How Is the Effect of Phytogenic Feed Supplementation Tested in Heat Stressed Pigs? Methodological and Sampling Considerations
Abstract
:1. Introduction
2. Formation and Consequences of HS Induced Oxidative Stress in Pigs
2.1. Effect of HS on the Antioxidative System of Pigs
2.2. Effect of HS on Related Gene Expression in Pigs
3. Applications of PFAs in Pig Production
4. Effect of Phytogens on Pigs under Stress Conditions, with Special Regards to HS
5. Determination of Sample Type and Sampling Frequency in HS Investigations in Pigs
Sampling Conditions and Experimental Results for the Investigation of Heat Stress
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cervantes, M.; Cota, M.; Arce, N.; Castillo, G.; Avelar, E.; Espinoza, S.; Morales, A. Effect of heat stress on performance and expression of selected amino acid and glucose transporters, HSP90, leptin and ghrelin in growing pigs. J. Therm. Biol. 2016, 59, 69–76. [Google Scholar] [CrossRef]
- Wilson, T.E.; Crandell, C.G. Effect of Thermal Stress on Cardiac Function. Exerc. Sport Sci. Rev. 2011, 39, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Cervantes, M.; Ibarra, N.; Vásquez, N.; Reyes, F.; Avelar, E.; Espinosa, S.; Morals, A. Serum concentrations of free amino acids in growing pigs exposed to diurnal heat stress fluctuations. J. Therm. Biol. 2017, 69, 69–75. [Google Scholar] [CrossRef]
- Gabler, N.K.; Koltes, D.; Schaumberger, S.; Murugesan, G.R.; Reisinger, N. Diurnal heat stress reduces pig intestinal integrity and increases endotoxin translocation. Transl. Anim. Sci. 2018, 2, 1–10. [Google Scholar] [CrossRef]
- Pearce, S.C.; Sanz Fernandez, M.V.; Torrison, J.; Wilson, M.E.; Baumgard, L.H.; Gabler, N.K. Acute Heat Stress and Reduced Nutrient Intake Alter Intestinal Proteomic Profile and Gene Expression in Pigs. PLoS ONE 2015. [Google Scholar] [CrossRef] [Green Version]
- Pearce, S.C.; Mani, V.; Boddicker, R.L.; Johnson, J.S.; Weber, T.E.; Ross, J.W.; Rhoads, R.P.; Baumgard, L.H.; Gabler, N.K. Heat Stress Reduces Intestinal Barrier Integrity and Favors Intestinal Glucose Transport in Growing Pigs. PLoS ONE 2013, 8, e70215. [Google Scholar] [CrossRef]
- Renaudeau, D.; Collin, A.; Yahav, S.; de Basilio, V.; Gourdine, J.L.; Collier, R. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Song, M.; Che, T. Anti-inflammatory effects of several plant extracts on porcine alveolar macrophages in vitro. J. Anim. Sci. 2012, 90, 2774–2783. [Google Scholar] [CrossRef]
- Bakht, J.; Khan, S.; Shafi, M. Antimicrobial potentials of fresh Allium cepa against gram positive and gram negative bacteria and fungi. Pak. J. Bot. 2013, 45, 1–6. [Google Scholar]
- Iranparast, F.; Parsaei, S.; Houshmand, M.; Naghiha, A. The effect of oral consumption of guggul (Commiphora mukul) resin on performance and humoral immunity response of broilers. Int. J. Adv. Biol. Biomed. Res. 2014, 2, 802–810. [Google Scholar]
- Karásková, P.; Suchý, E.; Straková, E. Current use of phytogenic feed additives in animal nutrition: A review. Czech J. Anim. Sci. 2015, 60, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Kiczorowska, B.; Samolińska, W.; Al-Yasiry, A.R.M.; Kiczorowski, P.; Winiarska-Mieczan, A. The natural feed additives as immunostimulants in monogastric animal nutrition—A review. Ann. Anim. Sci. 2017, 17, 605–625. [Google Scholar] [CrossRef] [Green Version]
- Huynh, T.T.; Aarnink, A.J.; Verstegen, M.W.; Gerrits, W.J.; Heetkamp, M.J.; Kemps, B.; Canh, T.T. Effects of increasing temperatures on physiological changes in pigs at different relative humidities. J. Anim. Sci. 2005, 83, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2019. [Google Scholar] [CrossRef]
