Reducing Phosphorus Fertilizer Input in High Phosphorus Soils for Sustainable Agriculture in the Mekong Delta, Vietnam
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Result and Discussion
4.1. Total and Available Phosphorus Concentrations
4.2. Maximum Phosphorus Sorption
4.3. Degree of P Saturation
4.4. Phosphorus Release and Correlation
4.5. Corn Responses to P Fertilizer
4.5.1. Greenhouse Experiment
4.5.2. Field Experiment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharpley, A.N.; Daniel, T.C.; Edwards, D.R. Phosphorus movement in the landscape. J. Prod. Agric. 1993, 6, 492–500. [Google Scholar] [CrossRef]
- Sims, T.J.; Sharpley, A.N. Phosphorus: Agriculture and the Environment; Amer: Madison, WI, USA, 2005; Agron. Monograph No. 49. [Google Scholar]
- Delgado, A.; Scalenghe, R. Aspects of phosphorus transfer in Europe. J. Plant Nutr. Soil Sci. 2008, 171, 552–575. [Google Scholar] [CrossRef]
- Argus Media. Phosphates Analysis: Vietnam DAP Import Duty Situation and Likely Market Impact. Available online: https://argusmedia.com/-/media/Files/white-papers/phosphates-analysis-vietnam-dap.ashx (accessed on 20 September 2019).
- Ketterings, Q.M.; Kahbka, J.E.; Reid, W.R. Trends in phosphorus fertility in New York agricultural land. J. Soil Water Conserve 2005, 60, 10–20. [Google Scholar] [CrossRef]
- Wortmann, C.S.; Xerida, S.A.; Mamo, M. No-till row crop response to starter fertilizer in eastern Nebraska: II. Rainfed grain sorghum. Agron. J. 2006, 98, 187–193. [Google Scholar] [CrossRef]
- Cahill, S.; Johnson, A.; Osmond, D.; Hardy, D. Response of corn and cotton to starter phosphorus on soil testing very high in phosphorus. Agron. J. 2008, 100, 537–542. [Google Scholar] [CrossRef]
- Cong, P.T.; Roel, M.; Sat, C.D.; Chon, N.Q.; Binh, N.D. Final Report 2000–2005 to Enrich Phosphorus of Soil in Southeast and Tay Nguyen; Ho Chi Minh Publishers: Ho Chi Minh, Vietnam, 2005; pp. 26–31. [Google Scholar]
- Hoa, N.M.; Minh, D.M. Surveying the physical-chemical properties and biological land intensive vegetable growing areas Than Cuu Nghia commune, Chau Thanh district, Tien Giang province. J. Soil Sci. Vietnam 2006, 27, 155–158. [Google Scholar]
- Wortmann, C.S.; Xerinda, S.A.; Mamo, M.; Shapiro, C.A. No-Till Row Crop Response to Starter Fertilizer in Eastern Nebraska: I. Irrigated and Rainfed Corn. Agron. J. 2006, 98, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Allen, B.L.; Mallarino, A.P. Relationships between extractable soil phosphorus and phosphorus saturation after long-term fertilizer or manure application. Soil Sci. Soc. Am. J. 2006, 70, 454–463. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla: Rome, Italy, 2015; ISBN 978-92-5-108370-3. [Google Scholar]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Part 2—Chemical and microbiological properties. In Method of Soil Analysis; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Thuy, P.T.P. Phosphorus Supplying Capacity on Some Major Vegetable Growing Areas in the Mekong Delta. Ph.D. Thesis, Can Tho University, Can Tho, Vietnam, 2015; pp. 38–39. [Google Scholar]
- Can, L.V. Agricultural Curriculum; Agricultural Publisher: Hanoi, Vietnam, 1978; pp. 14–25. [Google Scholar]
- Houba, V.J.G.; Lee, V.D.; Novozamsky, J.J. Soil and Plant Analysis; Department of Soil science and Plant nutrition, Wageningen Agricultural University: Wageningen, The Netherlands, 1995. [Google Scholar]
- Schoumans, O.F.; Mol-Dijkstra, J.P.; Roest, C.W.J. Agricultural and Enviromental Methodologies to Describe Nonpoint Source Phosphorus Pollution; Alterra, Wageningen University and Research Centre: Wageningen, The Netherlands, 2002; Volume 47, pp. 207–211. [Google Scholar]
- Sui, Y.; Thompson, M.L. Phosphorus sorption, desorption, and buffering capacity in a biosolids—Amended mollisol. Published in Soil Science. Soc. Am. J. 2000, 64, 164–169. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Development Vietnam. National Technical Regulation on Testing for Value of Cultivation and Use of Maize Varieties. 2011. Available online: http://vbpl.vn/FileData/TW/Lists/vbpq/Attachments/26746/VanBanGoc_48_2011_TT-BNNPTNT.pdf (accessed on 20 August 2011).
