Farmers’ Willingness to Pay for Services to Ensure Sustainable Agricultural Income in the GAP-Harran Plain, Şanlıurfa, Turkey
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Research Area
3.2. Materials
3.3. Methods
4. Results and Discussion
4.1. Research Findings
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leao, I.; Ahmed, M.; Kar, A. Jobs from Agriculture in Afghanistan; The World Bank: Washington, DC, USA, 2018; ISBN 978-1-4648-1265-1. [Google Scholar]
- Aydogdu, M.H. Evaluation of farmers’ willingness to pay for agricultural extension services in GAP-Harran Plain, Turkey. J. Agric. Sci. Technol. 2017, 19, 785–796. [Google Scholar]
- World Economic Forum. Global Risks Report 2018, 13th ed.; World Economic Forum: Geneva, The Switzerland, 2018; ISBN 978-1-944835-15-6. [Google Scholar]
- SKD. Sürdürülebilir Tarım: Dünya’da ve Türkiye’de Güncel Durum. Available online: http://www.skdturkiye.org/blog/surdurulebilir-tarim-dunyada-ve-turkiyede-guncel-durum (accessed on 11 January 2020).
- Bateman, I.J.; Day, B.H.; Georgiou, S.; Lake, I. The aggregation of environmental benefit values: Welfare measures, distance decay and total WTP. Ecol. Econ. 2006, 60, 450–460. [Google Scholar] [CrossRef] [Green Version]
- Sevinç, G.; Aydoğdu, M.H.; Cançelik, M.; Sevinç, M.R. Farmers’ attitudes toward public support policy for sustainable agriculture in GAP-Şanlıurfa, Turkey. Sustainability 2019, 11, 6617. [Google Scholar] [CrossRef]
- Abebe, S.T.; Dagnew, V.G.; Zeleke, G.Z.; Eshetu, G.Z.; Cirella, G.T. Willingness to pay for watershed management. Resources 2019, 8, 77. [Google Scholar] [CrossRef] [Green Version]
- Sirat, A. Organik tahıl tarımı. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 2016, 26, 455–474. [Google Scholar]
- Aydoğdu, M.H.; Kaya, F.; Eren, M.E.; Doğan, H. Organik ürün tüketim nedenleri üzerine bir araştırma: Şanlıurfa örneklemesi. Akademik Sosyal Araştırmalar Dergisi 2018, 6, 161–170. [Google Scholar] [CrossRef]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yan, C.; Guo, G.; Zhang, J.; Ruiz-Menjivar, J. The impact of agricultural chemical inputs on environment: Global evidence from informetrics analysis and visualization. Int. J. Low Carbon Technol. 2018, 13, 338–352. [Google Scholar] [CrossRef] [Green Version]
- Aydogdu, M.H.; Kaya, F. Factors affecting consumers’ consumption of organic foods: A case study in GAP-Şanlıurfa in Turkey. J. Agric. Sci. Technol. JAST 2020, 22, 347–359. [Google Scholar]
- Akçaöz, H.; Özkan, B.; Kızılay, H. Antalya ilinde tarımsal üretimde risk yönetimi ve tarım sigortası uygulamaları. Tekirdağ Ziraat Fakültesi Dergisi 2006, 3, 93–103. [Google Scholar]
- Sav, O.; Sayın, C. Tarımda kalma eğilimini etkileyen başlıca faktörlerin genel bir değerlendirmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi 2018, 21, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Davran, M.K.; Sevinç, M.R.; Cançelik, M. Şanlıurfa ili köylerinde yaşlıların demografik ve sosyo-ekonomik durumları ile yoksulluk ve yaşlılık algıları. Elektronik Sosyal Bilimler Dergisi 2020, 19, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Sevinç, G.; Davran, M.K.; Sevinç, M.R. Türkiye’de kırda kente göç ve göçün aile üzerindeki etkileri. İktisadi İdari Ve Siyasal Araştırmalar Dergisi 2018, 3, 70–82. [Google Scholar] [CrossRef]
- Kalkınma Bakanlığı. Onuncu Kalkınma Planı (2014–2018). Gıda Ürünleri ve Güvenilirliği, Özel İhtisas Komisyon Raporu-2023, 1st ed.; Kalkınma Bakanlığı Yayın No 2867; ÖİK: Ankara, Turkey, 2014; ISBN 978-605-4667-63-5. [Google Scholar]
- GTHB. 2018 Yılı Performans Programı, Stratejik Plan 2018–2022. Eğitim Yayım ve Yayınlar Dairesi Başkanlığı. Available online: https://www.tarimorman.gov.tr/SGB/Belgeler/Performans%20Programlar%C4%B1/2018%20Performans%20Program%C4%B1.pdf (accessed on 15 March 2020).
