Weed Flora and Soil Seed Bank Composition as Affected by Tillage System in Three-Year Crop Rotation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Experiment with Tillage Systems
2.2. Methods of Soil Treatment in Different Tillage Systems
2.3. Fertilization
2.4. Weed Control
2.5. Weed Flora Analysis
- before the crop harvest,
- after the crop harvest and soil operations in the plough and reduced tillage systems,
- before sowing of winter wheat, after pre-sowing soil treatment in the plough and reduced tillage systems,
- late autumn, during the tillering stage of winter wheat,
- spring, for winter wheat after the start of the growing season, for spring wheat in the tillering stage.
2.6. Soil Seed Bank Analysis
2.7. Statistical Analyses
2.7.1. Diversity Indicators
2.7.2. Similarity Indices
- A—the number of species in one of the two communities compared,
- B—the number of species in the second community compared,
- C—the number of common species in the compared communities.
- Nt—sum of the smallest numbers of common species in the compared variants,
- Na—the number of all weeds in one of the compared variants,
- Nb—the number of all weeds in the second variant compared.
2.7.3. Assessment of the Significance of Differences
3. Results and Discussion
3.1. Above-Ground Weed Flora in the Different Tillage Systems
3.2. Soil Seed Bank in Different Soil Tillage Systems
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Radosevich, S.; Holt, J.; Ghersa, C. Weed Ecology: Implications for Management; John Wiley&Sons, Inc.: Hoboken, NJ, USA, 1997. [Google Scholar]
- Patterson, D.T. Effects of environmental stress on weed/crop interactions. Weed Sci. 1995, 43, 483–490. [Google Scholar] [CrossRef]
- Buhler, D.D.; Kohler, K.A.; Thompson, R.L. Weed seed bank dynamics during a five-year crop rotation. Weed Technol. 2001, 15, 170–176. [Google Scholar] [CrossRef]
- Fracchiolla, M.; Terzi, M.; Frabboni, L.; Caramia, D.; Lasorella, C.; De Giorgio, D.; Montemurro, P.; Cazzato, E. Influence of different soil management practices on ground-flora vegetation in an almond orchard. Renew Agric. Food Syst. 2015. [CrossRef]
- Wilson, R.G. Biology of Weed Seeds in the Soil. W: Weed Management in Agroecosystems: Ecological Approaches; Altieri, M.A., Liebman, M., Eds.; CRC Press, Inc.: Boca Raton, FL, USA, 1988; Volume 3, pp. 25–39. [Google Scholar]
- Sekutowski, T.; Smagacz, J. Share of anthropophytes in the crop sequence: Winter wheat―Maize―Spring wheat depending on tillage system. Acta Agrobot. 2014, 67, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Koller, K. “Techniques of Soil Tillage,” in Soil Tillage in Agroecosystems; Titi, A.E., Ed.; CRC Press: Boca Raton, FL, USA, 2003; pp. 1–25. [Google Scholar]
- Smagacz, J. Conservation Soil Tillage―Tendencies and Importance in Contemporary Agriculture. Monografie i Rozprawy Naukowe; IUNG-PIB Puławy: Puławy, Poland, 2018; Volume 59, p. 126. (In Polish) [Google Scholar]
- Feldman, S.R.; Torres, C.A.; Lewis, P. The effect of different tillage systems on the composition of the seedbank. Weed Res. 1997, 37, 71–76. [Google Scholar] [CrossRef]
- Stevenson, F.C.; Legere, A.; Simard, R.R.; Angers, D.A.; Pageau, D.; Lafond, J. Weed species diversity in spring barley varies with crop rotation and tillage, but not with nutrient source. Weed Sci. 1997, 45, 798–806. [Google Scholar] [CrossRef]
- Cardina, J.; Herms, C.P.; Doohan, D.J. Crop rotation and tillage system effects on weed seedbanks. Weed Sci. 2002, 50, 448–460. [Google Scholar] [CrossRef]
- Plaza, E.H.; Kozak, M.; Navarrete, L.; Gonzalez-Andujar, J.L. Tillage system did not affect weed diversity in a 23-year experiment in Mediterranean dryland. Agric. Ecosyst. Environ. 2010, 140, 102–105. [Google Scholar] [CrossRef]
- Travlos, I.S.; Cheimona, N.; Roussis, I.; Bilalis, D.J. Weed-Species abundance and diversity indices in relation to tillage systems and fertilization front. Environ. Sci. 2018. [Google Scholar] [CrossRef] [Green Version]
- Froud-Williams, R.J.; Chancellor, R.J.; Drennan, D.S.H. Influence of cultivation regime upon buried weed seeds in arable cropping systems. J. Appl. Ecol. 1983, 20, 199–208. [Google Scholar] [CrossRef]