- Barbosa, M.L.; de Meneses, A.P.M.; de Aguiar, R.P.S.; Sous, J.M.C.; Cavalcante, A.A.C.M.; Maluf, W.S.W. Oxidative stress, antioxidant defense and depressive disorders: A systematic review of biochemical and molecular markers. Neurol. Psych. Brain Res. 2020, 36, 65–72. [Google Scholar] [CrossRef]
- Deters, E.L.; Hansen, S.L. Invited Review: Linking road transportation with oxidative stress in cattle and other species. Appl. Anim. Sci. 2020, 36, 183–200. [Google Scholar] [CrossRef]
- Galano, A.; Tan, D.X.; Reiter, R.J. Melatonin: A versatile protector against oxidative DNA damage. Molecules 2018, 23, 530. [Google Scholar] [CrossRef] [Green Version]
- Gregory, N.G. How climatic changes could affect meat quality. Food Res. Int. 2010, 43, 1866–1873. [Google Scholar] [CrossRef]
- Zaboli, G.; Huang, X.; Feng, X.; Ahn, D.U. How can heat stress affect chicken meat quality?—A review. Poult. Sci. 2019, 98, 1551–1556. [Google Scholar] [CrossRef]
- Oliveira, A.C.F.; González, J.; Asmar, S.E.; Batllori, N.P.; Vera, I.Y.; Valencia, U.R.; Borges, L.R.T.D.; Enric Esteve-Garcia, E.; Panella, N.; Costa, L.B.; et al. The effect of feeder system and diet on welfare, performance and meat quality, of growing-finishing Iberian x Duroc pigs under high environmental temperatures. Livest. Sci. 2020. [Google Scholar] [CrossRef]
- Rezar, V.; Salobir, J.; Levart, A.; Tomažin, U.; Škrlep, M.; Lukač, N.B.; Čandek-Potokar, M. Supplementing entire male pig diet with hydrolysable tannins: Effect on carcass traits, meat quality and oxidative stability. Meat Sci. 2017, 133, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Lan, R.; Kim, I. Effects of feeding diets containing essential oils and betaine to heat-stressed growing-finishing pigs. Arch. Anim. Nutr. 2018, 72, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Alessio, H.M.; Cutler, R.G. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic. Biol. Med. 1993, 14, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Wayner, D.; Burton, G.; Ingold, K.; Locke, S. Quantitative Measurment of the total, peroxil radical trapping antioxidant capability of human blood plasma by controlled peroxidation. FEBS Lett. 1985, 187, 33–37. [Google Scholar] [CrossRef]
- Alho, H.; Leinonen, J. Total antioxidant activity measured by chemiluminescence methods. Methods Enzymol. 1999, 299, 3–15. [Google Scholar] [PubMed]
- Popov, I.N.; Lewin, G. Photochemiluminescent detection of antiradical activity.2. Testing nonenzymic water-soluble antioxidants. Free Rad. Biol. Med. 1994, 17, 267–271. [Google Scholar] [CrossRef]
- Długosz, A.; Lembas-Bogaczyk, J.; Lamer-Zarawska, E. Antoxid increases ferric reducing antioxidant power (FRAP) even stronger than vitamin C. Acta Pol. Pharm. 2006, 63, 446–448. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colometry of total phenolics with phosphomolibdicphosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 161, 144–158. [Google Scholar]
- Apak, R.; Guclu, K.; Demirata, B.; Ozyurek, M.; Celik, S.E.; Bektasoglu, B.; Berker, K.I.; Ozyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [Green Version]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A Novel Method for Measuring Antioxidant Capacity and its Application to Monitoring the Antioxidant Status in Premature Neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Sharma, O.P.; Tej, K.B. DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Chen, X.; Ren, F.; Hesketh, J.; Shi, X.; Li, J.; Gan, F.; Huang, K. Interaction of porcine circovirus type 2 replication with intracellular redox status in vitro. Redox Rep. 2013, 18, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Grotto, D.; Santa Maria, L.; Valentini, J.; Paniz, C.; Schmitt, G.; Garcia, S.; Pomblum, V.J.; Rocha, J.B.T.; Marcelo, F. Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quim. Nova 2009, 32, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhou, Y.F.; Zou, Y.; Hu, X.M.; Zheng, L.F.; Wei, H.K.; Giannenas, I.; Jin, L.Z.; Peng, J.; Jiang, S.W. Effects of dietary oregano essential oil supplementation on the stress response, antioxidative capacity, and HSPs mRNA expression of transported pigs. Livest. Sci. 2015, 180, 143–149. [Google Scholar] [CrossRef]