- Aydoğdu, M.H.; Altun, M. Mısır ekimi yapan çiftçilerin tarımsal yayım ve danışmanlık hizmetleri için ödemeye yönelik tutumları: Şanlıurfa örneklemesi. Al Farabi Uluslararası Sosyal Bilimler Dergisi 2019, 3, 109–115. [Google Scholar]
- Deutz, P. Producer responsibility in a sustainable development context: Ecological modernisation or industrial ecology? Geogr. J. 2009, 175, 274–285. [Google Scholar] [CrossRef]
- Vitale, J.; Adam, B.; Vitale, P. Economics of wheat breeding strategies: Focusing on Oklahoma hard red winter wheat. Agronomy 2020, 10, 238. [Google Scholar] [CrossRef] [Green Version]
- Shee, A.; Azzarri, C.; Haile, B. Farmers’ willingness to pay for improved agricultural technologies: Evidence from a field experiment in Tanzania. Sustainability 2020, 12, 216. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhang, A.; Zhang, F. Farmers’ heterogeneous willingness to pay for farmland non-market goods and services on the basis of a mixed logit model-A case study of Wuhan, China. Int. J. Environ. Res. Public Health 2019, 16, 3876. [Google Scholar] [CrossRef] [Green Version]
- Aydogdu, M.H. Farmers’ attitudes to the pricing of natural resources for sustainability: GAP-Şanlıurfa sampling of Turkey. Water 2019, 11, 1772. [Google Scholar] [CrossRef] [Green Version]
- Ning, J.; Jin, J.; Kuang, F.; Wan, X.; Zhang, C.; Guan, T. The valuation of grassland ecosystem services in Inner Mongolia of China and its spatial differences. Sustainability 2019, 17, 7117. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Liu, Y.; Zhao, R. A framework for ecological compensation assessment: A case study in the Upper Hun River Basin, Northeast China. Sustainability 2019, 11, 1205. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.-I.; Liou, J.-L.; Hsu, S.-H. Economic valuation of public meteorological information services-A case study of agricultural producers in Taiwan. Atmosphere 2019, 10, 753. [Google Scholar] [CrossRef] [Green Version]
- Mutaqin, D.J.; Usami, K. Smallholder farmers’ willingness to pay for agricultural production cost insurance in rural West Java, Indonesia: A contingent valuation method (CVM) approach. Risks 2019, 7, 69. [Google Scholar] [CrossRef] [Green Version]
- Lazaridou, D.; Michailidis, A.; Mattas, K. Evaluating the willingness to pay for using recycled water for irrigation. Sustainability 2019, 11, 5220. [Google Scholar] [CrossRef] [Green Version]
- Yi, S. Contingent valuation of sustainable integrated agriculture-aquaculture products: The case of rice-fish farming systems in South Korea. Agronomy 2019, 9, 601. [Google Scholar] [CrossRef] [Green Version]
- Yi, S. Willingness-to-pay for sustainable aquaculture products: Evidence from Korean red seabream aquaculture. Sustainability 2019, 11, 1577. [Google Scholar] [CrossRef] [Green Version]
- Xiong, K.; Kong, F.; Zhang, N.; Lei, N.; Sun, C. Analysis of the factors influencing willingness to pay and payout level for ecological environment improvement of the Ganjiang River Basin. Sustainability 2018, 10, 2149. [Google Scholar] [CrossRef] [Green Version]
- Ulimwengu, J.; Sanyal, P. Joint Estimation of Farmers’ Stated Willingness to Pay for Agricultural Services. Available online: https://core.ac.uk/download/pdf/6237697.pdf (accessed on 18 March 2020).
- TSMS. Climate Data of Şanlıurfa Province, Turkish State Meteorological Service. Available online: https://mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=SANLIURFA (accessed on 12 March 2020).
- Aydogdu, M.H.; Yenigün, K. Willingness to pay for sustainable water usage in Harran Plain-GAP Region, Turkey. Appl. Ecol. Environ. Res. 2016, 14, 147–160. [Google Scholar] [CrossRef]
- GAP Regional Development Administration. What’s GAP? Available online: http://www.gap.gov.tr/en/ (accessed on 18 March 2020).
