The Impact of Salt Concentration on the Mineral Nutrition of Tetragonia tetragonioides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedure
2.2. Soil
2.3. Chemical Analyses
2.4. Climate Conditions in the Greenhouse
2.5. Statistical Analysis
3. Results and Discussion
3.1. Fresh and Dry Mass of the Plant
3.2. Electrical Conductivity of Drainage Water, pH and ECs of the Soil after the Experiment
3.3. Macro- and Micronutrients in the Leaves of Plants
3.4. Contents of Macro- and Micronutrients in Soil
3.5. Yield of Plants
3.6. Ion Extraction of Plants
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Manuel, R.; Machado, A.; Serralheiro, R.P. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Läuchli, A.; Grattan, S.R. Plant growth and development under salinity stress. In Advances in Molecular Breeding toward Drought and Salt Tolerant Crops; Jenks, M.A., Hasegawa, P.M., Jain, S.M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 1–32. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M. Some important physiological selection criteria for salt tolerance in plants. Flora Morphol. Distrib. Funct. Ecol. Plants 2004, 199, 361–376. [Google Scholar] [CrossRef]
- Hakim, M.A.; Juraimi, A.S.; Begum, M.; Hanafi, M.M.; Ismail, M.R.; Selamat, A. Effect of salt stress on germination and early seedling growth of rice (Oryza sativa L.). Afr. J. Biotechnol. 2010, 9, 1911–1918. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef]
- Bekmirzaev, G.; Beltrao, J.; Neves, M.A.; Costa, C. Climatical changes effects on the potential capacity of salt removing species. Int. J. Geol. 2011, 5, 79–85. [Google Scholar]
- Bekmirzaev, G.; Ouddane, B.; Beltrao, J. Effect of irrigation water regimes on yield of Tetragonia tetragonioides. Agriculture 2019, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.J.; Negrao, S.; Tester, M. Salt resistant crop plants. Curr. Opin. Biotechnol. 2014, 26, 115–124. [Google Scholar] [CrossRef]
- Zollinger, N.; Koenig, R.; Cerny-Koenig, T.; Kjelgren, R. Relative salinity tolerance of Intermountain Western United States native herbaceous perennials. Am. Soc. Hortic. Sci. 2007, 42, 529–534. [Google Scholar] [CrossRef] [Green Version]
- Azza Mazher, A.M.; Fatma El-Quesni, E.M.; Farahat, M.M. Responses of ornamental plants and woody trees to salinity. World J. Agric. Sci. 2007, 3, 386–395. [Google Scholar]
- Cassaniti, C.; Leonardi, C.; Flowers, T.J. The effects of sodium chloride on ornamental shrubs. Sci. Hortic. 2009, 122, 586–593. [Google Scholar] [CrossRef]
- Valdes, R.; Ochoa, J.; Franco, J.A.; Sanchez-Blanco, M.J.; Banon, S. Saline irrigation scheduling for potted geranium based on soil electrical conductivity and moisture sensors. Agric. Water Manag. 2015, 149, 123–130. [Google Scholar] [CrossRef]
- Valdes, R.; Ochoa, J.; Sanchez-Blanco, M.J.; Franco, J.A.; Banon, S. Irrigation volume and the number of emitters per pot affect root growth and saline ion contents in weeping fig. Agric. Agric. Sci. Procedia 2015, 4, 356–364. [Google Scholar] [CrossRef]
- Wu, H. Plant salt tolerance and Na+ sensing and transport. Crop J. 2018, 6, 215–225. [Google Scholar] [CrossRef]
- Nikalje, G.C.; Srivastava, A.K.; Pandey, G.K.; Suprasanna, P. Halophytes in biosaline agriculture: Mechanism, utilization, and value addition. Land Degrad. Dev. 2017, 29, 1081–1095. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.; Kang, Y.; Wang, X. Salt leaching and response of Dianthus chinensis L. to saline water drip irrigation in two coastal saline soils. Agric. Water Manag. 2019, 218, 8–16. [Google Scholar] [CrossRef]
- Ünlükara, A.; Yurtyeri, T.; Cemek, B. Effects of Irrigation water salinity on evapotranspiration and spinach (Spinacia oleracea L. Matador) plant parameters in Greenhouse Indoor and Outdoor Conditions. Agron. Res. 2017, 15, 2183–2194. [Google Scholar] [CrossRef]
- Cassaniti, C.; Romano, D.; Flowers, T.J. The response of ornamental plants to saline irrigation water. In Irrigation Water Management, Pollution and Alternative Strategies; Garcia-Garizabal, I., Ed.; InTech: Rijeka, Croatia, 2012; pp. 131–158. [Google Scholar]