- Debusk, W.F.; Newman, S.; Reddy, K.R. Spatial-temporal patterns of soil phosphorus enrichment in Everglades water conservation area 2A. J. Environ. Qual. 2001, 30, 1438–1446. [Google Scholar] [CrossRef] [PubMed]
- Can, L.V. Using Phosphate Fertilizers South Vietnam; Agricultural Publisher: Hanoi, Vietnam, 1985; pp. 14–36. [Google Scholar]
- Castro, B.; Torren, T.J. Phosphate sorption by calcareous Vertisols and Inceptisols as evaluated from extended P-sorption curves. Eur. J. Soil Sci. 1998, 49, 661–667. [Google Scholar] [CrossRef]
- Saavedra, C.; Delgado, A. Phosphorus fractions and release patterns in typical Mediterranean soils. Soil Sci. Soc. Am. J. 2005, 69, 607–615. [Google Scholar] [CrossRef]
- Wang, Y.T.; Zhang, T.Q.; O’Halloran, I.P.; Tan, C.S.; Hu, Q.C.; Reid, D.K. Soil Tests as Risk Indicators for Leaching of Dissolved Phosphorus from Agricultural Soils in Ontario. Soil Sci. Soc. Am. J. 2012, 76, 220–229. [Google Scholar] [CrossRef]
- Villapando, R.R.; Graetz, D.A. Phosphous sorption and sorption properties of the Spodic Horizon from selected Florida Spodosols. Soil Sci. Soc. Am. J. 2001, 65, 331–339. [Google Scholar] [CrossRef]
- Van der Zee, S.E.A.T.M.; Van Riemsdijk, W.H.; de flaan, F.A.M. Protocol fosfaatverzdigde gronden. Deel I en II (Phosphate saturated soil protocol. Part I and II (In Dutch); Department of Soil Science and Plant Nutrition, Agricultural University: Wageningen, The Netherlands, 1990. [Google Scholar]
- Schoumans, O.F.; Chardon, W.J. Phosphate saturation degree and accumulation of phosphate in various soil types in The Netherlands. Geoderma 2015, 237, 325–335. [Google Scholar] [CrossRef]
- Zhou, M.; Li, Y. Phosphorus-sorption characteristic of Calcareous Soils and Limestone from the Southern Everglades and Adjacent Farmlands. Soil Science Society. Published in Soil Sci. Soc. Am. J. 2001, 65, 1404–1412. [Google Scholar] [CrossRef] [Green Version]
- Matar, A.E.; Garabed, S.; Riahi, S.; Mazid, A. A comparison of four soil test procedures for determination of available phosphorus in calcareous soils of the Mediterranean region. Commun. Soil Sci. Plant Anal. 1988, 19, 127–140. [Google Scholar] [CrossRef]
- Ryan, J.; Matar, A. Fertilizer use efficiency under rainfed agriculture. In Proceedings of the Fourth Regional Soil Test Calibration Workshop, Agadir, Morocco, 5–11 May 1991; International Center for Agricultural Research in the Dry Areas: Aleppo, Syria, 1991. [Google Scholar]
- Ryan, J. Accomplishments and future challenges in dryland soil fertility research in the Mediterranean area. In Proceedings of the International Soil Fertility Workshop, 19–23 November 1997; International Center for Agricultural Research in the Dry Areas: Aleppo, Syria, 1997. [Google Scholar]
