South Africa: An Important Soybean Producer in Sub-Saharan Africa and the Quest for Managing Nematode Pests of the Crop
Abstract
:1. The Potential of Soybean to Manage Food Insecurity
2. Soybean Production in South Africa and Sub-Saharan Africa
3. Value of Soybean in South Africa and Sub-Saharan Africa
4. Pests and Diseases of Soybean
5. Impact of Meloidogyne and Pratylenchus on Soybean
5.1. Meloidogyne
5.2. Pratylenchus
5.3. Interactions between Meloidogyne and/or Pratylenchus and Other Soilborne Pathogens
5.4. Potential Yield Losses
6. Nematode Management Strategies
6.1. Chemical Control
6.2. Crop Rotation
6.3. Host Plant Resistance
6.4. Biological Control
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations (UN). Department of Economic and Social Affairs, Population Division. World Urbanization Prospects 2019. Available online: https://population.un.org/wpp/Download/Standard/Population/2019 (accessed on 8 April 2020).
- Ten Berge, H.F.M.; Hijbeek, R.; van Loon, M.P.; Rurinda, J.; Tesfaye, K.; Zingore, S.; Craufurd, P.; van Heerwaarden, J.; Brentrup, F.; Schröder, J.J.; et al. Maize crop nutrient input requirements for food security in sub-Saharan Africa. Glob. Food Sec. 2019, 23, 9–21. [Google Scholar] [CrossRef]
- van Ittersum, M.K.; van Bussel, L.G.J.; Wolf, J.; Grassini, P.; van Wart, J.; Guilpart, N.; Claessens, L.; de Groot, H.; Wiebe, K.; Mason-D’Croz, D.; et al. Can sub-Saharan Africa feed itself? Proc. Natl. Acad. Sci. USA 2016, 113, 14964–14969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samberg, L.H.; Gerber, J.S.; Ramankutty, N.; Herrero, M.; West, P.C. Subnational distribution of average farm size and smallholder contributions to global food production. Environ. Res. Lett. 2016, 11, 1–12. [Google Scholar] [CrossRef]
- Tshuma, M.C. Understanding the small-scale agricultural sector as precondition for promoting rural development in South Africa. Afr. J. Agric. Res. 2014, 9, 2409–2418. [Google Scholar] [CrossRef] [Green Version]
- Jayne, T.S.; Chamberlin, J.; Benfica, R. Africa’s Unfolding Economic Transformation. J. Dev. Stud. 2018, 54, 777–787. [Google Scholar] [CrossRef] [Green Version]
- Hartman, G.L.; West, E.D.; Herman, T.K. Crops that feed the World 2. Soybean-worldwide production, use, and constrains caused by pathogens and pests. Food Sec. 2011, 3, 5–17. [Google Scholar] [CrossRef]
- Adegbite, A.A.; Adesiyan, S.O. Root extracts of plants to control root-knot nematode on edible soybean. Int. J. Veg. Sci. 2006, 12, 5–12. [Google Scholar] [CrossRef]
- Sikora, R.A.; Claudius-Cole, B.; Sikora, E.J. Nematode Parasites of Food Legumes. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture, 3rd ed.; Sikora, R.A., Coyne, D., Hallman, J., Timper, P., Eds.; CABI: New York, NY, USA, 2018; pp. 290–345. [Google Scholar]
- United States Department of Agriculture (USDA). World Agricultural Production. Available online: https://apps.fas.usda.gov/psdonline/circulars/production.pdf (accessed on 16 April 2020).
- Khojely, D.M.; Ibrahim, S.E.; Sapey, E.; Han, T. History, current status, and prospects of soybean production and research in sub-Saharan Africa. Crop. J. 2018, 6, 226–235. [Google Scholar] [CrossRef]
- Tefera, H. Breeding for Promiscuous Soybeans at IITA. In Soybean-Molecular Aspects of Breeding; Sudaric, A., Ed.; InTech: Croatia, Yugoslavia, 2011; pp. 147–162. [Google Scholar]
- Liebenberg, A. Soybean Production Manual: Your Guide to Successful Soybean Production; Agricultural Research Council: Potchefstroom, South Africa, 2012. [Google Scholar]
- Grain, S.A. Grain Market Overview. Available online: http://www.grainsa.co.za (accessed on 5 April 2020).
- Department of Agriculture, Forestry and Fisheries (DAFF). Soya beans—Production guidelines. Available online: https://www.nda.agric.za/docs/brochures/soya-beans.pdf (accessed on 22 May 2019).
- Bezuidenhout, G. Sojaboonrekord Spat Weer. Landbouweekblad. Available online: https:www.netwerk24.com/landbou/Bedrywe/Akkerbou/sojaboonrekord-spat-weer-20200408 (accessed on 6 May 2020).
