Phytotoxic Effect of Herbicides on Various Camelina [Camelina sativa (L.) Crantz] Genotypes and Plant Chlorophyll Fluorescence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Distance Testing
2.1.1. Plant material
2.1.2. DNA Extraction
2.1.3. Random Amplified Polymorphic DNA Assays
2.1.4. Microsatellite Markers of DNA Assays
2.1.5. Electrophoresis Conditions
2.1.6. Statistical Analysis
2.2. Greenhouse Experiment
2.3. Plant Chlorophyll Fluorescence
3. Results
3.1. Genetic Distance Testing
3.2. Greenhouse Experiment
3.3. Plant Chlorophyll Fluorescence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Barbieri, P.; Pellerin, S.; Nesme, T. Comparing crop rotations between organic and conventional farming. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kremen, C.; Iles, A.; Bacon, C. Diversified Farming Systems: An Agroecological, Systems-based Alternative to Modern Industrial Agriculture. Ecol. Soc. 2012, 17, 44. [Google Scholar] [CrossRef]
- Sawinska, Z.; Świtek, S.; Głowicka-Wołoszyn, R.; Kowalczewski, P.Ł. Agricultural Practice in Poland Before and after Mandatory IPM Implementation by the European Union. Sustainability 2020, 12, 1107. [Google Scholar] [CrossRef] [Green Version]
- Kurasiak-Popowska, D. Lnianka siewna—Roślina historyczna czy perspektywiczna? Fragm. Agron. 2019, 36, 42–54. [Google Scholar]
- Bandurska, H.; Niedziela, J.; Pietrowska-Borek, M.; Nuc, K.; Chadzinikolau, T.; Radzikowska, D. Regulation of proline biosynthesis and resistance to drought stress in two barley (Hordeum vulgare L.) genotypes of different origin. Plant Physiol. Biochem. 2017, 118, 427–437. [Google Scholar] [CrossRef]
- Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 2019, 14, 1–12. [Google Scholar] [CrossRef]
- Iskandarov, U.; Kim, H.J.; Cahoon, E.B. Camelina: An Emerging Oilseed Platform for Advanced Biofuels and Bio-Based Materials. In Plants and bioenergy; Carpita, N., McCann, M., Buckeridge, M.S., Eds.; Springer Science & Business Media: New York, NY, USA, 2014; pp. 131–140. [Google Scholar]
- Vollmann, J.; Steinkellner, S.; Glauninger, J. Variation in resistance of camelina (Camelina sativa (L.) Crtz.) to downy mildew (Peronospora camelinae Gäum.). J. Phytopathol. 2001, 149, 129–133. [Google Scholar] [CrossRef]
- Lenssen, A.W.; Iversen, W.M.; Sainju, U.M.; Caesar-TonThat, T.C.; Blodgett, S.L.; Allen, B.L.; Evans, R.G. Yield, Pests, and Water Use of Durum and Selected Crucifer Oilseeds in Two-Year Rotations. Agron. J. 2012, 104, 1295–1304. [Google Scholar] [CrossRef] [Green Version]
- Román-Figueroa, C.; Padilla, R.; Uribe, J.M.; Paneque, M. Land Suitability Assessment for Camelina (Camelina sativa L.) Development in Chile. Sustainability 2017, 9, 154. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.; Silva, J.E.; Podicheti, R.; Macrander, J.; Yang, W.; Nazarenus, T.J.; Nam, J.-W.; Jaworski, J.G.; Lu, C.; Scheffler, B.E.; et al. Camelina seed transcriptome: A tool for meal and oil improvement and translational research. Plant Biotechnol. J. 2013, 11, 759–769. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Napier, J.A.; Clemente, T.E.; Cahoon, E.B. New frontiers in oilseed biotechnology: Meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr. Opin. Biotechnol. 2011, 22, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Berti, M.; Gesch, R.; Eynck, C.; Anderson, J.; Cermak, S. Camelina uses, genetics, genomics, production, and management. Ind. Crops Prod. 2016, 94, 690–710. [Google Scholar] [CrossRef]