- Cardina, J.; Regnier, E.; Harrison, K. Long-term tillage effects on seed banks in three Ohio soils. Weed Sci. 1991, 39, 186–194. [Google Scholar] [CrossRef]
- Benech-Arnold, R.L.; Sanchez, R.A.; Forcella, F.; Kruk, B.C.; Ghersa, C.M. Environmental control of dormancy in weed seed banks in soil. Field Crops Res. 2000, 67, 105–122. [Google Scholar] [CrossRef]
- Dyer, W.E. Exploiting weed seed dormancy and germination requirements through agronomic practices. Weed Sci. 1995, 43, 498–503. [Google Scholar] [CrossRef]
- Ghersa, C.M.; Martinez-Ghersa, M.A. Ecological correlates of weed seed size and persistence in the soil under different tilling systems: Implications for weed management. Field Crops Res. 2000, 67, 141–148. [Google Scholar] [CrossRef]
- Mayor, J.-P.; Maillard, A. Resultats d'un essai de culture sans labour depuis plus de 20 ans a changins. IV. Stock semencier et maitrise de la flore adventice. Revue Suisse d'agric. 1995, 27, 229–236. [Google Scholar]
- Tørresen, K.S.; Skuterud, R.; Tandsaether, H.J.; Hagemo, M.B. Long-term experiments with reduced tillage in spring cereals. I. Effects on weed flora, weed seedbank and grain yield. Crop Protect. 2003, 22, 185–200. [Google Scholar] [CrossRef]
- Armengot, L.; Berner, A.; Blanco-Moreno, J.M.; Mäder, P.; Sans, F.X. Long-term feasibility of reduced tillage in organic farming. Agron. Sustain. Develop. 2015, 35, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Armengot, L.; Blanco-Moreno, J.M.; Bàrberi, P.; Bocci, G.; Carlesi, S.; Aendekerk, R.; Berner, A.; Celette, F.; Grosse, M.; Huiting, H.; et al. Tillage as a driver of change in weed communities: A functional perspective. Agric. Ecosyst. Environ. 2016, 222, 276–285. [Google Scholar] [CrossRef]
- Sekutowski, T.; Smagacz, J. Similarity between soil seed bank and current weed infestation in winter wheat cultivation. J. Res. Appl. Agric. Eng. 2011, 56, 93–98. [Google Scholar]
- Zanin, G.; Otto, S.; Riello, L.; Borin, M. Ecological interpretation of weed flora dynamics under different tillage systems. Agriculture, Ecosyst. Environ. 1997, 66, 177–188. [Google Scholar] [CrossRef]
- Bilalis, D.; Efthimiadis, P.; Sidiras, N. Effect of three tillage systems on weed flora in a 3-year rotation with four crops. J. Agron. Crop Sci. 2001, 186, 135–141. [Google Scholar] [CrossRef]
- Fracchiolla, M.; Stellacci, A.M.; Cazzato, E.; Tedone, L.; Alhajj Ali, S.; De Mastro, G. Effects of Conservative Tillage and Nitrogen Management on Weed Seed Bank after a Seven-Year Durum Wheat—Faba Bean Rotation. Plants 2018, 7, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legere, A.C.S.F.; Stevenson, F.C.; Benoit, D.L. Diversity and assembly of weed communities: Contrasting responses across cropping systems. Weed Res. 2005, 45, 303–315. [Google Scholar] [CrossRef]
- Simpson, R.L.; Allessio Leck, M.; Parker, V.T. Seed Banks: General Concepts and Methodological Issues. In Ecology of Soil Seed Banks; Allessio Leck, M., Parker, V.T., Simpson, R.L., Eds.; Academic Press, Inc.: Cambridge, MA, USA, 1989; Volume 1, pp. 3–8. [Google Scholar]
- Forcella, F.; Eradat-Oskoui, K.; Wagner, S.W. Application of weed seedbank ecology to low-input crop management. Ecol. Appl. 1993, 3, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Gross, K.L. A comparison of methods for estimating seed numbers in the soil. J. Ecol. 1990, 78, 1079–1093. [Google Scholar] [CrossRef]
- Cardina, J.; Sparrow, D.H. A comparison of methods to predict weed seedling populations from the soil seedbank. Weed Sci. 1996, 44, 46–51. [Google Scholar] [CrossRef]
- Rutkowski, L. Key to Identification of Vascular Plants in Lowland Poland; PWN: Warsaw, Poland, 2007. [Google Scholar]
- Grzesiuk, S.; Kulka, K. Seed Physiology and Biochemistry; PWRiL: Warsaw, Poland, 1981. (In Polish) [Google Scholar]
- Shannon, C.E. A mathematical theory of communications. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.H. Measurement of diversity. Nature 1949, 168, 668. [Google Scholar] [CrossRef]
- Kovach, W.L. MVSP Version 3; Kovach Computing Services: Anglesey, UK, 2011; p. 112. [Google Scholar]
- Magurran, A.E. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar] [CrossRef]