- Giller, K.E.; Witter, E.; Corbeels, M.; Tittonell, P. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops. Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
- Elhady, A.; Heuer, H.; Hallmann, J. Plant parasitic nematodes on soybean in expanding production areas of temperate regions. J. Plant. Dis. Prot. 2018, 125, 567–576. [Google Scholar] [CrossRef]
- Heinrichs, E.A.; Muniappan, R. Integrated Pest Management for Tropical Crops: Soybeans. CAB Rev. 2018, 13, 1–44. [Google Scholar] [CrossRef]
- Freitas, E.O.; Melo, B.P.; Lourenço-Tessutti, I.T.; Arraes, F.B.M.; Amorim, R.M.; Lisei-de-Sá, M.E.; Costa, J.A.; Leite, A.G.B.; Faheem, M.; Ferreira, M.A.; et al. Identification and characterization of the GmRD26 soybean promoter in response to abiotic stresses: Potential tool for biotechnological application. BMC Biotechnol. 2019, 19, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Murithi, H.M.; Beed, F.; Tukamuhabwa, P.; Thomma, B.P.H.J.; Joosten, M.H.A.J. Soybean production in eastern and southern Africa and threat of yield loss due to soybean rust caused by Phakopsora pachyrhizi. Plant Pathol. 2016, 65, 176–188. [Google Scholar] [CrossRef]
- Meyer, F.; Traub, L.N.; Davids, T.; Chisanga, B.; Kachule, R.; Tostão, E.; Vilanculos, O.; Popat, M.; Binfield, J.; Boulanger, P. Modelling soybean markets in Eastern and Southern Africa, Regional Network of Agricultural Policy Research Institutes (ReNAPRI), EUR 28978 EN, Publications Office of the European Union, Luxembourg. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC109252/jrc_renapri_2018_final.pdf (accessed on 28 January 2020).
- Department of Agriculture, Forestry and Fisheries (DAFF). Abstract of Agricultural Statistics 2017. Available online: http://www.daff.gov.za/daffweb3/Home/Crop-Estimates/Statistical-Information (accessed on 25 January 2020).
- Department of Agriculture, Forestry and Fisheries (DAFF). Abstract of Agricultural Statistics 2019. Available online: https://www.daff.gov.za/Daffweb3/Portals/0/Statistics%20and%20Economic%20Analysis/Statistical%20Information/Abstract%20.pdf (accessed on 29 January 2020).
- Clúa, J.; Roda, C.; Zanetti, M.E.; Blanco, F.A. Compatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis. Genes 2018, 9, 125. [Google Scholar] [CrossRef] [Green Version]
- Fourie, H.; (North-West University, Potchefstroom, North-West, South Africa). Personal communication, 2020.
- BASF Agricultural Solutions. RhizoFlo®. Available online: https://www.agro.basf.co.za/en/Products/Overview/RhizoFlo%C2%AE.html (accessed on 5 May 2020).
- Mahmud, K.; Makaju, S.; Ibrahim, R.; Missaoui, A. Current Progress in Nitrogen Fixing Plants and Microbiome Research. Plants 2020, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Hartman, G.L.; Murithi, H. The State of Soybean in Africa: Soybean Diseases. 2019. Available online: https://farmdocdaily.illinois.edu/2019/08/the-state-of-soybean-in-africa-soybean-diseases.html (accessed on 27 January 2020).
- Hartman, G.L.; Haudenshield, J.S.; Smith, K.L.; Tooley, P.W.; Shelton, J.; Bulluck, R.; Engle, J.; Magarey, R.; Royer, M.; Sutker, E.; et al. Recovery Plan for Red Leaf Blotch of Soybean Caused by Phoma glycinicola. 2009. Available online: https://www.ars.usda.gov/research/publications/publication/?seqNo115=242622. (accessed on 27 January 2020).
- Ohnesorg, W.J.; Hunt, T.E. Managing Soybean Defoliators. Available online: http://extensionpublications.unl.edu/assets/pdf/g2259.pdf (accessed on 27 January 2020).
- Jones, J.T.; Haegema, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-Lopez, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant. Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef]
- Fourie, H.; de Waele, D.; Mc Donald, A.H.; Marais, M.; de Beer, A. Nematode pests threatening soybean production in South Africa, with reference to Meloidogyne. South Afr. J. Sci. 2015, 111, 1–9. [Google Scholar] [CrossRef]
- Jones, M.G.K.; Goto, D.B. Root-knot Nematodes and Giant Cells. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Jones, J., Gheysen, G., Fenoll, C., Eds.; Springer: New York, NY, USA, 2011; pp. 83–99. [Google Scholar]
- Jones, R.K.; Storey, S.G.; Knoetze, R.; Fourie, H. Nematode pests of potato and other vegetable crops. In Nematology in South Africa: A View from the 21st Century; Fourie, H., Spaull, V.W., Jones, R.K., Daneel, M.S., De Waele, D., Eds.; Springer International: Cham, Switzerland, 2017; pp. 231–260. [Google Scholar]
- Van der Linde, W.J.; Clemitson, J.G.; Crous, M.E. Host-parasite relationships of South African root-knot eelworm (Meloidogyne spp.). Dep. Agric. Technol. Serv. Repub. South Afr. Ent. Serv. 1959, 44, 3–16. [Google Scholar]
- Fourie, H.; Mc Donald, A.H.; Steenkamp, S.; De Waele, D. Nematode Pests of Leguminous and Oilseed Crops. In Nematology in South Africa: A View from the 21st Century; Fourie, H., Spaull, V.W., Jones, R.K., Daneel, M.S., De Waele, D., Eds.; Springer International: Cham, Switzerland, 2017; pp. 201–210. [Google Scholar]
- Castillo, P.; Vovlas, N. Pratylenchus (Nematoda: Pratylenchidae): Diagnosis, Biology, Pathogenicity and Management; Brill: Boston, IL, USA, 2007. [Google Scholar]
- Keetch, D.P.; Buckley, N.H. A Checklist of the Plant-Parasitic Nematodes of Southern Africa: Technical Communication No. 195; Department of Agriculture: Pretoria, South Africa, 1984.