- Goímez-Monedero, B.; Bimbela, F.; Arauzo, J.S.; Faria, J.; Ruiz, M.P. Pyrolysisof red eucalyptus, camelina straw, and wheat straw in an ablative reactor. Energy Fuels 2015, 29, 1766–1775. [Google Scholar] [CrossRef]
- Eynck, C.; Falk, K.C. Camelina (Camelina sativa). In CAB International 2013. Biofuel Crops: Production, Physiology and Genetics; Singh, B.P., Ed.; Fort Valley State University: Fort Valley, GA, USA, 2013; pp. 369–391. [Google Scholar]
- Kurasiak-Popowska, D.; Stuper-Szablewska, K.; Nawracała, J. Olej rydzowy jako naturalne źródło karotenoidów dla przemysłu kosmetycznego. Przem. Chem. 2017, 96, 2077–2080. [Google Scholar] [CrossRef]
- Kim, N.; Li, Y.; Sun, X.S. Epoxidation of Camelina sativa oil and peel adhesion properties. Ind. Crops. Prod. 2015, 64, 1–8. [Google Scholar] [CrossRef]
- Hixson, S.M.; Parrish, C.C.; Anderson, D.M. Full substitution of fish oil with camelina (Camelina sativa) oil, with partial substitution of fish meal with camelina meal, in diets for farmed Atlantic salmon (Salmo salar) and its effecton tissue lipids and sensory quality. Food Chem. 2014, 157, 51–61. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Patterson, R.; Slominski, B.A.; Beltranena, E.; Zijlstra, R.T. Nutritive value of cold-pressed camelina cake with or without supplementation of multi-enzyme in broiler chicken. Poultry Sci. 2016, 95, 2314–2321. [Google Scholar] [CrossRef]
- Moser, B.R. Camelina (Camelina sativa L.) oils as a biofuels feedstock: Golden opportunity or false hope? Lipid Technol. 2010, 22, 270–273. [Google Scholar] [CrossRef]
- Chu, P.L.; Vanderghem, C.; MacLean, H.L.; Saville, B.A. Financial analysis and risk assessment of hydroprocessed renewable jet fuel production from camelina, carinata and used cooking oil. Appl. Energy 2017, 198, 401–409. [Google Scholar] [CrossRef]
- Matyjaszczyk, E. Protection possibilities of agricultural minor crops in the European Union: A case study of soybean, lupin and camelina. J. Plant. Dis. Prot. 2020, 127, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Pullens, J.W.M.; Sharif, B.; Trnka, M.; Balek, J.; Semenov, M.A.; Olesen, J.E. Risk factors for European winter oilseed rape production under climate change. Agric. For. Meteorol. 2019, 272, 30–39. [Google Scholar] [CrossRef]
- Available online: www.gov.pl/web/rolnictwo/wyszukiwarka-srodkow-ochrony-roslin (accessed on 14 April 2020).
- Bountin, C.; Aya, K.L.; Carpenter, D.; Thomas, P.J.; Rowland, O. Phytotoxicity testing for herbicide regulation: Shortcomings in relation to biodiversity and ecosystem services in agrarian systems. Sci. Total Environ. 2012, 415, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Rawal, S.; Dua, V.K.; Roy, S.; Sadaworti, M.J.; Sharma, S.K. Evaluation of propaquizafop: A new molecule as post emergence herbicide in potato. Int. J. Chem. Stud. 2017, 5, 1216–1220. [Google Scholar]
- Bradley, K.W.; Wu, J.; Hatzios, K.K.; Hagood, E.S. The mechanism of resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in a johnsongrass biotype. Weed Sci. 2001, 49, 477–484. [Google Scholar] [CrossRef]
- Délye, C.; Calmès, É.; Matéjicek, A. SNP markers for black-grass (Alopecurus myosuroides Huds.) genotypes resistant to acetyl CoA-carboxylase inhibiting herbicides. Theor. Appl. Genet. 2002, 104, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Ohlrogge, J.; Browse, J. Lipid Biosynthesis. Plant Cell 1995, 7, 957–970. [Google Scholar]