- Conn, J.S. Weed seed bank affected by tillage intensity for barley in Alaska. Soil Tillage Res. 2006, 90, 156–161. [Google Scholar] [CrossRef]
- Peigné, J.; Ball, B.C.; Roger-Estrade, J.; David, C. Is conservation tillage suitable for organic farming? A review. Soil Use Manag. 2007, 23, 129–144. [Google Scholar] [CrossRef]
- Gruber, S.; Claupein, W. Effect of tillage intensity on weed infestation in organic farming. Soil Tillage Res. 2009, 105, 104–111. [Google Scholar] [CrossRef]
- Demjanová, E.; Macák, M.; Dalovic, I.; Majernik, F.; Tyr, S.; Smatana, S. Effects of tillage systems and crop rotation on weed density, weed species composition and weed biomass in maize. Agron. Res. 2009, 7, 785–792. [Google Scholar]
- Woźniak, A.; Wesołowski, M.; Soroka, M. Effect of long-term reduced tillage on grain yield, grain quality and weed infestation of spring wheat. J. Agr. Sci. Tech. 2015, 17, 899–908. [Google Scholar]
- Vakali, C.; Zaller, J.G.; Köpke, U. Reduced tillage effects on soil properties and growth of cereals and associated weeds under organic farming. Soil Tillage Res. 2011, 111, 133–141. [Google Scholar] [CrossRef]
- Woźniak, A. Effect of tillage system on the structure of weed infestation of winter wheat. Span. J. Agric. Res. 2019, 16, e1009. [Google Scholar] [CrossRef]
- Starczewski, J.; Czarnocki, S. Tillage method and triticale weed infestation and yielding. Acta Sci. Pol. Agric. 2004, 3, 69–76. (In Polish) [Google Scholar]
- Clements, D.R.; Benoit, D.L.; Murphy, S.D.; Swanton, C.J. Tillage Effects on Weed Seed Return and Seedbank Composition; Cambridge University Press: Cambridge, UK, 1996; pp. 314–322. [Google Scholar] [CrossRef]
- Tokarska-Guzik, B.; Dajdok, Z.; Zając, M.; Zając, A.; Urbisz, A.; Danielewicz, W.; Hołdyński, C. The Plants of Foreign Origin in Poland, With Particular Regard to Invasive Species; The General Directorate for Environmental Protection: Warsaw, Poland, 2012; p. 197. Available online: http://www.gdos.gov.pl/files/artykuly/5050/Rosliny_obcego_pochodzenia_w_PL_poprawione.pdf (accessed on 4 May 2020). (In Polish)
- Sans, F.X.; Berner, A.; Armengot, L.; Mäder, P. Tillage effects on weed communities in an organic winter wheat–sunflower–spelt cropping sequence. Weed Res. 2011, 51, 413–421. [Google Scholar] [CrossRef]
- Puricelli, E.; Tuesca, D. Weed density and diversity under glyphosate-resistant crop sequences. Crop Prot. 2005, 24, 533–542. [Google Scholar] [CrossRef]
- Froud-Williams, R.J.; Drennan, D.S.H.; Chancellor, R.J. Influence of cultivation regime on weed floras of arable cropping systems. J. Appl. Ecol. 1983, 20, 187–197. [Google Scholar] [CrossRef]
- Woźniak, A.; Soroka, M. Biodiversity of weeds in pea cultivated in various tillage systems. Rom. Agric. Res. 2015, 32, 231–237. [Google Scholar]
- Duer, I.; Feledyn-Szewczyk, B. Interaction of crop production system with weed species composition and soil seed bank in winter wheat. Roczn. Nauk Rol. 2000, 115, 109–130. (In Polish) [Google Scholar]
- Vanasse, A.; Leroux, G.D. Floristic diversity, size and vertical distribution of the weed seedbank in ridge and conventional tillage systems. Weed Sci. 2000, 48, 454–460. [Google Scholar] [CrossRef]
- Piskier, T.; Sekutowski, T.R. Effect of simplified tillage on the number and distribution of weed seeds in soil. J. Res. Appl. Agric. Eng. 2013, 58, 109–117. [Google Scholar]
- Krawczyk, R.; Kubsik, K.; Mrówczyński, M.; Kaczmarek, S. Effect of soil variation and soil tillage systems on soil weed seedbank. Prog. Plant Prot./Post. Ochr. Roślin 2008, 48, 276–280. (In Polish) [Google Scholar]
- Borin, M.; Zanin, G.; Zuin, M.C. The Comparison of Seed Banks in Conventional and Ridge-Tilled Soils In North-Eastern Italy. In Soil Management in Sustainable Agriculture; Cook, H.F., Lee, H.C., Eds.; Wye College Press: Ashford, UK, 1995; pp. 544–555. [Google Scholar]
- Sheley, R.; James, J.; Rinella, M.; Blumenthal, D.; DiTomaso, J.; Briske, D. Invasive Plant Management and Anticipated Conservation Benefits: A Scientific Assessment. Conservation Benefits of Rangeland Practices―Assessment, Recommendations, And Knowledge Gaps; Briske, D.D., Ed.; Allen Press: Lawrence, Kansas, 2011; pp. 291–335. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1045802.pdf (accessed on 20 May 2020).