- Chen, W.; Lu, S.; Jiao, W.; Wang, M.; Chang, A.C. Reclaimed water: A safe irrigation water source? Environ. Dev. 2013, 8, 74–83. [Google Scholar] [CrossRef]
- Urbano, V.R.; Mendonça, T.G.; Bastos, R.G.; Souza, C.F. Effects of treated wastewater irrigation on soil properties and lettuce yield. Agric. Water Manag. 2017, 181, 108–115. [Google Scholar] [CrossRef]
- Hanjra, M.A.; Qureshi, M.E. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Potato growth, yield and water productivity response to different irrigation and fertilization regimes. Agric. Water Manag. 2018, 201, 21–26. [Google Scholar] [CrossRef]
- Reina-Sanchez, A.; Romero-Aranda, R.; Cuartero, J. Plant water uptake and water use efficiency of greenhouse tomato cultivars irrigated with saline water. Agric. Water Manag. 2005, 78, 54–66. [Google Scholar] [CrossRef]
- Ryuk, J.A.; Ko, B.S.; Lee, H.W.; Kim, D.S.; Kang, S.; Lee, Y.H.; Park, S. Tetragonia tetragonioides (Pall.) Kuntze protects estro-gen-deficient rats against disturbances of energy and glucose metabolism and decreases proinflammatory cytokines. Exp. Biol. Med. 2017, 242, 593–605. [Google Scholar] [CrossRef] [Green Version]
- Beltrao, J.; Neves, A.; de Brito, J.C.; Seita, J. Salt removal potential of turfgrasses in golf courses in the Mediterranean Basin. WSEAS Trans. Environ. Dev. 2009, 5, 394–403. [Google Scholar]
- Sonneveld, C.; Voogt, W. Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2009; pp. 431–454. [Google Scholar] [CrossRef]
- Tavakkoli, E.; Rengasamy, P.; McDonald, G.K. High concentrations of Na+ and Cl− ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J. Exp. Bot. 2010, 61, 4449–4459. [Google Scholar] [CrossRef]
- Hanson, B.R.; Grattan, R.R.; Fulton, A. Agricultural Salinity and Drainage; University of California: Davis, CA, USA, 2006. [Google Scholar]
- Radojevic, M.; Bashkin, V.N. Practical Environmental Analysis; The Royal Society of Chemistry: Cambridge, UK, 1999. [Google Scholar]
- Mindak, W.R.; Dolan, S.P. Inductively Coupled Plasma-Atomic Emission Spectrometric Determination of Elements in Food Using Microwave Assisted Digestion. In Elemental Analysis Manual for Food and Related Products; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2010; pp. 3–14. [Google Scholar]
- Piper, C.S. Soil and Plant Analysis, 1st ed.; Interscience Publishers, Inc.: New York, NY, USA, 1947; pp. 272–274. [Google Scholar]
- Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance-current assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar]
- Moghaieb, R.E.; Saneoka, H.; Fujita, K. Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima. Plant Sci. 2004, 166, 1345–1349. [Google Scholar] [CrossRef]
- Kurban, H.; Saneoka, H.; Nehira, K.; Adilla, R.; Premachandra, G.S.; Fujita, K. Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi (Bieb). Soil Sci. Plant Nutr. 1999, 45, 851–862. [Google Scholar] [CrossRef] [Green Version]
- Anac, S.; Kukul, Y.; Anac, D. Salt Removing Crops as a Phytoremediation Technique. In Proceedings of the International Meeting on Pythodepuration, Lorca, Murcia, Spain, 2005; pp. 173–178. [Google Scholar]
- Neves, M.A. Response of Tetragonia tetragonioides (Pallas) Kuntze to the Combined Effects of Salts and Nitrogen. WSEAS Trans. Environ. Dev. 2006, 2, 470–474. [Google Scholar]
- Neves, A.; Miguel, M.G.; Marques, C.; Panagopoulos, T.; Beltrão, J. The combined effects of salts and calcium on growth and mineral accumulation of Tetragonia tetragonioides—A salt removing species. WSEAS Trans. Environ. Dev. 2008, 4, 1–5. [Google Scholar]
- Greenway, H.; Munns, R. Mechanisms of salt tolerance in non-halophytes. Ann. Rev. Plant Physiol. 1980, 31, 149–190. [Google Scholar] [CrossRef]
- Maggio, A.; Raimondi, G.; Martino, A.; De Pascale, S. Salt stress response in tomato beyond the salinity tolerance threshold. Environ. Exp. Bot. 2007, 59, 276–282. [Google Scholar] [CrossRef]