- Ali, K.; Tyagi, A. Recent advances in acetyl CoA carboxylase: A key enzyme of fatty acidbiosynthesis in plants. Int. J. Appl. Biol. Pharm. 2016, 7, 264–277. [Google Scholar]
- Konishi, T.; Shinohara, K.; Yamada, K.; Sasaki, Y. Acetyl-CoA Carboxylase in Higher Plants: Most Plants Other Than Gramineae Have Both the Prokaryotic and the Eukaryotic Forms of This Enzyme. Plant Cell Physiol. 1996, 37, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Konishi, T.; Sasaki, Y. Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. Proc. Natl. Acad. Sci. USA 1994, 91, 3598–3601. [Google Scholar] [CrossRef] [Green Version]
- Busi, R.; Goggin, D.E.; Heap, I.M.; Horak, M.J.; Jugulam, M.; Masters, R.A.; Napier, R.M.; Riar, D.S.; Satchivi, N.M.; Torra, J.; et al. Weed resistance to synthetic auxin herbicides. Pest Manag. Sci. 2018, 74, 2265–2276. [Google Scholar] [CrossRef]
- Grossmann, K. Mediation of Herbicide Effects by Hormone Interactions. J. Plant Growth Regul. 2003, 22, 109–122. [Google Scholar] [CrossRef]
- McSteen, P. Auxin and Monocot Development. Cold Spring Harb. Perspect. Biol. 2010, 2, a001479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottardini, E.; Cristofori, A.; Cristofolini, F.; Nali, C.; Pellegrini, E.; Bussotti, F.; Ferretti, M. Chlorophyll-related indicators are linked to visible ozone symptoms: Evidence from a field study on native Viburnum lantana L. plants in northern Italy. Ecol. Ind. 2014, 39, 65–74. [Google Scholar] [CrossRef]
- Juneau, P.; Qiu, B.; Deblois, C. Use of chlorophyll fluorescence as a tool for determination of herbicide toxic effect: Review. Toxicol. Environ. Chem. 2007, 89, 609–625. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Schansker, G.; Brestic, M.; Bussotti, F.; Calatayud, A.; Ferroni, L.; Goltsev, V.; Guidi, L.; Jajoo, A.; Li, P.; et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosyn. Res. 2017, 132, 13–66. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, Y.I.; Menegat, A.; Gerhards, R. Chlorophyll fluorescence imaging: A new method for rapid detection of herbicide resistance in Alopecurus myosuroides. Weed Res. 2013, 53, 399–406. [Google Scholar] [CrossRef]
- Dayan, F.E.; de Zaccaro, M.L. Chlorophyll fluorescence as a marker for herbicide mechanisms of action. Pestic. Biochem. Phys. 2012, 102, 189–197. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef] [Green Version]
- Kurasiak-Popowska, D.; Ryńska, B.; Stuper-Szablewska, K. Analysis of distribution of selected bioactive compounds in Camelina sativa from seeds to pomace and oil. Agronomy 2019, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Manca, A.; Pecchia, P.; Mapelli, S.; Masella, P.; Galasso, I. Evaluation of genetic diversity in a Camelina sativa (L.) Crantz collection using microsatellite markers and biochemical traits. Genet. Resour. Crop Evol. 2013, 60, 1223–1236. [Google Scholar] [CrossRef]
- Nei, M.; Li, W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 1979, 76, 5269–5273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.; Wherley, B.; Reynolds, C.; White, R.; Senseman, S.; Falk, S. Weed control spectrum and turfgrass tolerance to bioherbicide Phoma macrostoma. Int. J. Pest. Manag. 2015, 61, 91–98. [Google Scholar] [CrossRef]
- Available online: https://www.eppo.int/RESOURCES/eppo_standards/pp1_list (accessed on 2 May 2020).