- Lopez, J.; Jesse, G.W.; Becker, B.A.; Ellersieck, M.R. Effects of temperature on the performance of finishing swine: Effects of a hot diurnal temperature on average daily gain, feed intake and feed efficiency. J. Anim. Sci. 1991, 69, 1843–1849. [Google Scholar] [CrossRef]
- Liu, F.; Celi, P.; Chauhan, S.; Cottrell, J.; Abrasaldo, A.; Saranika, T.; Leury, B.; Dunshea, F. Effects of heat stress and antioxidants (selenium or vitamin E) supplementation on oxidative status in growing pigs. J. Anim. Sci. 2015, 93, 85–86. [Google Scholar]
- Du, J.; Zeng, Y.; Wang, H.; Qian, Y.; Li, H.; Chen, Q.; Chen, W.; Cui, J. CuZnSOD gene expression and its relationship with anti-oxidative capacity and pork quality. S. Afr. J. Anim. Sci. 2010, 40, 265–272. [Google Scholar] [CrossRef]
- Surai, P.F. Antioxidant Systems in Poultry Biology: Superoxide Dismutase. J. Anim. Res. Nutr. 2016, 1, 8. [Google Scholar] [CrossRef]
- Weydert, C.J.; Cullen, J.J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc. 2010, 5, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Boschi-Muller, S.; Gand, A.; Branlant, G. The methionine sulfoxide reductases: Catalysis and substrate specificities. Arch. Biochem. Biophys. 2008, 474, 266–273. [Google Scholar] [CrossRef]
- Glorieux, C.; Calderon, P.B. Catalase, a remarkable enzyme: Targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol. Chem. 2017, 398, 1095–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, P.; Hao, Y.; Feng, J.; Lin, H.; Feng, Y.; Wu, X.; Yang, X.; Gu, X. The Expression of Carnosine and Its Effect on the Antioxidant Capacity of Longissimus dorsi Muscle in Finishing Pigs Exposed to Constant Heat Stress. Asian-Australas. J. Anim. Sci. 2014, 27, 1763–1772. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Hao, Y.; Li, J.; Bao, W.; Li, G.; Gao, Y.; Gu, X. Chronic Heat Stress Induces Immune Response, Oxidative Stress Response, and Apoptosis of Finishing Pig Liver: A Proteomic Approach. Int. J. Mol. Sci. 2016, 17, 393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volodina, O.; Ganesan, S.; Pearce, S.; Gabler, N.; Baumgard, L.; Rhoads, R.; Selsby, J. Short-term heat stress alters redox balance in porcine skeletal muscle. Phys. Rep. 2017, 5, e13267. [Google Scholar] [CrossRef] [PubMed]
- Frankič, T.; Levart, A.; Salobir, J. The effect of vitamin e and plant extract mixture composed of carvacrol, cinnamaldehyde and capsaicin on oxidative stress induced by high PUFA load in young pigs. Animal 2010, 4, 572–578. [Google Scholar] [CrossRef] [Green Version]
- Xin, H.; Zhang, X.; Sun, D.; Zhang, C.; Hao, Y.; Gu, X. Chronic heat stress increases insulin-like growth factor-1(IGF-1) but does not affect IGF-binding proteins in growing pigs. J. Therm. Biol. 2018, 77, 122–130. [Google Scholar] [CrossRef]
- Liu, H.W.; Tong, J.; Zhou, D.Z. Utilization of Chinese Herbal Feed Additives in Animal Production. Agric. Sci. China 2011, 10, 1262–1272. [Google Scholar] [CrossRef]
