.; Usall, J.; Oliveira, M.; Alegre, I.; Vinas, L. Efficacy of neutral electrolyzed water (NEW) for reducing microbial contamination on minimally processed vegetables. Int. J. Food Microbiol. 2008, 123, 151–158. [Google Scholar] [CrossRef]
- Peeters, E.; Nelis, H.J.; Coenve, T. Evaluation of the efficacy of disinfection procedures against Burkholderia cenocepacia biofilms. J. Hosp. Infect. 2008, 70, 361–368. [Google Scholar] [CrossRef]
- Krug, P.W.; Lee, L.J.; Eslami, A.C.; Larson, C.R.; Rodriguez, L. Chemical disinfection of high-consequence transboundary animal disease viruses on nonporous surfaces. Biologicals 2011, 39, 231–235. [Google Scholar] [CrossRef]
- Fukuzaki, S. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci. 2006, 11, 147–157. [Google Scholar] [CrossRef]
- Huang, H.; Wu, Q.-Y.; Yang, Y.; Hu, H.-Y. Effect of chlorination on endotoxin activities in secondary sewage effluent and typical Gram-negative bacteria. Water Res. 2011, 45, 4751–4757. [Google Scholar] [CrossRef]
- Parra, J.; Agudelo, J.; Ortiz, L.; Ramírez, M.C.; Rodríguez, B.; López Herrera, A. Lipopolysaccharide (LPS) from E. coli has detrimental effects on the intestinal morphology of weaned pigs. Rev. Colom. Cienc. Pecua. 2011, 24, 598–608. [Google Scholar]
- Anonymous. Water Quality—Sampling for Microbiological Analysis (ISO 19458:2006); German Version EN ISO 19458:2006; Beuth Verlag GmbH: Berlin, Germany, 2006. [Google Scholar]
- Anonymous. Water Quality—General Guidance on the Enumeration of Micro-Organisms by Culture (ISO 8199:2017); German Version EN ISO 8199:2017 (Foreign Standard); Beuth Verlag GmbH: Berlin, Germany, 2017. [Google Scholar]
- Anonymous. Water Quality—Detection and Enumeration of Pseudomonas Aeruginosa—Method by Membrane Filtration (ISO 16266:2006); German Version EN ISO 16266:2008 (Foreign Standard); Beuth Verlag GmbH: Berlin, Germany, 2008. [Google Scholar]
- Anderson, W.B.; Mayfield, C.I.; Dixon, G.D.; Huck, P.M. Endotoxin inactivation by selected drinking water treatment oxidants. Water Res. 2003, 37, 4553–4560. [Google Scholar] [CrossRef] [PubMed]
- Douterelo, I.; Fish, K.E.; Boxall, J.B. Succession of bacterial and fungal communities within biofilms of a chlorinated drinking water distribution system. Water Res. 2018, 141, 74–85. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Heterotrophic Plate Counts and Drinking-Water Safety; Bartram, J., Cotruvo, J., Exner, M., Fricker, C., Glasmacher, A., Eds.; IWA Publishing: London, UK, 2003. [Google Scholar]
- Flemming, H.C.; Percival, S.L.; Walker, J.T. Contamination potential of biofilms in water distribution systems. Water Sci. Technol. Water Suppl. 2002, 2, 271–280. [Google Scholar] [CrossRef]
- Bundesministerium für Ernährung und Landwirtschaft (BMEL). Hygienische Qualität von Tränkwasser. Orientierungsrahmen zur Futtermittelrechtlichen Beurteilung. Available online: https://www.bmel.de/DE/Tier/Tierernaehrung/_texte/Orientierungsrahmen-Traenkwasser.html (accessed on 6 February 2020).