- Kowalczewski, P.Ł.; Radzikowska, D.; Ivanišová, E.; Szwengiel, A.; Kačániová, M.; Sawinska, Z. Influence of Abiotic Stress Factors on the Antioxidant Properties and Polyphenols Profile Composition of Green Barley (Hordeum vulgare L.). Int. J. Mol. Sci. 2020, 21, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Carvalho, S.J.P.; Nicolai, M.; Ferreira, R.R.; de Oliveira Figueira, A.V.; Christoffoleti, P.J. Herbicide selectivity by differential metabolism: Considerations for reducing crop damages. Sci. Agric. 2009, 66, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Dyer, W.E.; Weller, S.C. Plant response to herbicides. In Plant Abiotic Stress; Jenks, M., Hasegawa, P.M., Eds.; Blackwell Publishing Ltd.: Oxford, UK; Ames, IA, USA, 2005; pp. 171–214. [Google Scholar]
- Young, B.G.; Young, J.M.; Matthews, J.L.; Owen, M.D.K.; Zelaya, I.A.; Hartzler, R.G.; Wax, L.M.; Rorem, K.W.; Bollero, G.A. Soybean Development and Yield as Affected by Three Postemergence Herbicides. Agron. J. 2003, 95, 1152–1156. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Sharma, P.K.; Kumar, S.; Singh, S.; Singh, S.; Yadav, H.L. Effect of herbicides and fertilizers on the phytotoxicity, growth and yield of Indian mustard [Brassica juncea (L.) Czern and Coss.]. J. Pharmacogn. Phytochem. 2019, 8, 2451–2454. [Google Scholar]
- Mohamed, I.A. Efficiency of Some Post Emergence Acetyl Coenzyme a Carboxylase-Inhibitor Herbicides Against Certain Grassy Weeds in Canola Fields. Egypt. Acad. J. Biolog. Sci. 2017, 8, 49–58. [Google Scholar] [CrossRef]
- Harris, B.M.; Bath, S.; Degenhardt, R. Safening Aminopyralid Compositions in Brassica Species with Clopyralid and Methods of Use Thereof. U.S. Patent Application No 15/611,956, 14 December 2017. [Google Scholar]
- Roskamp, J.M.; Chahal, G.S.; Johnson, W.G. The Effect of Cations and Ammonium Sulfate on the Efficacy of Dicamba and 2,4-D. Weed Technol. 2013, 27, 72–77. [Google Scholar] [CrossRef]
- Dowler, C.C. A cucumber bioassay test for the soil residues of certain herbicides. Weed Sci. 1969, 17, 309–310. [Google Scholar] [CrossRef]
- Kurasiak-Popowska, D.; Tomkowiak, A.; Czołpińska, M.; Bocianowski, J.; Weigt, D.; Nawracała, J. Analysis of yield and genetic similarity of Polish and Ukrainian Camelina sativa genotypes. Ind. Crop. Prod. 2018, 123, 667–675. [Google Scholar] [CrossRef]
- Kurasiak-Popowska, D.; Stuper-Szablewska, K. The phytochemical quality of Camelina sativa seed and oil. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2020, 70, 39–47. [Google Scholar] [CrossRef]
- Kudsk, P. Optimising herbicide dose: A straightforward approach to reduce the risk of side effects of herbicides. Environmentalist 2008, 28, 49–55. [Google Scholar] [CrossRef]
- Mashayamombe, B.K.; Mazarura, U.; Chiteka, A. The Effect of Two Formulations of Sulfentrazone on Soil and Leaf Residues and Phytotoxicity in Tobacco (Nicotiana Tabacum L.). Asian J. Agric. Dev. 2013, 3, 135–140. [Google Scholar]
- Hazra, D.K.; Purkait, A. Role of pesticide formulations for sustainable crop protection and environment management: A review. J. Pharmacogn. Phytochem. 2019, 8, 686–693. [Google Scholar]
- Hazen, J.L. Adjuvants—Terminology, Classification, and Chemistry. Weed Technol. 2000, 14, 773–784. [Google Scholar] [CrossRef]
- Zhang, J.; Jaeck, O.; Menegat, A.; Zhang, Z.; Gerhards, R.; Ni, H. The Mechanism of Methylated Seed Oil on Enhancing Biological Efficacy of Topramezone on Weeds. PLoS ONE 2013, 8, e74280. [Google Scholar] [CrossRef] [Green Version]