- Fourie, H.; Mc Donald, A.H.; Loots, G.C. Plant-parasitic nematodes in field crops in South Africa 6: Soybean. Nematology 2001, 3, 447–454. [Google Scholar] [CrossRef]
- Mbatyoti, A.; Daneel, M.S.; Swart, A.; Marais, M.; De Waele, D.; Fourie, H. Plant-parasitic nematode assemblages associated with glyphosate tolerant and conventional soybean cultivars in South Africa. Afr. Zool. 2020, 1–16. [Google Scholar] [CrossRef]
- Carpenter, A.S.; Lewis, S.A. Meloidogyne arenaria Populations on Soybean. J. Nematol. 1991, 23, 639–645. [Google Scholar]
- Ye, W.M.; Koenning, S.R.; Zhuo, K.; Liao, J.L. First Report of Meloidogyne enterolobii on Cotton and Soybean in North Carolina, United States. Plant. Dis. 2013, 97, 1262. [Google Scholar] [CrossRef]
- Li, C.; Hua, C.; Hu, Y.; You, J.; Mao, Y.; Li, J.; Tian, Z.; Wang, C. Response of soybean genotypes to Meloidogyne incognita and M. hapla in Heilongjiang province in China. Russ. J. Nematol. 2016, 24, 89–98. [Google Scholar]
- Wrather, J.A.; Anderson, T.R.; Arsyad, D.M.; Tan, Y.; Ploper, L.D.; Porta-Puglia, A.; Ram, H.H.; Yorinori, J.T. Soybean disease loss estimates for the top ten soybean-producing counries in 1998. Can. J. Plant. Pathol. 2001, 23, 115–121. [Google Scholar] [CrossRef]
- Coetzee, V. The distribution of the family Heteroderidae (Filipjev, 1934) in South Africa and some host records of Meloidogyne species. South Afr. J. Agr. Sci. 1968, 11, 775–788. [Google Scholar]
- Ramzan, M.; Ahmed, R.Z.; Khanum, T.A.; Akram, S.; Jabeen, S. Survey of root knot nematodes and RMi resistance to Meloidogyne incognita in soybean from Khyber Pakhtunkhwa, Pakistan. Eur. J. Plant. Pathol. 2019, 1–13. [Google Scholar] [CrossRef]
- Tzortzakakis, E.A.; Cantalapiedra-Navarrete, C.; Archidona-Yuste, A.; Kormp, M.; Palomares-Rius, J.E.; Castillo, P. First report of cultivated Cretan mountain tea (Sideritis syriaca) as a host of Meloidogyne hapla and M. javanica in Crete, with some additional records on the occurrence of Meloidogyne species in Greece. J. Nematol. 2019, 51, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agu, C.M. Soybean Susceptibility to Meloidogyne javanica and Rhizoctonia solani in Selected Ultisols of South Eastern Nigeria. J. Sustain. Agric. 2002, 20, 101–110. [Google Scholar] [CrossRef]
- Machado, A.C.Z.; Amaro, P.M.; Silva, S.A.D. Two novel potential pathogens for soybean. PLoS ONE 2019, 14, e0221416. [Google Scholar] [CrossRef] [Green Version]
- Marais, M. Identification Job Sheet N3092: Dataset from South African Plant-Parasitic Nematode Survey Database; Nematology Unit, Biosystematics Division, Plant Protection Research Institute, Agricultural Research Council: Pretoria, South Africa, 2012. [Google Scholar]
- Whish, J.P.M.; Thompson, J.P.; Clewett, T.G.; Wood, J.; Rostad, H.E. Predicting the slow decline of root lesion nematodes (Pratylenchus thornei) during host-free fallows to improve farm management decisions. Eur. J. Agron. 2017, 91, 44–53. [Google Scholar] [CrossRef]
- Marais, M.; Swart, A. Plant nematodes in South Africa 8: Bizana, Lusikisiki and Port St Johns area, Eastern Cape Province. Afr. Plant. Prot. 2007, 13, 16–27. [Google Scholar]
- Yan, G.P.; Plaisance, A.; Huang, D.; Handoo, Z.A.; Chitwood, D.J. First Report of a New, Unnamed Lesion Nematode Pratylenchus sp. Infecting Soybean in North Dakota. Plant. Dis. 2017, 101, 1555. [Google Scholar] [CrossRef]
- Bridge, J.; Starr, J.L. Plant Nematodes of Agricultural Importance; Academic Press: Boston, IL, USA, 2007. [Google Scholar] [CrossRef]
- Safiuddin, R.R.; Mahmood, I. Range of Microbial Disease Complexes with Meloidogyne Species and Role of Botanicals in Management. In Probiotics and Plant Health; Kumar, V., Kumar, M., Sharma, S., Prasad, R., Eds.; Springer International: Singapore, 2017; pp. 365–381. [Google Scholar]
- Furusawa, A.; Uehara, T.; Ikeda, K.; Sakai, H.; Tateishi, Y.; Sakai, M.; Nakaho, K. Ralstonia solanacearum colonization of tomato roots infected by Meloidogyne incognita. J. Phytopathol. 2019, 167, 338–343. [Google Scholar] [CrossRef]
- Back, M.A.; Haydock, P.P.J.; Jenkinson, P. Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant. Pathol. 2002, 51, 683–697. [Google Scholar] [CrossRef]
- Chang, K.F.; Hwang, S.F.; Conner, R.L.; Ahmed, H.U.; Zhou, Q.; Fu, H.; Turnbull, G.D.; Nyandoro, R.; Strelkov, S.E.; McLaren, D.L.; et al. Effects of Fusarium avenaceum and Rhizoctonia solani on the growth of soybean in saline soils. Can. J. Plant. Sci. 2018, 99, 128–137. [Google Scholar] [CrossRef]
- Goswami, B.; Agarwal, D. Interrelationships between species of Fusarium and root-knot nematode, Meloidogyne incognita in soybean. Nematol. Mediterr. 1978, 6, 125–128. [Google Scholar]