- Niquette, P.; Servais, P.; Savoir, R. Bacterial dynamics in the drinking water distribution system of Brussels. Water Res. 2001, 35, 675–682. [Google Scholar] [CrossRef]
- Gillespie, S.; Lipphaus, P.; Green, J.; Parsons, S.; Weir, P.; Juskowiak, K.; Jefferson, B.; Jarvis, P.; Nocker, A. Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry. Water Res. 2014, 65, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.; Song, Y.; Bartlam, M.; Wang, Y. Long-Term Effects of Residual Chlorine on Pseudomonas aeruginosa in Simulated Drinking Water Fed with Low AOC Medium. Front. Microbiol. 2018, 9, 879. [Google Scholar] [CrossRef]
- Gorbet, M.B.; Sefton, M.V. Endotoxin: The Uninvited Guest. Biomatererials 2005, 26, 6811–6817. [Google Scholar] [CrossRef]
- Anderson, W.B.; Slawson, R.M.; Mayfield, C.I. A review of drinking-water-associated endotoxin, including potential routes of human exposure. Can. J. Microbiol. 2002, 48, 567–587. [Google Scholar] [CrossRef]
- Venter, P.; Abraham, M.; Lues, J.F.R.; Ivanov, I. The influence of sanitizers on the lipopolysaccharide composition of Escherichia coli O111. Int. J. Food Microbiol. 2006, 111, 221–227. [Google Scholar] [CrossRef]
- Parikh, S.J.; Chorover, J. Infrared spectroscopy studies of cation effects on lipopolysaccharides in aqueous solution. Colloids Surf. B 2007, 55, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Morrison, D.C.; Danner, R.L.; Dinarello, C.A.; Munford, R.S.; Natanson, C.; Pollack, M.; Spitzer, J.J.; Vogel, S.N.; McSweegan, E. Bacterial endotoxins and pathogenesis of gram-negative infections: Current status and future direction. J. Endotoxin Res. 1994, 1, 71–83. [Google Scholar] [CrossRef]
- Gehr, R.; Parent Uribe, S.; Da Silva Baptista, I.F.; Mazer, B. Concentrations of endotoxins in waters around the island of Montreal, and treatment options. Water Qual. Res. J. Can. 2008, 43, 291–303. [Google Scholar] [CrossRef]
- Rapala, J.; Lahti, K.; Räsänen, L.; Esala, A.; Niemelä, S.; Sivonen, K. Endotoxins associated with cyanobacteria and their removal during drinking water treatment. Water Res. 2002, 36, 2627–2635. [Google Scholar] [CrossRef]
- Parra, J.; Agudelo, J.; Sanín, D.; Forero, J.; Muskus, C.; López, A. Intestinal expression of pro-inflammatory cytokines induced by oral intake of lipopolysaccharide (LPS) from E. coli in weaned pigs. Rev. Colomb. Cienc. Pecu. 2013, 26, 108–118. [Google Scholar]
- Zacheus, O.M.; Lehtola, M.J.; Korhonen, L.K.; Martikainen, P.J. Soft deposits, the key site for microbial growth in drinking water distribution networks. Water Res. 2001, 35, 1757–1765. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Bendinger, B.; Exner, M.; Gebel, J.; Kistemann, T.; Schaule, G.; Szewzyk, U. Erkenntnisse aus dem BMBF-Verbundprojekt: Biofilme in der Trinkwasser-Installation. Bundesministerium für Bildung und Forschung 2010. Available online: https://www.uni-due.de/imperia/md/content/water-science/ss10/1541b_03z_ss10_thesenpapier_version_1.1._f__r_pdf-versand.pdf (accessed on 6 February 2020).