- Aydogdu, M.; Aydogdu, M.H.; Çullu, M.A. The determination of the cotton productivity and losses under the effect of salinity by using geographical information system (GIS) and remote sensing (RS) GAP region, Akçakale sampling, Turkey. J. Acad. Soc. Sci. Stud. 2014, 24, 617–630. [Google Scholar] [CrossRef]
- Aydoğdu, M.; Aydoğdu, M.H.; Çullu, M.A. Farklı tuz seviyelerindeki toprakların pamuk verimine etkisinin belirlenmesi ve uydu verileriyle ilişkilendirilmesi (Şanlıurfa, Harran Ovası; İmambakır Sulama Birliği). Turk. Stud. 2014, 9, 231–250. [Google Scholar] [CrossRef]
- Bayram, N. Sosyal Bilimlerde SPSS Ile Veri Analizi, 5th ed.; Ezgi Litabevi: Bursa, Turkey, 2015; ISBN 9758606436. [Google Scholar]
- Fisunoğlu, H.M.; Şengül, S. Adana kentsel alanda hane halkı tüketimi. Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 2011, 20, 251–266. [Google Scholar]
- Bushway, S.; Johnson, B.D.; Slocum, L.A. Is the magic still there? The use of the Heckman two-step correction for selection bias in criminology. J. Quant. Criminol. 2007, 23, 151–178. [Google Scholar] [CrossRef]
- Winship, C.; Mare, R.D. Models for sample selection Bias. Annu. Rev. Sociol. 1992, 18, 327–350. [Google Scholar] [CrossRef]
- Heckman, J. Sample selection bias as a specification error. Econometrica 1979, 47, 153–161. [Google Scholar] [CrossRef]
- Nawata, K. Estimation of sample selection bias models by the maximum likelihood estimator and Heckman’s Two-Step Estimator. Econ. Lett. 1994, 45, 33–40. [Google Scholar] [CrossRef]
- Xiong, K.; Zhang, N.; Kung, C.-C.; Kong, F. Determinants of residents’ willingness to accept and their levels for ecological conservation in Ganjiang River Basin, China: An empirical analysis of survey data for 677 households. Sustainability 2019, 11, 6138. [Google Scholar] [CrossRef] [Green Version]
- Kyaw, N.N.; Ahn, S.; Lee, S.H. Analysis of the factors influencing market participation among smallholder rice farmers in Magway Region, central dry zone of Myanmar. Sustainability 2018, 10, 4441. [Google Scholar] [CrossRef] [Green Version]
- Heckman, J. The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. Ann. Econ. Soc. Meas. 1976, 5, 475–492. [Google Scholar]
- Amemiya, T. Advanced Econometrics, 8th ed.; Harvard University Press: Cambridge, MA, USA, 1985; ISBN 0-674-00560-0. [Google Scholar]
- Newey, W.K.; Powell, J.L.; Walker, J.R. Semiparametric estimation of selection models: Some empirical results. Am. Econ. Rev. 1990, 80, 324–328. [Google Scholar]
- Puhani, P. The Heckman correction for sample selection and its critique. J. Econ. Surv. 2000, 14, 53–68. [Google Scholar] [CrossRef]
- Lee, L.-F. Self-Selection. In A Companion to Theoretical Econometrics; John Wiley & Sons, Ltd.: Oxford, UK, 2007; pp. 383–409. ISBN 978-0-470-99624-9. [Google Scholar]
- Cameron, C.A.; Trivedi, P.K. Sequential Two-Step M-Estimation. Microeconometrics: Methods and Applications, 1st ed.; Cambridge University Press: New York, NY, USA, 2005; ISBN 0-521-84805-9. [Google Scholar]
- Toomet, O.; Henningsen, A. Sample selection models in R: Package sample selection. J. Stat. Softw. 2008, 27, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Cameron, C.A.; Trivedi, P.K. Microeconometrics Using Stata, 2nd ed.; Stata Press: College Station, TX, USA, 2010; ISBN 978-1-59718-073-3. [Google Scholar]
- Sevinç, M.R.; Davran, M.K.; Sevinç, G. Osmanlı İmparatorluğu’ndan günümüze kırsal alanda uygulanan eğitim politikaları. Elektronik Sosyal Bilimler Dergisi 2016, 15, 253–272. [Google Scholar] [CrossRef] [Green Version]
- Türkdoğan, O. Osmanlıdan Günümüze Türk Toplum Yapısı, 5th ed.; Çamlıca Yayınları: İstanbul, Turkey, 2008. [Google Scholar]
- Küçük, N.; Aydogdu, M.H. Türkiye’de pamuk üretiminin son dönemlerdeki genel analizi. Eur. J. Math. Eng. Nat. Med. Sci. 2020, 8, 77–82. [Google Scholar]
- Küçük, N.; Issı, S. Pamuk üretiminin stratejik önemi üzerine genel bir değerlendirme. TURAN-CSR: TURAN Cent. Strateg. Res. 2019, 11, 391–397. [Google Scholar]
- TEPGE. Tarım Ürünleri Piyasası Pamuk. Available online: https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Piyasalar%C4%B1/2019-Temmuz%20Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Raporu/2019-Temmuz%20Pamuk.pdf (accessed on 14 March 2020).