- Liu, Y.; Song, M.; Che, T.M.; Bravo, D.; Maddox, C.W.; Pettigrew, J.E. Effects of capsicum oleoresin, garlic botanical, and turmeric oleoresin on gene expression profile of ileal mucosa in weaned pigs. J. Anim. Sci. 2014, 92, 3426–3440. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Yue, Z.; Liu, Z.; Islam, A.; Rehana, B.; Tang, S.; Bao, E.; Hartung, J. Hsp70 and HSF-1 expression is altered in the tissues of pigs transported for various periods of times. J. Vet. Sci. 2012, 3, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 2008, 86, 140–148. [Google Scholar] [CrossRef]
- Upadhaya, S.; Kim, I. Efficacy of Phytogenic Feed Additive on Performance, Production and Health Status of Monogastric Animals—A Review. Ann. Anim. Sci. 2017, 17, 929–948. [Google Scholar] [CrossRef] [Green Version]
- Mendel, M.; Chłopecka, M.; Dziekan, N.; Karlik, W. Phytogenic feed additives as potential gut contractility modifiers—A review. Anim. Feed Sci. Technol. 2017, 230, 30–46. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foodsea review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Bartos, P.; Dolan, A.; Smutny, L.; Sístkova, M.; Celja, I.; Soch, M.; Havelka, Z. Effects of phytogenic feed additives on growth performance and on ammonia and greenhouse gases emissions in growing-finishing pigs. Anim. Feed Sci. Technol. 2016, 212, 143–148. [Google Scholar] [CrossRef]
- Czech, A.; Kowalczuk-Vasilev, E.; Grela, E. The effect of a herbal extract used in pig fattening on the animals’ performance and blood components. Ann. Univ. Mariae Curie-Skodowska 2009, 27, 25–33. [Google Scholar] [CrossRef]
- Grela, E.R.; Pietrzak, K.; Sobolewska, S.; Witkowski, P. Effect of Inulin and Garlic Supplementation in Pig Diets. Ann. Anim. Sci. 2013, 13, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Körmöndi, M.; Medina, B.; Tóth, T. Effect of a functional feed additive on the stress nervous modulation response: Application on both feeding behaviour and performance of lactating sows and their litters. J. Anim. Sci. 2015, 98, 182. [Google Scholar]
- Böhmer, B.; Salisch, H.; Paulicks, B.; Roth, F.X. Echinacea purpurea as a potential immunostimulatory feed additive in laying hens and fattening pigs by intermittent application. Livest. Sci. 2009, 122, 81–85. [Google Scholar] [CrossRef]
- Pietrzak, K.; Grela, E.R. Influence of alfalfa protein concentrate dietary supplementation on blood parameters of growing-finishing pigs. Bull. Vet. Inst. Pulawy 2015, 59, 393–399. [Google Scholar] [CrossRef] [Green Version]
- Van Krimpen, M.M.; Binnendijk, G.P.; Borgsteede, F.H.M.; Gaasenbeek, C.P.H. Anthelmintic effects of phytogenic feed additives in Ascaris suum inoculated pigs. Vet. Parasitol. 2010, 168, 269–277. [Google Scholar] [CrossRef]
- Varga-Visi, É.; Tóth, T. Fitogén takarmányadalékok alkalmazásának lehetőségei a környezeti kihívások okozta kátok enyhítésére monogasztrikus állatokban, különös tekintettel a hízósertések takarmányozásában (Irodalmi áttekintés)/Application of phytogenic feed additives to prevent the effect of environmental challenges in monogastric animals, with special respect to swine production. Rev. Állatenyésztés Takarm. 2018, 67, 158–173. [Google Scholar]
- Franz, C.; Baser, K.; Windisch, W. Essential oils and aromatic plants in animal feeding—A European perspective. A review. Flavour Fragr. J. 2010, 25, 327–340. [Google Scholar] [CrossRef]
- Mohsen, M.G.; Kim, I.H. Phytobiotics in poultry and swine nutrition—A review. It. J. Anim. Sci. 2018, 17, 92–99. [Google Scholar]
- Avato, P.; Bucci, R.; Tava, A.; Rosato, A.; Bialy, Z.; Jurzysta, M. Antimicrobial activity of saponins from Medicago sp.: Structure-activity relationship. Phytother. Res. 2006, 20, 454–457. [Google Scholar] [CrossRef]
- van der Klis, J.D.; Vinyeta, E. The potential of phytogenic feed additives in pigs and poultry. In Proceedings of the Conference: Congress of the European Society of Veterinary & Comparative Nutrition, Utrecht, The Netherlands, 10–13 September 2014; Volume 18. [Google Scholar] [CrossRef]