- Ryan, J.; Matar, A. Soil Test Calibration in West Asia and North Africa. In Proceedings of the Third Regional Soil Test Calibration Workshop, Amman, Jordan, 2–9 September 1990; International Center for Agricultural Research in the Dry Areas: Aleppo, Syria, 1990. [Google Scholar]
Range of Soil P | Rating Category | Samples in Rating Category (%) |
---|---|---|
Total P (mg kg−1 soil) | ||
568–1048 | High | 57 |
393–524 | Medium-High | 36 |
306–349 | Medium | 6.2 |
131 | Low | 1.0 |
Bray 1 available P (mg kg−1 soil) | ||
20.4–224 | High | 75 |
7.3–19.5 | Medium | 20 |
3.6–6.8 | Low | 5.0 |
Available P Category | Available P Content (mg kg−1) | Langmuir Equation C/q = C/qm + (1/k) qm | R2 | Maximum P Sorption (mg kg−1) | DPS (%) | Maximum P Release (mg kg−1) |
---|---|---|---|---|---|---|
Low | 6.8 | C/q = 0.0018C + 0.0038 | 0.98 | 555 | 0.63 | 1.2 |
Medium | 13 | C/q = 0.0026C + 0.0071 | 0.96 | 384 | 1.1 | 4.3 |
13 | C/q = 0.0017C + 0.0083 | 0.73 | 588 | 0.97 | 6 | |
High | 21 | C/q = 0.0022C + 0.0045 | 0.72 | 454 | 2 | 6.2 |
38 | C/q = 0.0050C + 0.0263 | 0.98 | 200 | 2.4 | 6.7 | |
47 | C/q = 0.0029C + 0.0145 | 0.99 | 344 | 3.1 | 30 | |
87 | C/q = 0.0023C + 0.0133 | 0.97 | 424 | 5.3 | 33 | |
92 | C/q = 0.0067C + 0.0112 | 0.97 | 149 | 4.7 | 37 | |
120 | C/q = 0.0037C + 0.0039 | 0.99 | 270 | 5.5 | 62 | |
The r values of maximum P sorption, DPS, and maximum P release with available P, respectively | −0.63* | 0.98** | 0.96** | |||
The r values of DPS and maximum P release with maximum P sorption. | −0.61* | −0.52ns | ||||
The r value of maximum P release with DPS. | 0.91* |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thuy, P.T.P.; Hoa, N.M.; Dick, W.A. Reducing Phosphorus Fertilizer Input in High Phosphorus Soils for Sustainable Agriculture in the Mekong Delta, Vietnam. Agriculture 2020, 10, 87. https://doi.org/10.3390/agriculture10030087
Thuy PTP, Hoa NM, Dick WA. Reducing Phosphorus Fertilizer Input in High Phosphorus Soils for Sustainable Agriculture in the Mekong Delta, Vietnam. Agriculture. 2020; 10(3):87. https://doi.org/10.3390/agriculture10030087
Chicago/Turabian StyleThuy, Pham Thi Phuong, Nguyen My Hoa, and Warren A. Dick. 2020. "Reducing Phosphorus Fertilizer Input in High Phosphorus Soils for Sustainable Agriculture in the Mekong Delta, Vietnam" Agriculture 10, no. 3: 87. https://doi.org/10.3390/agriculture10030087
APA StyleThuy, P. T. P., Hoa, N. M., & Dick, W. A. (2020). Reducing Phosphorus Fertilizer Input in High Phosphorus Soils for Sustainable Agriculture in the Mekong Delta, Vietnam. Agriculture, 10(3), 87. https://doi.org/10.3390/agriculture10030087