- Kapeluszny, J.; Haliniarz, M. Selected elements of germination biology of flaxweed [Descurainia sophia Webb. ex Prantl.] and rye brome [Bromus secalinus L.]). Sect. E Agric. 2007, 62, 226–233. (In Polish) [Google Scholar]
- Thomas, A.G.; Derksen, D.A.; Blackshaw, R.E.; Van Acker, R.C.; Légère, A.; Watson, P.R.; Turnbull, G.C. A multistudy approach to understanding weed population shifts in medium- to long-term tillage systems. Weed Sci. 2017, 52, 874–880. [Google Scholar] [CrossRef]
- Grundy, A.C.; Mead, A.; Bond, W. Modelling the effect of weed―Seed distribution in the soil profile on seedling emergence. Weed Res. 1996, 36, 375–384. [Google Scholar] [CrossRef]
- Dorado, J.; Del Monte, J.P.; López-Fando, C. Weed seedbank response to crop rotation and tillage in semiarid agroecosystems. Weed Sci. 1999, 47, 67–73. [Google Scholar] [CrossRef]
- Ball, D.A. Weed Seedbank Response to Tillage, Herbicides, and Crop Rotation Sequence. Weed Sci. 1992, 40, 654–659. [Google Scholar] [CrossRef]
- Kremer, R.J. Management of weed seed banks with microorganisms. Ecol. Appl. 1993, 3, 42–52. [Google Scholar] [CrossRef]
- Hurtt, W.; Taylorson, R.B. 1986: Chemical manipulation of weed emergence. Weed Res. 1986, 26, 259–267. [Google Scholar] [CrossRef]
Month | Temperature (°C) | Precipitation (mm) | ||||||
---|---|---|---|---|---|---|---|---|
2010/2011 | 2011/2012 | 2012/2013 | Mean from the Long-Term Period | 2010/2011 | 2011/2012 | 2012/2013 | Mean from the Long-Term Period | |
IX | 12.0 | 14.9 | 14.7 | 13.2 | 128.7 | 3.6 | 29.2 | 62.4 |
X | 5.5 | 7.3 | 8.2 | 8.6 | 13.5 | 28.2 | 54.8 | 29.1 |
XI | 6.5 | 1.7 | 4.9 | 3.3 | 65.6 | 2.3 | 22.2 | 21.8 |
XII | −4.6 | 1.8 | −4.4 | 0.6 | 32.2 | 50.8 | 3.3 | 23.1 |
I | −1.5 | −2.7 | −3.9 | −1.6 | 27.1 | 25.3 | 66.7 | 40.2 |
II | −4.7 | −8.3 | −0.5 | −3.1 | 20.2 | 21.3 | 9.0 | 20.8 |
III | 1.7 | 3.9 | −2.6 | 3.1 | 13.0 | 29.6 | 32.6 | 35.4 |
IV | 9.7 | 9.3 | 8.5 | 9.2 | 30.2 | 51.8 | 54.3 | 35.3 |
V | 13.4 | 14.5 | 15.2 | 13.9 | 26.1 | 66.0 | 118.8 | 88.5 |
VI | 17.7 | 17.5 | 18.4 | 17.3 | 83.7 | 110.9 | 106.7 | 82.4 |
VII | 18.7 | 20.8 | 18.6 | 19.1 | 214.0 | 34.3 | 62.5 | 93.8 |
VIII | 18.5 | 18.7 | 18.7 | 18.8 | 46.0 | 71.4 | 33.1 | 65.0 |
Mean temperature—8.5 °C | Sum of precipitation—598 mm |
Growing Seasons | Wheat I and II | Growing Seasons | Pea/Rape |
---|---|---|---|
2009/2010 2010/2011 | pre-sowing: phosphorus (P2O5)—72, potassium (K2O)–72, nitrogen (NH4)–24, S (SO3)–27; top dressing with nitrogen (NH4NO3)–160, including: start of vegetation in spring–70, shooting at the blade–50, heading–40. | 2010 | Pea: pre-sowing: phosphorus (P2O5)—72; potassium (K2O)—72; nitrogen (NH4)—24; S (SO3)—27; in spring immediately before sowing pea—N (NH4NO3)—20. |
2011 | Pea: pre-sowing: phosphorus (P2O5)—72; potassium (K2O)—72; nitrogen (NH4)—24; S (SO3)—27; in spring immediately before sowing pea—N (NH4NO3)—20. | ||