- Liu, B.; Shen, W.; Wei, H.; Smith, H.; Louws, F.J.; Steadman, J.R.; Correll, J.C. Rhizoctonia communities in soybean fields and their relation with other microbes and nematode communities. Eur. J. Plant. Pathol. 2016, 144, 671–686. [Google Scholar] [CrossRef]
- Hartman, G.L.; McCormick, S.P.; O’Donnell, K. Trichothecene-Producing Fusarium Species Isolated from Soybean Roots in Ethiopia and Ghana and their Pathogenicity on Soybean. Plant Dis. 2019, 103, 2070–2075. [Google Scholar] [CrossRef]
- Tewoldemedhin, Y.T.; Lamprecht, S.C.; Vaughan, M.M.; Doehring, G.; O’Donnell, K. Soybean SDS in South Africa is Caused by Fusarium brasiliense and a Novel Undescribed Fusarium sp. Plant. Dis. 2017, 101, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, K.K.; Brhane, D.; Okube, H.; Zaid, T.; Dagnew, E. Distribution, frequency of occurrence and population density of root knot nematode in Hamelmalo—Eritrea. Afr. J. Microbiol. Res. 2011, 5, 5656–5661. [Google Scholar] [CrossRef]
- Kinloch, R.A. Response of Soybean Cultivars to Nematicidal Treatments of Soil Infested with Meloidogyne incognita. J. Nematol. 1974, 6, 7–11. [Google Scholar]
- Wrather, J.A.; Koenning, S.R.; Anderson, T.R. Effect of Diseases on Soybean Yields in the United States and Ontario (1999 to 2002). Plant. Health Prog. 2003, 4, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, D.B.; Dias-Arieira, C.R.; Vedoveto, M.V.V.; Roldi, M.; Molin, H.F.D.; Abe, V.H.F. Sucessão de culturas no manejo de Pratylenchus brachyurus em soja. Nematropica 2014, 44, 146–151. [Google Scholar]
- Ross, J.P.; Nusbaum, C.J.; Hirschmann, H. Soybean yield reduction by lesion, stunt, and spiral nematodes. Phytopathology 1967, 7, 463–464. [Google Scholar]
- Smit, M.A.; De Beer, G.P. Report of the National Soybean Cultivar Trials 1998/99; Agricultural Research Council: Potchefstroom, South Africa, 1998. [Google Scholar]
- Noel, G.R. Root-knot nematode. In Compendium of Soybean Diseases and Pests; Hartman, G.L., Rupe, J.C., Sikora, E.J., Domier, L.L., Davis, J.A., Steffey, K.L., Eds.; The American Phytopathological Society: St. Paul, MN, USA, 2015; pp. 95–96. [Google Scholar]
- Koenning, S.R. Lesion nematodes. In Compendium of Soybean Diseases and Pests; Hartman, G.L., Rupe, J.C., Sikora, E.J., Domier, L.L., Davis, J.A., Steffey, K.L., Eds.; The American Phytopathological Society: St. Paul, MN, USA, 2015; pp. 98–100. [Google Scholar]
- Van Zyl, K. A Guide to Crop Pest Management in South Africa. A Compendium of Acaracides, Insecticides, Nematicides, Molluscicides, Avicides and Rodenticides. A CropLife South. African Compendium, 1st ed.; VR Print: Pinetown, South Africa, 2013. [Google Scholar]
- Haydock, P.P.J.; Woods, S.R.; Grove, I.G.; Hare, M.C. Chemical control of nematodes. In Plant Nematology, 2nd ed.; Perry, R.N., Moens, M., Eds.; CAB International: Wallingford, UK, 2013; pp. 259–279. [Google Scholar]
- Giannakou, I.O.; Karpouzas, D.G.; Prophetou-Athanasiadou, D. A novel non-chemical nematicide for the control of root-knot nematodes. Appl. Soil Ecol. 2004, 26, 69–79. [Google Scholar] [CrossRef]
- Mnif, I.; Ghribi, D. Potential of bacterial derived biopesticides in pest management. Crop. Prot. 2015, 77, 52–64. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, M.; Mittal, A.; Mehta, P.K. Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech 2017, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Fourie, H.; Jones, V.W.; Daneel, R.K.; De Waele, D. Introduction. In Nematology in South Africa: A View from the 21st Century; Fourie, H., Spaull, V.W., Jones, R.K., Daneel, M.S., De Waele, D., Eds.; Springer International: Cham, Switzerland, 2017; pp. 1–12. [Google Scholar]
- Fourie, H.; De Waele, D. Integrated pest management (IPM) of nematodes. In Integrated Management of Insect pests-Current and future developments; Kogan, M., Heinrichs, E., Eds.; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 1–69. [Google Scholar]
- Naz, I.; Saifullah, S.; Palomares-Rius, J.E.; Khan, S.M.; Ali, S.; Ahmad, M.; Ali, A.; Khan, A. Control of Southern root knot nematode Meloidogyne incognita (Kofoid and White) Chitwood on tomato using green manure of Fumaria parviflora Lam (Fumariaceae). Crop. Prot. 2015, 67, 121–129. [Google Scholar] [CrossRef]
- Grabau, Z.J.; Chen, S. Determining the role of plant-parasitic nematodes in the corn–soybean crop rotation yield effect using nematicide application: I Corn. Agron. J. 2016, 108, 782–793. [Google Scholar] [CrossRef] [Green Version]
- Grabau, Z.J.; Chen, S. Determining the role of plant-parasitic nematodes in the corn–soybean crop rotation yield effect using nematicide application: II Soybean. Agron. J. 2016, 108, 1168–1179. [Google Scholar] [CrossRef]
- Corteva Agriscience. Telone® II. Available online: https://www.corteva.us/products-and-solutions/crop-protection/telone-ii.html (accessed on 14 April 2020).