- Anonymous. 2019 Yılı Ortalama Dolar Kuru. Available online: https://paracevirici.com/doviz-arsiv/merkez-bankasi/gecmis-tarihli-doviz/2019/amerikan-dolari (accessed on 13 March 2020).
- Değirmenci, Y.; Manyaz, İ.; Güzelaydın, İ.; Erkuş, E.; Koçak, E.; Arı, B. Tarımsal Yayım ve Danışmanlık; T.C. Gıda Tarım ve Hayvancılık Bakanlığı, Eğitim Yayım ve Yayınlar Dairesi Başkanlığı: Ankara, Turkey, 2012. [Google Scholar]
- Burch, C.; Busch, M.; Higgins, E.; Bittner, S.; Perera, N.; Neal, K.; Burkett, L.; Castro, A.J.; Anderson, C. Revisiting a water conflict in Southeastern Oklahoma 6 Years Later: A new valuation of the willingness to pay for ecosystem services. Sustainability 2020, 12, 819. [Google Scholar] [CrossRef] [Green Version]
- Maghsood, F.F.; Moradi, H.; Berndtsson, R.; Panahi, M.; Daneshi, A.; Hashemi, H.; Bavani, A.R.M. Social acceptability of flood management strategies under climate change using contingent valuation method (CVM). Sustainability 2019, 11, 5053. [Google Scholar] [CrossRef] [Green Version]
- Omondi, S.O.; Mbogoh, S.G.; Munei, K. An evaluatıon of the factors influencıng farmers’ willingness to pay (WTP) for irrigation water: The case of ahero irrigation scheme in Kenya. Int. J. Sci. Environ. Technol. 2014, 3, 1778–1789. [Google Scholar]
- Cançelik, M.; Aydogdu, M.H.; Sevinç, M.R. A research on the activities and problems of agro-based producers and breeder associations in Sanliurfa, Turkey. IOSR J. Bus. Manag. 2020, 22, 15–23. [Google Scholar] [CrossRef]
- Menozzi, D. Extra-virgin olive oil production sustainability in northern Italy: A preliminary study. Br. Food J. 2014, 116, 1942–1959. [Google Scholar] [CrossRef]
- Progenseed. 2019 Yılında Pamuk Verimlerinde Görülen Düşüş Ve Destekleme Primiyle İlgili Görüş. Available online: https://www.progenseed.com/images/upload/8385_4486.pdf (accessed on 11 March 2020).
Variable | Definition | Mean | Std. Dev |
---|---|---|---|
Age | If the age of the farmer; between 18–30 is 1 (6.6%), if between 31–40 is 2 (27.17%), if between 41–50 is 3 (31.4%), if between 51–60 is 4 (21.11%), 61 and over is 5 (13.72%). | 3.082 | 1.1367 |
Education | If the farmer is literate 1 (13.72%), primary school graduate 2 (47.76%), middle school graduate 3 (15.57%), high school graduate 4 (13.98%), university graduate 5 (8.97%). | 2.567 | 1.1581 |
Experience | If the farmer’s experience is 1 (16.62%) for 1–10 years, 2 (31.93%) for 11–20 years, 3 (25.33%) for 21–30 years, 4 (26.12%) for 31 years and over. | 2.610 | 1.0467 |
Household number | The number of households of the farmer is 1 (15.3%), if, between 1–4, 2 (53.3%) if between 5–9, and 3 (31.4%) if 10 and over. | 2.161 | 0.6651 |
Number of household working in agriculture | The number of households working in agriculture is 1 (69.69%), if, between 1–4, 2 (26.39%) if between 5–9, and 3 (12.92%) if 10 and over. | 1.522 | 0.7137 |
Land Amount | If the amount of land cultivated by the farmer is 5 ha and less is 1 (23.75%), between 5.1–10 ha is 2 (26.65%), 10.1–20 ha is 3 (23.48%), 20.1 ha and over is 4 (26.12%). | 2.520 | 1.1118 |
Property Type | If the farmer’s cultivated land is his own property 1 (58.58%) and if the tenant and/or partnership is 0 (41.42%). | 0.586 | 0.4932 |