2011/2012 | winter wheat froze out and was replaced by spring wheat. pre-sowing: phosphorus (P2O5)—60, potassium (K2O)—60, nitrogen (NH4)—20, S (SO3)—23.5; top dressing with nitrogen (NH4NO3)—160, including: starting vegetation in spring—80, shooting at the blade—50, heading—40. | 2011/2012 | Winter rape: pre-sowing: phosphorus (P2O5)—60; potassium (K2O)—60; nitrogen (NH4)—20; S (SO3)—23.5; top dressing with nitrogen (NH4NO3)—160, including: starting vegetation in spring—100, budding phase—60. |
2012/2013 | pre-sowing: phosphorus (P2O5)—60, potassium (K2O)—60, nitrogen (NH4)—20, S (SO3)—23.5; top dressing with nitrogen (NH4NO3)—140, including: starting vegetation in spring—80, shooting at the blade—60. | 2012/2013 | Winter rape: pre-sowing: phosphorus (P2O5)—60; potassium (K2O)—60; nitrogen (NH4)—20; S (SO3)—23.5; top dressing with nitrogen (NH4NO3)—160, including: starting vegetation in spring—100, budding phase—60. |
Growing Seasons | Wheat I and II | Growing Seasons | Pea/Rape |
---|---|---|---|
2009/2010 | Roundup 360 SL (glyphosate 360 g l−1; 28.77%)—1 × 3.0 l ha−1 Lintur 70WG (dicamba 65.9%, triasulfuron 4.1%)—1 × 0, 15 l ha−1 + Axial 100EC (pinoxaden 100 g l−1)—1 × 0.3 l ha−1 | 2010 | Pea: Barox 460 SL (bentazone 400 g l−1; MCPA 60 g l−1)—1 × 2.5 l ha−1 Roundup 360 SL (glyphosate 360 g l−1; 28.77%)—1 × 4.0 l ha−1 (desiccation of peas) |
2010/2011 | Roundup Energy 450 SL (glyphosate 450 g l−1; 34.5%)—1 × 3.0 l ha−1 Maraton 375 SC (pendimethalin 250 g l−1; isoproturon 125 g l−1)—1 × 2.5 l ha−1 Granstar 75 WG (methyl tribenuron 75%)—1 × 15 g ha−1 + Starane 250 EC (fluroxypyr 250 g l−1; 24.77%)—1 × 0.3 l ha−1 | 2011 | Pea: Basagran 480 SL (bentazone 480 g l−1)—1 × 2.5 l ha−1 Roundup 360 SL (glyphosate 360 g l−1; 28.7%)—1 × 4.0 l ha−1) (desiccation of peas) |
2011/2012 | Puma Universal 069 EW (fenoxaprop-P-ethyl 69 g l−1)—1.0 l ha−1 + Mustang 306 SE (2,4-D 300 g l−1, florasulam 6.25 g l−1)—1 × 0.8 l ha−1 | 2011/2012 | Winter rape: Butisan Star 416 SC (metazachlor 333 g l−1; quinmerac 83 g l−1)—1 × 2.0 l ha−1 + Command 480 EC (clomazone 480 g l−1)—1 × 0.15 l ha−1 Targa Super 05 EC (quizalofop 5%)—1 × 0.7 l ha−1 |
2012/2013 | Roundup Energy 450 SL (glyphosate 450 g l−1; 51%)—1 × 3.0 l ha−1 Axial 100EC ((pinoxaden 100 g l−1)—1 × 0.4 l ha−1 Granstar 75 WG (methyl tribenuron 75%)—1 × 10 g ha−1 + Starane 250 EC ((2,4-D 300 g l−1, florasulam 6.25 g l−1)—1 × 0.2 l ha−1 | 2012/2013 | Winter rape: Roundup 360 SL (glyphosate 360 g l−1; 28.77%)—1 × 4.0 l ha−1 Targa Super 05 EC (quizalofop 5%)—1 × 0.7 l ha−1)—1 × 0.6 l ha−1 Butisan Star 416 SC (metazachlor 333 g l−1; quinmerac 83 g l−1—1 × 1.2 l ha−1 + Navigator 360 SL (clopyralid 240 g l−1 20.31%; picloram 80 g l−1, 6.77%, aminopyralid 40 g l−1 3.38%)—1 × 0.2 l ha−1 |
Weed Species | A/P * | Tillage System | Mean | |||
---|---|---|---|---|---|---|
Direct Sowing | Reduced Tillage | Plough | ||||
1. | Fallopia convolvulus (L.) Á. Löve | A | 5.70 | 8.90 | 7.73 | 7.443 |
2. | Viola arvensis Murray | A | 3.80 | 4.25 | 3.83 | 3.960 |