- Lehtola, M.J.; Nissinen, T.K.; Miettinen, I.T.; Martikainen, P.J.; Vartiainen, T.; Bai, X. Removal of soft deposits from the distribution system improves the drinking water quality. Water Res. 2004, 38, 601–610. [Google Scholar] [CrossRef]
Sampling | Compartment | Treatment | Animals [n] | Age of Animals [d] at Sampling and (Batch No.) |
---|---|---|---|---|
1 | A | yes | 239 | 31 (1) |
B | no | 285 | 52 (1) | |
2 | A | yes | 239 | 45 (1) |
B | no | 285 | 66 (1) | |
3 | A | yes | 239 | 59 (1) |
B | no | 0 * | / | |
4 | A | yes | 236 | 73 (1) |
B | no | 201 | 31 (2) | |
5 | A | yes | 230 | 24 (2) |
B | no | 201 | 45 (2) | |
6 | A | yes | 230 | 38 (2) |
B | no | 201 | 59 (2) | |
7 | A | yes | 230 | 66 (2) |
B | no | 264 | 28 (3) | |
8 | A | yes | 0 * | / |
B | no | 264 | 42 (3) | |
9 | A | no | 278 | 35 (3) |
B | yes | 262 | 56 (3) | |
10 | A | no | 277 | 49 (3) |
B | yes | 262 | 70 (3) | |
11 | A | no | 277 | 63 (3) |
B | yes | 0 * | / (3) | |
12 | A | no | 0 * | / (3) |
B | yes | 319 | 35 (4) | |
13 | A | no | 268 | 29 (4) |
B | yes | 308 | 50 (4) | |
14 | A | no | 264 | 42 (4) |
B | yes | 307 | 63 (4) |
Sampling | Sampling Points Total Count Log 10 cfu/mL | P-Value | Sampling Points Pseudomonas spp. log 10 cfu/100 mL | P-Value | Sampling Points Endotoxins Log 10 EU/mL (ng/mL) | P-Value | |||
---|---|---|---|---|---|---|---|---|---|
Treated Pipe | Untreated Pipe | Treated Pipe | Untreated Pipe | Treated Pipe | Untreated Pipe | ||||
1–8 | bp(A) 0.30 | bp(B) 3.97 | <0.0001 | bp(A) 1.23 | bp(B) 5.41 | <0.0001 | bp(A) 2.93 (2.03) | bp(B) 2.98 (2.08) | 0.9999 |
nd(A) 0.48 | nd(B) 3.36 | <0.0001 | nd(A) 0.30 | nd(B) 1.91 | 0.1790 | nd(A) 1.11 (0.21) | nd(B) 1.32 (0.42) | 0.8407 | |
ep(A) 4.64 | ep(B) 5.58 | 0.0410 | ep(A) 5.65 | ep(B) 5.94 | 0.9983 | ep(A) 3.65 (2.74) | ep(B) 4.25 (2.31) | 0.0094 |
Sampling | Sampling Points Total Count Log 10 cfu/mL | P-Value | Sampling Points Pseudomonas spp. Log 10 cfu/100 mL | P-Value | Sampling Points Endotoxins Log 10 EU/mL (ng/mL) | P-Value | |||
---|---|---|---|---|---|---|---|---|---|
Untreated Pipe | Treated Pipe | Untreated Pipe | Treated Pipe | Untreated Pipe | Treated Pipe | ||||
9–14 | bp(A) 3.83 | bp(B) 0.30 | <0.0001 | bp(A) 5.53 | bp(B) 0.60 | <0.0001 | bp(A) 2.78 (1.88) | bp(B) 3.11 (2.21) | 0.4254 |
nd(A) 2.80 | nd(B) 0.00 | <0.0001 | nd(A) 1.80 | nd(B) 0.00 | <0.0001 | nd(A) 1.00 (0.1) | nd(B) 0.95 (0.05) | 1.0000 | |
ep(A) 5.49 | ep(B) 5.75 | 0.9640 | ep(A) 5.92 | ep(B) 6.05 | 0.9995 | ep(A) 3.36 (2.46) | ep(B) 4.21 (0.62) | 0.0002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böger, R.; Rohn, K.; Kemper, N.; Schulz, J. Sodium Hypochlorite Treatment: The Impact on Bacteria and Endotoxin Concentrations in Drinking Water Pipes of A Pig Nursery. Agriculture 2020, 10, 86. https://doi.org/10.3390/agriculture10030086
Böger R, Rohn K, Kemper N, Schulz J. Sodium Hypochlorite Treatment: The Impact on Bacteria and Endotoxin Concentrations in Drinking Water Pipes of A Pig Nursery. Agriculture. 2020; 10(3):86. https://doi.org/10.3390/agriculture10030086
Chicago/Turabian StyleBöger, Regina, Karl Rohn, Nicole Kemper, and Jochen Schulz. 2020. "Sodium Hypochlorite Treatment: The Impact on Bacteria and Endotoxin Concentrations in Drinking Water Pipes of A Pig Nursery" Agriculture 10, no. 3: 86. https://doi.org/10.3390/agriculture10030086
APA StyleBöger, R., Rohn, K., Kemper, N., & Schulz, J. (2020). Sodium Hypochlorite Treatment: The Impact on Bacteria and Endotoxin Concentrations in Drinking Water Pipes of A Pig Nursery. Agriculture, 10(3), 86. https://doi.org/10.3390/agriculture10030086