Income | If the agricultural annual net income of the farmer; 25,000 TL and less is 1 (22.96%), if between 25,001–50,000 TL is 2 (21.11%), if between 50,001–100,000 TL is 3 (25.33%), and if 100,001 and over is 4 (30.6%). | 2.636 | 1.1429 |
Non-agricultural income | If the farmer has non-agricultural income is 1 (12.93%), if not is 0 (87.07%). | 0.129 | 0.3359 |
Membership of agricultural cooperatives | If the farmer has a membership of any agricultural cooperative is 1 (22.69%), if there is no membership is 0 (77.31%). | 0.227 | 0.4194 |
Crop pattern | If the farmer only cultivates cotton is 1 (51.98%), if only wheat is 2 (5.8%), if mixed crop (cotton, wheat, corn, and barley) is 3 (42.22%). | 1.902 | 0.9669 |
WTP for Services | Ratio (%) | Annual Average Agricultural Income (TL/ha) | Annual Average Agricultural Income ($/ha) | Average WTP (TL/ha) | Average WTP ($/ha) |
---|---|---|---|---|---|
Those who do not accept | 41.22 | 5552.81 | 978.29 | ||
In favor of—accepted | 22.61 | 5875.23 | 1035.09 | 180.82 | 31.86 |
Conditionally in favor of WTP | 23.14 | 5498.87 | 968.78 | ||
Have enough knowledge—not accepted | 13.03 | 5706.76 | 1005.41 | ||
Average value | 5668.87 | 998.74 | 40.9 | 7.21 |
Variable | Sub-Groups | Coef. | Std. Err. | Z | p > |z| |
---|---|---|---|---|---|
Age (year) | 31–40 | 0.572 | 0.447 | 1.28 | 0.201 |
41–50 | 0.927 b | 0.457 | 2.03 | 0.043 | |
51–60 | 0.706 | 0.486 | 1.45 | 0.147 | |
61 and over | 0.651 | 0.523 | 1.25 | 0.213 | |
Education (level) | Primary School | 0.097 | 0.256 | 0.38 | 0.704 |
Secondary School | 0.166 | 0.312 | 0.53 | 0.593 | |
High School | 0.541 c | 0.315 | 0.71 | 0.087 | |
University | 0.774 b | 0.365 | 2.12 | 0.034 | |
Experience (year) | Between 11–20 | 0.319 | 0.264 | 1.21 | 0.228 |
Between 21–30 | 0.159 | 0.296 | 0.54 | 0.591 | |
31 and above | 0.155 | 0.312 | 0.50 | 0.619 | |
Household (person) | Between 5–9 | 0.015 | 0.245 | 0.06 | 0.951 |
10 and above | 0.059 | 0.301 | 0.20 | 0.843 | |
Working in agriculture (person) | Between 5–9 | 0.331 c | 0.196 | 1.68 | 0.093 |
10 and above | −0.152 | 0.306 | −0.50 | 0.619 | |
Land amount (hectare) | Between 5.1–10.0 | 0.700 b | 0.288 | 2.43 | 0.015 |
Between 10.1–20.0 | 0.804 a | 0.307 | 2.62 | 0.009 | |
20.1 and above | 0.643 b | 0.317 | 2.03 | 0.043 | |
Land ownership type | Not own property | −0.179 | 0.157 | −1.14 | 0.255 |
Income (TL) | Between 25,001–50,000 | 0.426 | 0.282 | 1.51 | 0.131 |
Between 50,001–100,000 | 0.336 | 0.278 | 1.21 | 0.226 | |
100,001 and above | 0.510 c | 0.289 | 1.76 | 0.078 | |
Non-agricultural income | No | 0.557 b | 0.236 | 2.36 | 0.018 |
Agricultural cooperative membership | No | 0.434 b | 0.182 | 2.38 | 0.017 |
Crop type | Cotton | 0.012 | 0.186 | 0.07 | 0.946 |
Wheat | −0.593 | 0.373 | −1.59 | 0.112 | |
Constant | −2.844 a | 0.588 | −4.83 | 0.000 | |
LR chi-square = 80.71 | Prob > chi-square = 0.000 | Pseudo R2 = 0.180 | |||