- Strauss, S.L.; Kluepfel, D.A. Anaerobic soil disinfestation: A chemical-independent approach to pre-plant control of plant pathogens. J. Integr. Agric. 2015, 14, 2309–2318. [Google Scholar] [CrossRef]
- Davis, E.L.; Meyers, D.M.; Dullum, C.J.; Feitelson, J.S. Nematicidal Activity of Fatty Acid Esters on Soybean Cyst and Root-knot Nematodes. J. Nematol. 1997, 29, 677–684. [Google Scholar]
- de Souza Confort, P.M.; Inomoto, M.M. Pasteuria thornei, a novel biological seed treatment for Pratylenchus brachyurus in soybean. Nematology 2018, 20, 519–523. [Google Scholar] [CrossRef]
- de Almeida, A.A.; Abe, V.H.F.; Gonçalves, R.M.; Balbi-Peña, M.I.; Santiago, D.C. Seed treatment for management of Meloidogyne javanica in soybean. Semin. Cienc. Agrar. 2017, 38, 2995–3006. [Google Scholar] [CrossRef] [Green Version]
- Puerari, H.H.; Dias-Arieira, C.R.; Tavares-Silva, C.A.; de Oliveira Arieira, J.; Biela, F.; Poletine, J.P. Ecolife® and manganese phosphite in the control of Meloidogyne javanica and in the development of soybean cultivars susceptible and resistant to the nematode. Nematropica 2013, 43, 105–112. [Google Scholar]
- Faske, T.R.; Hurd, K. Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to Fluopyram. J. Nematol. 2015, 47, 316–321. [Google Scholar]
- Fourie, H.; Mc Donald, A.H. Report for Project M151/60: Chemical Control Options for Plant-Parasitic Nematodes Associated with Soybean in South Africa; Agricultural Research Council—Grain Crops Institute: Potchefstroom, South Africa, 2001. [Google Scholar]
- Syngenta. Our Crop Protection Products. Available online: https://www.syngenta.com/protecting-crops/products-list (accessed on 5 May 2020).
- Schneider, S.M.; Rosskopf, E.N.; Leesch, J.G.; Chellemi, D.O.; Bull, C.T.; Mazzola, M. United States Department of Agriculture—Agricultural Research Service research on alternatives to methyl bromide: Pre-plant and post-harvest. Pest. Manag. Sci. 2003, 59, 814–826. [Google Scholar] [CrossRef]
- Neale, M. The regulation of natural products as crop-protection agents. Pest. Manag. Sci. 2000, 56, 677–680. [Google Scholar] [CrossRef]
- Chandler, D.; Bailey, A.S.; Tatchell, G.M.; Davidson, G.; Greaves, J.; Grant, W.P. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 366, 1987–1998. [Google Scholar] [CrossRef]
- Czaja, K.; Góralczyk, K.; Struciński, P.; Hernik, A.; Korcz, W.; Minorczyk, M.; Łyczewska, M.; Ludwicki, J.K. Biopesticides–towards increased consumer safety in the European Union. Pest. Manag. Sci. 2015, 71, 3–6. [Google Scholar] [CrossRef]
- Silvério, F.O.; Alvarenga, E.S.D.; Moreno, S.C.; Picanço, M.C. Synthesis and insecticidal activity of new pyrethroids. Pest. Manag Sci. 2009, 65, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.V.P.; Cruz, Z.T.; Guerrero, A. Development of an efficient pheromone-based trapping method for the banana root borer Cosmopolites sordidus. J. Chem. Ecol. 2009, 35, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.G.K.; Fosu-Nyarko, J. Molecular biology of root lesion nematodes (Pratylenchus spp.) and their interaction with host plants. Ann. Appl. Biol. 2014, 164, 163–181. [Google Scholar] [CrossRef]
- Timper, P.; Brenneman, T.B.; Wilson, J.P. Pearl millet as a crop rotation for peanut. Plant. Health Prog. 2007, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Tsigbey, F.K.; Rich, J.R.; Marois, J.J.; Wright, D.L. Effect of bahiagrass (Papalum notatum Fluegge) on nematode populations in the field and their behavior under greenhouse and laboratory conditions. Nematropica 2018, 39, 111–119. [Google Scholar]
- Vance, P.N. Peanut growing in the South Burnett. Qld. Agric. J. 1981, 107, 201–213. [Google Scholar]
- McDonald, A.H.; Nicol, J. Nematode parasites of cereals. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture, 2nd ed.; Luc, K., Sikora, R.A., Bridge, J., Eds.; CABI: Wallingford, UK, 2005; pp. 131–191. [Google Scholar]
- Vedoveto, M.V.V.; Dias-Arieira, C.R.; Rodrigues, D.B.; Arieira, J.O.; Roldi, M.; Severino, J., Jr. Green manure in the management of Pratylenchus brachyurus in soybean. Nematropica 2013, 43, 226–232. [Google Scholar]
- Rodrigues, D.B.; Dias-Arieira, C.R.; Vedoveto, M.V.V.; Roldi, M.; Molin, H.F.D.; Abe, V.H.F. Crop rotation for Pratylenchus brachyurus control in soybean. Nematropica 2014, 44, 146–151. [Google Scholar]