- Dong, H.; Zhong, Y.; Liu, F.; Yang, K.; Yu, J.; Xu, J. Regulating effects and mechanisms of Chinese medicine decoction on growth and gut hormone expression in heat stressed pigs. Livest. Sci. 2012, 143, 77–84. [Google Scholar] [CrossRef]
- Draskovic, V.; Bosnjak-Neumuller, J.; Vasiljevic, M.; Petrujkic, B.; Aleksic, N.; Kukolj, V.; Stanimirovic, Z. Influence of phytogenic feed additive on Lawsonia intracellularis infection in pigs. Prev. Vet. Med. 2018, 151, 46–51. [Google Scholar] [CrossRef]
- Song, X.; Xu, J.; Wanga, T.; Liu, F. Traditional Chinese medicine decoction enhances growth performance and intestinal glucose absorption in heat stressed pigs by up-regulating the expressions of SGLT1 and GLUT2 mRNA. Livest. Sci. 2010, 128, 75–81. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, Z.; Zhou, Y.; Wei, H.; Zhang, X.; Xi, M.; Deng, Z.; Zou, Y.; Jiang, S.; Peng, J. Effect of oregano essential oil supplementation to a reduced-protein, amino acid-supplemented diet on meat quality, fatty acid composition, and oxidative stability of Longissimus thoracis muscle in growing-finishing pigs. Meat Sci. 2017, 133, 103–109. [Google Scholar] [CrossRef]
- Cottrell, J.J.; Liu, F.; Hung, A.T.; DiGiacomo, K.; Chauhan, S.S.; Leury, B.J.; Furness, J.B.; Celi, P.; Dunshea, F.R. Nutritional strategies to alleviate heat stress in pigs. Anim. Prod. Sci. 2015, 55, 1391–1402. [Google Scholar] [CrossRef]
- Chen, J.; Wang, F.; Zhou, X.; Cao, Y.; Li, Y.; Li, C. Bama miniature pigs’ liver possess great heat tolerance through upregulation of Nrf2-mediated antioxidative enzymes. J. Therm. Biol. 2017, 67, 15–21. [Google Scholar] [CrossRef]
- Wu, X.; Ruan, Z.; Gao, Y.; Yin, Y.; Zhou, X.; Wang, L.; Geng, M.; Hou, Y.; Wu, G. Dietary supplementation with L-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn-and soybean meal-based diet. Amino Acids 2010, 39, 831–839. [Google Scholar] [CrossRef] [PubMed]
Frequency of Sampling | Weight of Animals (kg) | Conditions of Slaughter | Investigated Parameter | Sample Type | Age of Animals/Duration of Experiment (Days) | Ref. |
---|---|---|---|---|---|---|
at slaughter | 50 ± 2 | 3% intravenous sodium pentobarbital | Creatine-kinase, aspartate-aminotransferase | blood serum | 120/0 | [37] |
at slaughter | 63.8 ± 2.9 | bleeding after electric stunning | MDH, antioxidant capacity, antioxidative enzymes, cortisol, noradrenaline, lipid peroxidation, antioxidant capacity | liver blood serum | 120/28 | [43] |
3, 7, 14, 21 days | 40.8 ± 2.7 | electric stunning | insulin, IGF-1, IGFBP-1, IGFBP-3, glucose concentration | blood serum | 80/22 | [45] |
at slaughter | 79 ± 1.5 | bleeding after electric stunning | MDA, CAT, SOD | longissimus dorsi muscle | data not available/21 | [41] |
1st, 7th days of experiment | 28 ± 3 | data not available | biological antioxidant potential, oxy-absorbent capacity, thiols, erythrocyte GPx, oxidative damage marker | blood, erytrocyte, | data not available/7 | [36] |
at slaughter | 79 ± 1.5 | head only electric stun tong apparatus | GPx, GSH/GSSG, GST | liver | data not available/21 | [42] |
1, 3, 6, 10 days | 7.15 ± 0.58 | anesthesia | glucose level | serum | 60/10 | [46] |
0, 42, 84 and 126 days | 24.7 ± 0.27 | - | Cortisol, norepinephrine, epinephrine Dietary crude protein, phosphorus, nitrogen, chromium | blood feces | data not available/1–18 weeks | [15] |
at slaughter | 16.31 ± 1.26 29.55 ± 1.27 | electrical stunning | SOD, CAT, GPx, total antioxidant capacity TAOC | Longissimus thoracis muscle | 50/95 | [42] |
at slaughter | 63.8 ± 2.9 | pentobarbital injection | MDA, protein carbonyl content, CAT, SOD | red portion of the semitendinosus muscle | 2, 4, 65 h | [43] |