3. | Galium aparine L. | A | 6.14 | 2.60 | 1.48 | 3.406 |
4. | Galeopsis tetrahit L. | A | 1.50 | 2.26 | 4.03 | 2.597 |
5. | Veronica persica Poir. I | A | 4.85 I | 1.10 I | 0.10 I | 2.011 I |
6. | Chenopodium album L. | A | 0.84 | 3.05 | 0.78 | 1.555 |
7. | Capsella bursa-pastoris (L.) Medik | A | 2.74 | 0.42 | 0.50 | 1.219 |
8. | Stellaria media (L.) Vill. | A | 0.35 | 0.41 | 0.73 | 0.496 |
9. | Fumaria officinalis L. | A | 0.36 | 0.53 | 0.45 | 0.444 |
10. | Tripleurospermum inodorum (L.) Schultz-Bip. | A | 0.16 | 0.63 | 0.48 | 0.422 |
11. | Brassica napus L. | A | 0.04 | 0.06 | 0.70 | 0.267 |
12. | Descurainia sophia (L.) Webb ex Prantl | A | 0.31 | 0.37 | 0.08 | 0.250 |
13. | Apera spica-venti L. | A | 0.18 | 0.43 | 0.13 | 0.244 |
14. | Galinsoga parviflora Cav. I | A | 0.01 I | 0.63 I | 0.00 I | 0.211 I |
15. | Thlaspi arvense L. | A | 0.18 | 0.06 | 0.31 | 0.183 |
16. | Erigeron annuus L. II | A | 0.14 II | 0.19 II | 0.19 II | 0.175 II |
17. | Lamium purpureum L. | A | 0.38 | 0.06 | 0.02 | 0.154 |
18. | Echinochloa crus-galli (L.) P. Beauv. I | A | 0.28 I | 0.05 I | 0.11 I | 0.144 I |
19. | Geranium pussillum Burm. F. ex L. | A | 0.35 | 0.04 | 0.00 | 0.128 |
20. | Polygonum aviculare L. | A | 0.04 | 0.13 | 0.05 | 0.072 |
21. | Equisetum arvense L. | P | 0.19 | 0.02 | 0.01 | 0.071 |
22. | Setaria glauca (L.) P. Beauv. I | A | 0.16 I | 0.02 I | 0.02 I | 0.064 I |
23. | Consolida regalis S.F. Gray | A | 0.03 | 0.16 | 0.01 | 0.064 |
24. | Sinapis arvensis L. | A | 0.00 | 0.07 | 0.12 | 0.061 |
25. | Euphorbia helioscopia L. | A | 0.16 | 0.00 | 0.01 | 0.056 |
26. | Avena fatua L. I | A | 0.01 I | 0.08 I | 0.01 I | 0.033 I |
27. | Convolvulus arvensis L. | P | 0.03 | 0.05 | 0.02 | 0.033 |
28. | Sonchus arvensis L. | P | 0.05 | 0.01 | 0.03 | 0.028 |
29. | Paphaver rhoeas L. | A | 0.06 | 0.01 | 0.02 | 0.028 |
30. | Polygonum persicaria L. | A | 0.00 | 0.00 | 0.08 | 0.025 |
31. | Cirsium arvense (L.) Scop. | P | 0.00 | 0.04 | 0.03 | 0.022 |
32. | Plantago major L. | P | 0.04 | 0.02 | 0.00 | 0.019 |
33. | Anthemis arvensis L. | A | 0.01 | 0.00 | 0.05 | 0.019 |
34. | Erodium cicutarium (L.) L`Her | A | 0.01 | 0.05 | 0.00 | 0.019 |
35. | Mercurialis annua L. | A | 0.01 | 0.00 | 0.05 | 0.019 |
36. | Centaurea cyanus L. | A | 0.00 | 0.01 | 0.03 | 0.014 |
37. | Lamium amplexicaule L. | A | 0.00 | 0.02 | 0.02 | 0.011 |
38. | Taraxacum officinale Weber | P | 0.01 | 0.01 | 0.01 | 0.008 |
39. | Gnaphalium uliginosum L. | A | 0.01 | 0.00 | 0.02 | 0.008 |
40. | Poa annua L. | A | 0.02 | 0.00 | 0.01 | 0.008 |
41. | Plantago lanceolata L. | P | 0.00 | 0.01 | 0.01 | 0.006 |
42. | Anagallis arvensis L. | A | 0.02 | 0.00 | 0.00 | 0.006 |
43. | Veronica hederifolia L. | A | 0.00 | 0.02 | 0.00 | 0.006 |
44. | Raphanus raphanistrum L. | A | 0.00 | 0.02 | 0.00 | 0.006 |
45. | Senecio vulgaris L. | A | 0.01 | 0.01 | 0.00 | 0.006 |
46. | Rumex obtusifolius L. | P | 0.00 | 0.00 | 0.02 | 0.006 |