- Adekunle, O.K. Amendment of soil with African marigold and sunn hemp for management of Meloidogyne incognita in selected legumes. Crop. Prot. 2011, 30, 1392–1395. [Google Scholar] [CrossRef]
- Riekert, H.F.; Henshaw, G.E. Effect of soybean, cowpea and groundnut rotation on root-knot nematode build-up and infestation of dryland maize. Afr. Crop. Sci. J. 1998, 6, 377–383. [Google Scholar] [CrossRef]
- Mc Donald, A.H.; De Waele, D.; Fourie, H. Nematode Pests of Maize and other Cereal Crops. In Nematology in South Africa: A View from the 21st Century; Fourie, H., Spaull, V.W., Jones, R.K., Daneel, M.S., De Waele, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 183–200. [Google Scholar]
- Viaene, N.; Coyne, D.L.; Davies, K. Biological and cultural control. In Plant Nematology, 2nd ed.; Perry, R., Moens, M., Eds.; CAB International: Wallingford, UK, 2013; pp. 384–410. [Google Scholar]
- Jiao, Y.; Vuong, T.D.; Liu, Y.; Li, Z.; Noe, J.; Robbins, R.T.; Joshi, T.; Xu, D.; Shannon, J.G.; Nguyen, H.T. Identification of quantitative trait loci underlying resistance to southern root-knot and reniform nematodes in soybean accession PI 567516C. Mol. Breeding 2015, 35, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Anand, S.C.; Gallo, K.M. Identification of additional soybean germ plasm with resistance to race 3 of the soybean cyst nematode. Plant. Dis. 1984, 68, 593–595. [Google Scholar] [CrossRef]
- Teixeira, R.A.; Barbosa, K.A.G.; Rocha, M.R.d. Reaction of soybean cultivars to the root-knot nematode Meloidogyne javanica. Científica 2017, 45, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Wilkes, J.E.; Kirkpatrick, T.L. The effects of Meloidogyne incognita and Heterodera glycines on the yield and quality of edamame (Glycine max l.) in Arkansas. J. Nematol. 2020, 52, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Weaver, D.; Sharpe, R.R. Registration of ‘Henderson’ genotype. J. Plant. Regist. 2013, 7, 159. [Google Scholar] [CrossRef]
- Mbatyoti, O.A. Soybean Host Status to Meloidogyne incognita and Nematode Biodiversity in Local Soybean Cropping Systems. Ph.D. Thesis, North-West University, Potchefstroom, South Africa, 2018. [Google Scholar]
- Fourie, H.; Mc Donald, A.H.; Loots, G.C. Host suitability of South African commercial soybean cultivars to two root-knot nematode species. Afr. Plant. Prot. 1999, 2, 119–124. [Google Scholar]
- Machado, A.C.Z.; Araújo Filho, J.V. Broad-sense heritability and variance component estimates for Pratylenchus brachyurus resistance in Brazilian soybean genotypes. Trop Plant. Pathol. 2016, 41, 390–396. [Google Scholar] [CrossRef]
- de Brida, A.L.; Correia, E.C.S.S.; Wilcken, S.R.S. Susceptibility of soybean cultivars to the root lesion nematode. Summa Phytopath. 2017, 43, 248–249. [Google Scholar] [CrossRef] [Green Version]
- Rios, A.D.F.; Rocha, M.R.D.; Machado, A.S.; Ávila, K.A.G.B.; Teixeira, R.A.; Santos, L.D.C.; Rabelo, L.R.S. Host suitability of soybean and corn genotypes to the root lesion caused by nematode under natural infestation conditions. Ciência Rural 2016, 46, 580–584. [Google Scholar] [CrossRef]
- Hussey, R.S.; Janssen, G.J.W. Root-knot nematodes. In Plant Resistance to Parasitic Nematodes; Starr, J.L., Cook, R., Bridge, J., Eds.; CAB International: Wallingford, UK, 2002; pp. 43–70. [Google Scholar]
- Thomson, L.J.; Macfadyen, S.; Hoffmann, A.A. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control. 2010, 52, 296–306. [Google Scholar] [CrossRef]
- Kotir, J.H. Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environ. Dev. Sustain. 2011, 13, 587–605. [Google Scholar] [CrossRef]
- Ashoub, A.H.; Amara, M.T. Biocontrol activity of some bacterial genera against root-knot nematode, Meloidogyne incognita. J. Am. Sci. 2010, 6, 321–328. [Google Scholar]
- Dias-Arieira, C.R.; de Araújo, F.G.; Kaneko, L.; Santiago, D.C. Biological control of Pratylenchus brachyurus in soya bean crops. J. Phytopathol. 2018, 166, 722–728. [Google Scholar] [CrossRef]
- Engelbrecht, G.; Horak, I.; Jansen van Rensburg, P.J.; Claassens, S. Bacillus-based bionematicides: Development, modes of action and commercialisation. Biocontrol. Sci. Technol. 2018, 28, 629–653. [Google Scholar] [CrossRef]