- Kalaji, M.H.; Łoboda, T. Fluorescencja Chlorofilu w Badanach Stanu Fizjologicznego Roślin; SGGW Publisher: Warsaw, Poland, 2010; p. 116. [Google Scholar]
- Cetner, M.D.; Dąbrowski, P.; Samborska, I.A.; Łukasik, I.; Swoczyna, T.; Pietkiewicz, S.; Bąba, W.; Kalaji, H.M. Zastosowanie pomiarów fluorescencji chlorofilu w badaniach środowiskowych. Kosmos 2016, 65, 197–205. [Google Scholar]
- Björkman, O.; Demmig, B. Photon yield of O2 evolution and chlorophyll fuorescence characteristics at 77 k among vascular plants of diverse origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef]
- Radzikowska, D.; Grzanka, M.; Kowalczewski, P.-Ł.; Głowicka-Wołoszyn, R.; Blecharczyk, A.; Nowicki, M.; Sawinska, Z. Influence of SDHI Seed Treatment on the Physiological Conditions of Spring Barley Seedlings under Drought Stress. Agronomy 2020, 10, 731. [Google Scholar] [CrossRef]
- Sayed, O.H. Chlorophyll Fluorescence as a Tool in Cereal Crop Research. Photosynthetica 2003, 41, 321–330. [Google Scholar] [CrossRef]
Treatment | Varieties/Genotypes | ||||||
---|---|---|---|---|---|---|---|
Przybrodzka | Lenka | Luna | Omega | Hoga | 57 L3 | LSD (0.05) | |
Untreated | 0 | 0 | 0 | 0 | 0 | 0 | - |
C | D | E | E | C | C | ||
Propaquizafop 70 g a.i.* ha−1 | 10b | 0c | 10b | 15a | 10b | 7.5b | 2.9 |
B | D | C | C | B | B | ||
Quizalofop-p-ethyl 50 g a.i.* ha−1 | 0c | 7.5ab | 5b | 10a | 0c | 0c | 3.1 |
C | C | D | D | C | C | ||
Clopyralid 90 g a.i.* ha−1 | 10d | 22.5c | 20c | 35ab | 40a | 32.5b | 5.7 |
B | A | B | B | A | A | ||
Picloram 24 g a.i.* ha−1 | 20d | 20d | 55a | 45b | 40bc | 35c | 7.2 |
A | B | A | A | A | A | ||
LSD (0.05) | 2.8 | 2.4 | 0.2 | 4.8 | 1.6 | 3.7 | - |
Treatment | Varieties/Genotypes | ||||||
---|---|---|---|---|---|---|---|
Przybrodzka | Lenka | Luna | Omega | Hoga | 57 L3 | LSD (0.05) | |
Untreated | 0 | 0 | 0 | 0 | 0 | 0 | - |
C | C | C | D | D | D | ||
Propaquizafop 70 g a.i.* ha−1 | 0a | 0a | 0a | 10a | 10a | 5a | n.s. |
C | C | C | C | C | C | ||
Quizalofop-p-ethyl 50 g a.i.* ha−1 | 0a | 0a | 0a | 10a | 10a | 0a | n.s. |
C | C | C | C | C | D | ||
Clopyralid 90 g a.i.* ha−1 | 7.5c | 7.5c | 15b | 20a | 20a | 10c | 3.2 |
B | B | B | B | B | B | ||
Picloram 24 g a.i.* ha−1 | 15cd | 10d | 25ab | 30a | 30a | 20bc | 5.3 |
A | A | A | A | A | A | ||
LSD (0.05) | 1.9 | 1.9 | 3.9 | 1.4 | 2.6 | 3.2 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobiech, Ł.; Grzanka, M.; Kurasiak-Popowska, D.; Radzikowska, D. Phytotoxic Effect of Herbicides on Various Camelina [Camelina sativa (L.) Crantz] Genotypes and Plant Chlorophyll Fluorescence. Agriculture 2020, 10, 185. https://doi.org/10.3390/agriculture10050185
Sobiech Ł, Grzanka M, Kurasiak-Popowska D, Radzikowska D. Phytotoxic Effect of Herbicides on Various Camelina [Camelina sativa (L.) Crantz] Genotypes and Plant Chlorophyll Fluorescence. Agriculture. 2020; 10(5):185. https://doi.org/10.3390/agriculture10050185
Chicago/Turabian StyleSobiech, Łukasz, Monika Grzanka, Danuta Kurasiak-Popowska, and Dominika Radzikowska. 2020. "Phytotoxic Effect of Herbicides on Various Camelina [Camelina sativa (L.) Crantz] Genotypes and Plant Chlorophyll Fluorescence" Agriculture 10, no. 5: 185. https://doi.org/10.3390/agriculture10050185
APA StyleSobiech, Ł., Grzanka, M., Kurasiak-Popowska, D., & Radzikowska, D. (2020). Phytotoxic Effect of Herbicides on Various Camelina [Camelina sativa (L.) Crantz] Genotypes and Plant Chlorophyll Fluorescence. Agriculture, 10(5), 185. https://doi.org/10.3390/agriculture10050185