47. | Melandrium album (Mill.) Garcke | A | 0.01 | 0.00 | 0.00 | 0.003 |
48. | Lapsana communis L. | A | 0.00 | 0.00 | 0.01 | 0.003 |
49. | Arctium lappa L. | A | 0.00 | 0.00 | 0.01 | 0.003 |
50. | Sonchus oleraceus L. | A | 0.01 | 0.00 | 0.00 | 0.003 |
Sum | 29.17 | 26.73 | 22.22 | 26.04 | ||
Total number of species | 39 | 38 | 40 | 50 | ||
Shannon’s diversity index (H’) | 2.28 | 2.56 | 2.35 | 2.58 | ||
Simpson’s dominance index (SI) | 0.15 | 0.11 | 0.15 | 0.11 |
Species | Direct Sowing | Reduced Tillage | Plough |
---|---|---|---|
Dominant | Galium aparine L Fallopia convolvulus (L.) Á. Löve Veronica persica Poir. Capsella bursa-pastoris (L.) Medik | Fallopia convolvulus (L.) Á. Löve Viola arvensis Murray | Fallopia convolvulus (L.) Á. Löve Galeopsis tetrahit L. |
Occurring more abundantly than in other tillage systems | Lamium purpureum L. Geranium pussillum Burm. F. ex L. Echinochloa crus-galli (L.) P. Beauv. Setaria glauca (L.) P. Beauv. Equisetum arvense L. Plantago major L. Sonchus arvensis L. | Chenopodium album L. Fumaria officinalis L. Tripleurospermum inodorum (L.) Schultz-Bip. Descurainia sophia (L.) Webb ex Prantl Apera spica-venti L. Galinsoga parviflora Cav Consolida regalis S.F. Gray | Stellaria media (L.) Vill. Thlaspi arvense L. Sinapis arvensis L. Anthemis arvensis L. Brassica napus L. volunteers |
Occurring only in a given tillage system (characteristic or incidental species) | Sonchus oleraceus L. Melandrium album (Mill.) GarckeAnagallis arvensis L. | Veronica hederifolia L. Raphanus raphanistrum L. | Polygonum persicaria L. Rumex obtusifolius L. Lapsana communis L. Arctium lappa L. |
Sorensen’s Quantitative Similarity Index (%) | Sorensen’s Qualitative Similarity Indices (%) | |||
Direct Sowing | Reduced Tillage | Plough | ||
Direct sowing | - | 81 | 79 | |
Reduced tillage | 55 | - | 80 | |
Plough | 42 | 63 | - |
Weed Species | A/P * | Tillage System | Mean | |||
---|---|---|---|---|---|---|
Direct Sowing | Reduced Tillage | Plough | ||||
1. | Viola arvensis Murray | A | 1160.0 | 1631.1 | 342.2 | 1044.4 |
2. | Apera spica-venti L. | A | 1340.0 | 720.0 | 217.8 | 759.3 |
3. | Capsella bursa-pastoris (L.) Medik | A | 1822.2 | 97.8 | 208.9 | 709.6 |
4. | Veronica persica Poir. I | A | 942.2 I | 293.3 I | 31.1 I | 422.2 I |
5. | Chenopodium album L. | A | 173.3 | 444.4 | 208.9 | 275.6 |
6. | Fallopia convolvulus (L.) Á. Löve | A | 102.2 | 368.9 | 226.7 | 232.6 |
7. | Tripleurospermum inodorum (L.) Schultz-Bip. | A | 204.4 | 164.4 | 328.9 | 232.6 |
8. | Fumaria officinalis L. | A | 351.1 | 115.6 | 31.1 | 165.9 |
9. | Galeopsis tetrahit L. | A | 40.0 | 195.6 | 142.2 | 125.9 |
10. | Stellaria media (L.) Vill. | A | 115.6 | 142.2 | 115.6 | 124.4 |
11. | Thlaspi arvense L. | A | 13.3 | 8.9 | 128.9 | 50.4 |
12. | Galium aparine L. | A | 44.4 | 75.6 | 26.7 | 48.9 |
13. | Consolida regalis S.F. Gray | A | 26.7 | 97.8 | 0.0 | 41.5 |
14. | Conyza canadensis (L.) Cronquist IV | A | 31.1 IV | 35.6 IV | 22.2 IV | 29.6 IV |