- Jamal, Q.; Cho, J.Y.; Moon, J.H.; Munir, S.; Anees, M.; Kim, K.Y. Identification for the first time of Cyclo (d-Pro-l-Leu) produced by Bacillus amyloliquefaciens Y1 as a Nematocide for control of Meloidogyne incognita. Molecules 2017, 22, 1839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.S.; Kim, K.Y. Antagonistic potential of Bacillus pumilus L1 against root-knot nematode, Meloidogyne arenaria. J. Phytopath. 2016, 164, 29–39. [Google Scholar] [CrossRef]
- Watson, T.T.; Forge, T.A.; Nelson, L.M. Pseudomonads contribute to regulation of Pratylenchus penetrans (Nematoda) populations on apple. Can. J. Microbiol. 2018, 64, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zhou, Q.; Luo, H.; Xia, L.; Li, L.; Sun, M.; Yu, Z. Systemic nematicidal activity and biocontrol efficacy of Bacillus firmus against the root-knot nematode Meloidogyne incognita. World J. Microbiol. Biotechnol. 2015, 31, 661–667. [Google Scholar] [CrossRef]
- Ramezani Moghaddam, M.; Mahdikhani Moghaddam, E.; Baghaee Ravari, S.; Rouhani, H. The nematicidal potential of local Bacillus species against the root-knot nematode infecting greenhouse tomatoes. Biocontrol. Sci. Technol. 2014, 24, 279–290. [Google Scholar] [CrossRef]
- Sansinenea, E.; Ortiz, A. Secondary metabolites of soil Bacillus spp. Biotechnol Lett. 2011, 33, 1523–1538. [Google Scholar] [CrossRef]
- Abbasi, M.; Ahmed, N.; Zaki, M.; Shuakat, S.; Khan, D. Potential of Bacillus species against Meloidogyne javanica parasitizing eggplant (Solanum melongena L.) and induced biochemical changes. Plant. Soil. 2014, 375, 159–173. [Google Scholar] [CrossRef]
- Gao, H.; Qi, G.; Yin, R.; Zhang, H.; Li, C.; Zhao, X. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Sci. Rep. 2016, 6, 605. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, S.; Knapp, D.G.; Blaudez, D.; Chalot, M.; Macia-Vicente, J.G.; Zagyva, I.; Dababat, A.A.; Maier, W.; Kovács, G.M. Inhabiting plant roots, nematodes and truffles—Polyphilus, a new helotialean genus with two globally distributed species. Mycologia 2018, 110, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Kath, J.; Dias-Arieira, C.R.; Ferreira, J.C.A.; Homiak, J.A.; de Silva, C.R.; Cardoso, C.R. Control of Pratylenchus brachyurus in soybean with Trichoderma spp. and resistance inducers. J. Phytopath. 2017, 165, 791–799. [Google Scholar] [CrossRef]
- Horak, I.; Engelbrecht, G.; Jansen van Rensburg, P.J.; Claassens, S. Microbial metabolomics: Essential definitions and the importance of cultivation conditions for utilizing Bacillus species as bionematicides. J. Appl. Microbiol. 2019, 127, 326–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araujo, F.F.; Bragante, R.J.; Bragante, C. Genetic, chemical, and biological control of root-knot nematodes in soybean crop. Pesqui Agropecu Trop. 2012, 42, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Miamoto, A.; Silva, M.T.R.E.; Dias-Areira, C.R.; Puerari, H.H. Alternative products for Pratylenchus brachyururs and Meloidogyne javanica management in soya bean plants. J. Phytopathol. 2017, 165, 635–640. [Google Scholar] [CrossRef]
- Izuogu, N.B.; Abiri, T.O. Efficacy of Trchoderma harzianum T22 as a biocontrol agent against root-knot nematode (Meloidogyne incognita) on some soybean varieties. Croat. J. Food Sci. Technol. 2015, 7, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Chinheya, C.C.; Yobo, K.S.; Laing, M.D. Biological control of the root-knot nematode, Meloidogyne javanica (Chitwood) using Bacillus isolates, on soybean. Biol. Control. 2017, 109, 37–41. [Google Scholar] [CrossRef]
- Nasu, E.d.G.C.; Amora, D.X.; Monteiro, T.S.A.; Alves, P.S.; Podestá, G.S.d.; Ferreira, F.C.; de Freitas, L.G. Pochonia chlamydosporia applied via seed treatment for nematode control in two soil types. Crop. Prot. 2018, 114, 106–112. [Google Scholar] [CrossRef]
- Okorie, C.C.; Ononuju, C.C.; Okwujiako, I.A. Management of Meloidogyne incognita with Pleurotus ostreatus and P. tuberregium in soybean. Int. J. Agric. Biol. 2011, 13, 401–405. [Google Scholar]
- Ibrahim, I.K.A.; El-Saedy, M.A.M.; Mokbel, A.A. Control of the root-knot nematode Meloidogyne incognita on sunflower plants with certain organic plant materials and biocontrol agents. Egypt. J. Phytopathol. 2007, 35, 13–24. [Google Scholar]
- Toju, H.; Tanaka, Y. Consortia of anti-nematode fungi and bacteria in the rhizosphere of soybean plants attacked by root-knot nematodes. R. Soc. Open Sci. 2019, 6, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajek, A.E.; Hurley, B.P.; Kenis, M.; Garnas, J.R.; Bush, S.J.; Wingfield, M.J.; van Lenteren, J.C.; Cock, M.J.W. Exotic biological control agents: A solution or contribution to arthropod invasions? Biol. Invasions. 2016, 18, 953–969. [Google Scholar] [CrossRef] [Green Version]