at slaughter | 114 ± 2 | data not available | SOD, MDA | longissimus dorsi muscle, backfat, liver | 6, 9, 12 months | [30] |
at slaughter | 7.10 ± 0.52 | head-only electric stun tong | cortisol | serum | 60/1,6 | [47] |
at slaughter | 77.80 ± 4.25 | electrical stunning | SOD, GSH-Px, TAOC | serum, liver | data not available/28 | [33] |
Frequency of Sampling | Weight of Animals (kg) | Conditions of Slaughter | Investigated Gene Expression | Sample Type | Age of Animals/Duration of Experiment (Days) | Ref. |
---|---|---|---|---|---|---|
at slaughter | 32.6 ± 3.2 | bleeding after electric stunning | HSP70, GHRL LEP | duodenum, liver, muscle intestinal mucosa, adipose tissue | 70/21 | [1] |
at slaughter | 50 ± 2 | bleeding after electric stunning | HSP27, HSP70, HSP90 | liver | 120/28 | [34] |
at slaughter | 50 ± 2 | 3% sodium pentobarbital | HSP70 | heart liver, stomach | 120/0 | [44] |
at slaughter | 10.79 ± 0.03 | data not available | Nrf2= nuclear factor erythroid 2-related factor 2; NQO1= NAD(P)H: quinone-oxidoreductase 1; SOD1= superoxide dismutase 1; HO-1= heme oxygenase-1; GCLC = glutamate cysteine ligase catalytic subunit | liver | 180/8 | [70] |
on the 22nd day | 40.8 ± 2.7 | bleeding after electric stunning | IGF-1 receptor, IGFBP-1, IGFBP-3 genes | liver | 80/22 | [68] |
at slaughter | 79 ± 1.5 | bleeding after electric stunning | carnosine synthetase (CARNS1) | longissimus dorsi muscle | data not available /21 | [41] |
1st, 7th days of experiment | 28 ± 3 | data not available | HSP70, GIF-1α, GPx-1, GPx4 | leucocyte | data not available/7 | [36] |
at slaughter | 63.8 ± 2.9 | pentobarbital injection | SOD1, SOD2, CAT | red portion of the semitendinosus muscle | data not available 2, 4, 6 h | [43] |
at slaughter | 24.64 ± 3 | pentobarbital injection | HSP27, HSP70, HSP90, pyruvate dehydrogenase kinase (PDK4) | small intestine | data not available /12 h | [5] |
at slaughter | 114 ± 2 | data not available | CuZnSOD | longissimus dorsi muscle, backfat, liver | data not available /6, 9, 12 months | [30] |
at slaughter | 7.10 ± 0.52 | head-only electric stun tong | HSP70, NPY (neuropeptide Y), MLN (motilin) GCG (glucagon) NPY, MLN, SCT (secretin) SST (somatostatin) | jejunum | 60/1, 6 | [47] |
at slaughter | 7.15 ± 0.58 | anesthesia | SGLT1, GLUT2 | duodenum and jejunum | 60/10 | [65] |
at slaughter | 77.80 ± 4.25 | electrical stunning | HSP27, HSP70, HSP90 | liver | data not available/28 | [33] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jócsák, I.; Tossenberger, J.; Végvári, G.; Sudár, G.; Varga-Visi, É.; Tóth, T. How Is the Effect of Phytogenic Feed Supplementation Tested in Heat Stressed Pigs? Methodological and Sampling Considerations. Agriculture 2020, 10, 257. https://doi.org/10.3390/agriculture10070257
Jócsák I, Tossenberger J, Végvári G, Sudár G, Varga-Visi É, Tóth T. How Is the Effect of Phytogenic Feed Supplementation Tested in Heat Stressed Pigs? Methodological and Sampling Considerations. Agriculture. 2020; 10(7):257. https://doi.org/10.3390/agriculture10070257
Chicago/Turabian StyleJócsák, Ildikó, János Tossenberger, György Végvári, Gergő Sudár, Éva Varga-Visi, and Tamás Tóth. 2020. "How Is the Effect of Phytogenic Feed Supplementation Tested in Heat Stressed Pigs? Methodological and Sampling Considerations" Agriculture 10, no. 7: 257. https://doi.org/10.3390/agriculture10070257
APA StyleJócsák, I., Tossenberger, J., Végvári, G., Sudár, G., Varga-Visi, É., & Tóth, T. (2020). How Is the Effect of Phytogenic Feed Supplementation Tested in Heat Stressed Pigs? Methodological and Sampling Considerations. Agriculture, 10(7), 257. https://doi.org/10.3390/agriculture10070257