15. | Echinochloa crus-galli (L.) P. Beaur. I | A | 8.9 I | 26.7 I | 4.4 I | 13.3 I |
16. | Gnaphalium uliginosum L. | A | 4.4 | 17.8 | 13.3 | 11.9 |
17. | Sonchus arvensis L. | P | 22.2 | 8.9 | 0.0 | 10.4 |
18. | Plantago major L. | P | 17.8 | 8.9 | 4.4 | 10.4 |
19. | Paphaver rhoeas L. | A | 13.3 | 4.4 | 4.4 | 7.4 |
20. | Descurainia sophia (L.) Webb ex Prantl | A | 13.3 | 4.4 | 0.0 | 5.9 |
21. | Cirsium arvense (L.) Scop. | P | 8.9 | 8.9 | 0.0 | 5.9 |
22. | Erodium cicutarium (L.) L`Her | A | 8.9 | 4.4 | 4.4 | 5.9 |
23. | Lamium amplexicaule L. | A | 8.9 | 0.0 | 4.4 | 4.4 |
24. | Brassica napus L. | A | 0.0 | 8.9 | 4.4 | 4.4 |
25. | Spergula arvensis L. | A | 8.9 | 4.4 | 0.0 | 4.4 |
26. | Taraxacum officinale Weber | P | 0.0 | 8.9 | 0.0 | 3.0 |
27. | Myosotis arvensis (L.) Hill | A | 0.0 | 4.4 | 4.4 | 3.0 |
28. | Amaranthus retroflexus L. I | A | 8.9 I | 0.0 I | 0.0 I | 3.0 I |
29. | Lapsana communis L. | A | 4.4 | 0.0 | 4.4 | 3.0 |
30. | Sinapis arvensis L. | A | 8.9 | 0.0 | 0.0 | 3.0 |
31. | Veronica arvensis L. | A | 0.0 | 4.4 | 0.0 | 1.5 |
32. | Geranium pussillum Burm. F. ex L. | A | 4.4 | 0.0 | 0.0 | 1.5 |
33. | Melandrium album (Mill.) Garcke | A | 4.4 | 0.0 | 0.0 | 1.5 |
34. | Galinsoga parviflora Cav. I | A | 4.4 I | 0.0 I | 0.0 I | 1.5 I |
35. | Plantago lanceolata L. | P | 0.0 | 4.4 | 0.0 | 1.5 |
36. | Euphorbia helioscopia L. | A | 0.0 | 4.4 | 0.0 | 1.5 |
Sum | 6518 | 4515 | 2080 | 4371 | ||
Total number of species | 30 | 29 | 22 | 36 | ||
Shannon’s diversity index (H’) | 2.04 | 2.18 | 2.41 | 2.32 | ||
Simpson’s dominance index (SI) | 0.18 | 0.18 | 0.11 | 0.14 |
Sorensen’s Quantitative Similarity Index (%) | Sorensen’s Qualitative Similarity Index (%) | |||
Direct sowing | Reduced tillage | Plough | ||
Direct sowing | - | 78 | 77 | |
Reduced tillage | 57 | - | 78 | |
Plough | 36 | 51 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feledyn-Szewczyk, B.; Smagacz, J.; Kwiatkowski, C.A.; Harasim, E.; Woźniak, A. Weed Flora and Soil Seed Bank Composition as Affected by Tillage System in Three-Year Crop Rotation. Agriculture 2020, 10, 186. https://doi.org/10.3390/agriculture10050186
Feledyn-Szewczyk B, Smagacz J, Kwiatkowski CA, Harasim E, Woźniak A. Weed Flora and Soil Seed Bank Composition as Affected by Tillage System in Three-Year Crop Rotation. Agriculture. 2020; 10(5):186. https://doi.org/10.3390/agriculture10050186
Chicago/Turabian StyleFeledyn-Szewczyk, Beata, Janusz Smagacz, Cezary A. Kwiatkowski, Elżbieta Harasim, and Andrzej Woźniak. 2020. "Weed Flora and Soil Seed Bank Composition as Affected by Tillage System in Three-Year Crop Rotation" Agriculture 10, no. 5: 186. https://doi.org/10.3390/agriculture10050186
APA StyleFeledyn-Szewczyk, B., Smagacz, J., Kwiatkowski, C. A., Harasim, E., & Woźniak, A. (2020). Weed Flora and Soil Seed Bank Composition as Affected by Tillage System in Three-Year Crop Rotation. Agriculture, 10(5), 186. https://doi.org/10.3390/agriculture10050186