Area | Country | 2018/19 | 2019/20 | ||||
---|---|---|---|---|---|---|---|
Area Harvested (Million ha) | Yield (Metric Tons Per ha) | Production (Million MT) | Area Harvested (Million ha) | Yield (Metric Tons Per ha) | Production (Million Metric Tons) | ||
International | Argentina | 16.60 | 3.33 | 55.3 | 17.00 | 3.18 | 54.00 |
Brazil | 35.90 | 3.26 | 117.00 | 36.90 | 3.41 | 126.00 | |
Bolivia | 1.40 | 1.93 | 2.70 | 1.40 | 2.00 | 2.80 | |
Canada | 2.54 | 2.86 | 7.27 | 2.30 | 2.61 | 7.27 | |
India | 11.33 | 0.96 | 10.93 | 11.25 | 0.83 | 9.30 | |
Indonesia | 0.41 | 1.27 | 0.52 | 0.40 | 1.28 | 0.51 | |
Japan | 0.15 | 1.45 | 0.21 | 0.15 | 1.69 | 0.25 | |
Paraguay | 3.70 | 2.39 | 8.85 | 3.54 | 2.80 | 9.90 | |
Turkey | 0.03 | 3.80 | 0.10 | 0.03 | 3.89 | 0.11 | |
USA | 35.45 | 3.40 | 120.52 | 30.36 | 3.19 | 96.84 | |
Sub-Saharan Africa | Nigeria | 1.00 | 1.05 | 1.05 | 1.00 | 1.10 | 1.10 |
South Africa | 0.73 | 1.60 | 1.17 | 0.80 | 1.81 | 1.45 | |
Uganda | 0.05 | 0.60 | 0.03 | 0.05 | 0.60 | 0.03 | |
Zambia | 0.19 | 1.58 | 0.30 | 0.20 | 1.43 | 0.28 |
Genus | Species | Countries |
---|---|---|
Meloidogyne | M. arenaria | South Africa [36], USA [42] |
M. ethiopica | South Africa [40] | |
M. enterolobii | USA [43] | |
M. hapla | China [44], South Africa [40] | |
M. incognita | Brazil [45], China [44], South Africa [41,46], Pakistan [47], USA [42] | |
M. javanica | Brazil [45], Greece [48], Nigeria [49], South Africa [41,46], Pakistan [47], USA [42] | |
Meloidogyne spp. | Germany [18], South Africa [39] | |
Pratylenchus | P. brachyurus | Brazil [50], South Africa [39,41] |
P. crenatus | Germany [18], South Africa [40,41] | |
P. flakkensis | South Africa [41] | |
P. neglectus | Germany [18], South Africa [41] | |
P. scribneri | South Africa [41] | |
P. penetrans | Germany [18], South Africa [51] | |
P. teres | South Africa [40,41] | |
P. thornei | Australia [52], South Africa [40,41] | |
P. zeae | South Africa [41] | |
P. vulnus | South Africa [41] | |
Pratylenchus spp. | South Africa [53], USA [54] |
Microorganism | Species | Results | Country |
---|---|---|---|
Bacteria | B. subtilis [135] | Reduced egg and second-stage juvenile densities of M. incognita and M. javanica on susceptible genotypes by more than 70% | Brazil |
Pasteuria thornei [85] | Reduced P. brachyurus densities by up to 50% | Brazil | |
Lactobacillus plantarum + B. subtilis + Enterococcus faecium, and B. licheniformis + B. subtilis + Trchoderma longibrachiatum [136] | Substantially reduced densities of M. javanica and P. brachyurus | Brazil | |
T. harzianum T22 [137] | Reduced egg, second-stage juvenile and female densities of M. incognita | Nigeria | |
Mixture of Bacillus isolates [138] | In vitro studies showed larval mortality of >80%. Greenhouse studies showed reduced gall formation and egg densities of M. javanica | South Africa | |
Fungi | Pochonia chlamydosporia var. chlamydosporia [139] | Reduced egg densities of M. incognita | Brazil |
Pleurotus ostreatus, P. tuberregium [140] | Reduced gall formation and second-stage juvenile densities | Nigeria |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Engelbrecht, G.; Claassens, S.; Mienie, C.M.S.; Fourie, H. South Africa: An Important Soybean Producer in Sub-Saharan Africa and the Quest for Managing Nematode Pests of the Crop. Agriculture 2020, 10, 242. https://doi.org/10.3390/agriculture10060242
Engelbrecht G, Claassens S, Mienie CMS, Fourie H. South Africa: An Important Soybean Producer in Sub-Saharan Africa and the Quest for Managing Nematode Pests of the Crop. Agriculture. 2020; 10(6):242. https://doi.org/10.3390/agriculture10060242
Chicago/Turabian StyleEngelbrecht, Gerhard, Sarina Claassens, Charlotte M. S. Mienie, and Hendrika Fourie. 2020. "South Africa: An Important Soybean Producer in Sub-Saharan Africa and the Quest for Managing Nematode Pests of the Crop" Agriculture 10, no. 6: 242. https://doi.org/10.3390/agriculture10060242
APA StyleEngelbrecht, G., Claassens, S., Mienie, C. M. S., & Fourie, H. (2020). South Africa: An Important Soybean Producer in Sub-Saharan Africa and the Quest for Managing Nematode Pests of the Crop. Agriculture, 10(6), 242. https://doi.org/10.3390/agriculture10060242