- Debez, A.; Hamed, K.B.; Grignon, C.; Abdelly, C. Salinity effects on germination, growth and seed production of the halophyte Cakile maritime. Plant Soil 2004, 262, 179–189. [Google Scholar] [CrossRef]
- Cheeseman, J.M. Mechanisms of salinity tolerance in plants. Plant Physiol. 1988, 87, 547–550. [Google Scholar] [CrossRef] [Green Version]
- Munns, R. Salinity, growth and phytohormones. In Salinity: Environment-Plants-Molecules; Springer: Dordrecht, The Netherlands, 2002; pp. 271–290. [Google Scholar]
- Ashraf, M.; Akram, N.A. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Biotechnol. Adv. 2009, 27, 744–752. [Google Scholar] [CrossRef]
- Ashraf, M.; Shahzad, S.M.; Arif, M.S.; Riaz, M.; Ali, S.; Abid, M. Effects of potassium sulphate on adaptability of sugarcane cultivars to salt stress under hydroponic conditions. J. Plant Nutr. 2015, 38, 2126–2138. [Google Scholar] [CrossRef]
- Epstein, E. Mineral metabolism. In Plant Biochemistry; Bonner, J., Varner, J.E., Eds.; Academic Press: New York, NY, USA, 1965; pp. 438–466. [Google Scholar]
- Zhukovskaya, N.V. Absorption and accumulation of phosphate by plants under conditions of soil salinization. Sov. Plant Physiol. 1973, 20, 55–61. [Google Scholar]
- Murtic, S.; Jurkovic, J.; Basic, E.; Hekic, E. Assessment of wild plants for phytoremediation of heavy metals in soils surrounding the thermal power station. Agron. Res. 2019, 17, 234–244. [Google Scholar] [CrossRef]
Soil Parameters | Macronutrients (%) | |||||||
pH, ECs (dS m−1) | N | P | K | Ca | Mg | S | ||
6, 0.3 | 0.01 | 0.03 | 0.17 | 0.88 | 0.21 | 0.14 | ||
Micronutrients (%) | ||||||||
Fe | Al | Sr | Zn | Cu | Pb | Na | Cl | |
0.34 | 0.18 | 0.002 | 0.002 | 0.001 | 0.001 | 0.03 | 0.01 |
Treatment | ECw of the Drainage Water, ECw, mS/cm | Soil Parameters (End of Exp.) | ||
---|---|---|---|---|
27.11.2015 | 17.01.2016 | pH | ECs (dS m−1) | |
T0 | 2.4 ± 0.23 c | 2.4 ± 0.06 d | 5.5 ± 0.29 a | 1.0 ± 0.00 c |
T1 | 2.5 ± 0.31 c | 6.8 ± 1.02 c | 5.0 ± 0.0 ab | 2.75 ± 0.48 bc |
T2 | 2.7 ± 0.44 c | 12.7 ± 2.73 b | 4.8 ± 0.25 b | 3.75 ± 0.63 b |
T3 | 2.7 ± 0.42 c | 20.2 ± 4.24 a | 5.0 ± 0.0 ab | 7.25 ± 1.11 a |
Treatment | FW (g plant−1) | DW (g plant−1) | Yield % | FM kg ha−1 | DM kg ha−1 |
---|---|---|---|---|---|
T0 | 261 ± 6.2 b | 40 ± 1.5 b | 15.3 ± 0.3ab | 31329 ± 748 b | 4800 ± 177 b |
T1 | 326 ± 12.1 a | 47 ± 2.4 a | 14.8 ± 0.3ab | 39114 ± 1454a | 5679 ± 287 a |
T2 | 316 ± 8.3 a | 46 ± 2.7 ab | 14.5 ± 0.7 b | 37851 ± 1008a | 5538 ± 316 ab |
T3 | 284 ± 6.4 b | 46 ± 1.4 ab | 16.3 ± 0.5 a | 34,008 ± 751 b | 5523 ± 149 ab |
Treatment | Area m2 | Plant Density | FW g plant−1 | DW g plant−1 | FY kg ha−1 | DY kg ha−1 | mg g−1 | Ion ext. mg plant−1 | g m−2 | Ion ext. kg ha−1 |
---|---|---|---|---|---|---|---|---|---|---|
T0 | 1 | 12 | 261 | 40 | 31,329 | 4800 | 18.3 | 729.3 | 8.8 | 42.0 |
T1 | 1 | 12 | 326 | 47 | 39,114 | 5679 | 45.6 | 2156.5 | 25.9 | 148.1 |
T2 | 1 | 12 | 316 | 46 | 37,851 | 5538 | 50.1 | 2302.9 | 27.6 | 154.2 |
T3 | 1 | 12 | 284 | 46 | 34,008 | 5523 | 54.9 | 2527.5 | 30.3 | 167.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekmirzaev, G.; Ouddane, B.; Beltrao, J.; Fujii, Y. The Impact of Salt Concentration on the Mineral Nutrition of Tetragonia tetragonioides. Agriculture 2020, 10, 238. https://doi.org/10.3390/agriculture10060238
Bekmirzaev G, Ouddane B, Beltrao J, Fujii Y. The Impact of Salt Concentration on the Mineral Nutrition of Tetragonia tetragonioides. Agriculture. 2020; 10(6):238. https://doi.org/10.3390/agriculture10060238
Chicago/Turabian StyleBekmirzaev, Gulom, Baghdad Ouddane, Jose Beltrao, and Yoshiharu Fujii. 2020. "The Impact of Salt Concentration on the Mineral Nutrition of Tetragonia tetragonioides" Agriculture 10, no. 6: 238. https://doi.org/10.3390/agriculture10060238
APA StyleBekmirzaev, G., Ouddane, B., Beltrao, J., & Fujii, Y. (2020). The Impact of Salt Concentration on the Mineral Nutrition of Tetragonia tetragonioides. Agriculture, 10(6), 238. https://doi.org/10.3390/agriculture10060238