The reference groups of variables: those between “18 and 30” for age, “literate” for education, “1–10” for experience, “1–4” for households, “1–4” for agricultural workers, “5 ha and less” for land amount, “property owner” for land ownership type, “25,000 and under” for income, “yes” for non-agricultural income, “yes” for agricultural cooperative membership, “mixed” for crop type are taken as a basic level for the reference group. |
Variable | Sub-Groups | Coef. | Std. Err. | Z | p > |z| |
---|---|---|---|---|---|
Age (year) | 31–40 | 14.175 | 18.131 | 0.78 | 0.434 |
41–50 | 26.720 | 19.770 | 1.35 | 0.177 | |
51–60 | 24.933 | 19.881 | 1.25 | 0.210 | |
61 and above | 30.477 | 20.185 | 1.51 | 0.131 | |
Education (level) | Primary School | 8.431 | 7.962 | 1.06 | 0.290 |
Secondary School | 23.542 b | 9.500 | 2.48 | 0.013 | |
High School | 28.966 b | 11.712 | 2.47 | 0.013 | |
University | 24.880 c | 14.203 | 1.75 | 0.080 | |
Experience (year) | Between 11–20 | 2.862 | 10.374 | 0.28 | 0.783 |
Between 21–30 | −5.224 | 10.638 | −0.49 | 0.623 | |
31 and above | −2.143 | 10.525 | −0.20 | 0.839 | |
Household (person) | Between 5–9 | −13.059 c | 7.240 | −1.80 | 0.071 |
10 and above | −22.759 a | 8.431 | −2.70 | 0.007 | |
Working in agriculture (person) | Between 5–9 | 16.725 b | 7.082 | 2.36 | 0.018 |
10 and above | 13.435 | 9.530 | 1.41 | 0.159 | |
Land amount (hectare) | Between 5.1–10.0 | 25.328 c | 15.379 | 1.65 | 0.099 |
Between 10.1–20.0 | 43.469 b | 17.118 | 2.54 | 0.011 | |
20.1 and above | 37.729 b | 15.687 | 2.41 | 0.016 | |
Land ownership type | Not own property | −14.224 a | 5.211 | −2.73 | 0.006 |
Income (TL) | Between 25,001–50,000 | 16.865 | 10.836 | 1.56 | 0.120 |
Between 50,001–100,000 | 4.218 | 10.868 | 0.39 | 0.698 | |
100,001 and above | 3.206 | 11.915 | 0.27 | 0.788 | |
Non-agricultural income | No | 10.992 | 9.286 | 1.18 | 0.237 |
Crop type | Cotton | −16.153 a | 4.996 | −3.23 | 0.001 |
Wheat | −18.923 | 13.710 | −1.38 | 0.168 | |
Constant | −54.345 | 58.283 | −0.93 | 0.351 | |
lambda | 22.783 | 18.178 | 1.25 | 0.210 | |
rho | 0.880 | ||||
sigma | 25.887 | ||||
Number of obs = 379 Censored obs = 274 Uncensored obs = 105 Wald chi2(25) = 64.14 Prob > chi2 = 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doğan, H.P.; Aydoğdu, M.H.; Sevinç, M.R.; Cançelik, M. Farmers’ Willingness to Pay for Services to Ensure Sustainable Agricultural Income in the GAP-Harran Plain, Şanlıurfa, Turkey. Agriculture 2020, 10, 152. https://doi.org/10.3390/agriculture10050152
Doğan HP, Aydoğdu MH, Sevinç MR, Cançelik M. Farmers’ Willingness to Pay for Services to Ensure Sustainable Agricultural Income in the GAP-Harran Plain, Şanlıurfa, Turkey. Agriculture. 2020; 10(5):152. https://doi.org/10.3390/agriculture10050152
Chicago/Turabian StyleDoğan, Hatice Parlakçı, Mustafa Hakkı Aydoğdu, Mehmet Reşit Sevinç, and Mehmet Cançelik. 2020. "Farmers’ Willingness to Pay for Services to Ensure Sustainable Agricultural Income in the GAP-Harran Plain, Şanlıurfa, Turkey" Agriculture 10, no. 5: 152. https://doi.org/10.3390/agriculture10050152
APA StyleDoğan, H. P., Aydoğdu, M. H., Sevinç, M. R., & Cançelik, M. (2020). Farmers’ Willingness to Pay for Services to Ensure Sustainable Agricultural Income in the GAP-Harran Plain, Şanlıurfa, Turkey. Agriculture, 10(5), 152. https://doi.org/10.3390/agriculture10050152