Potential Adoption of Integrated Pest Management Strategy for Suppression of Mango Fruit Flies in East Africa: An Ex Ante and Ex Post Analysis in Ethiopia and Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Econometric Approach
2.2. Survey Data
3. Results and Discussion
3.1. Descriptive Statistics
3.1.1. Potential Fruit Fly IPM Adoption Patterns
3.1.2. Selected Socio-Economic Factors that Influence the Adoption
3.2. Empirical Results and Discussion
3.2.1. Determinants of the Potential Adoption of Fruit Fly IPM
3.2.2. Marginal Effects
3.2.3. Forecasting Adoption
4. Conclusions and Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Kenya N = 508 | Ethiopia = 348 | |||
---|---|---|---|---|
Mean | SD | Mean | SD | |
Household characteristics | ||||
Age of household head | 57.817 | 11.993 | 56.161 | 14.032 |
Gender of head (0 = Female, 1 = Male) | 0.907 | 0.291 | 0.733 | 0.443 |
Household size (adult equivalent) | 2.551 | 0.828 | 3.049 | 0.961 |
Highest education in households | 11.886 | 2.985 | 9.853 | 3.302 |
Credit constrained (1 = Yes 0 = No) | 0.088 | 0.284 | 0.178 | 0.383 |
Household resources | ||||
Number of mango producing trees | ||||
Medium | 0.540 | 0.499 | 0.480 | 0.500 |
High | 0.247 | 0.432 | 0.250 | 0.434 |
Livestock owned in TLU | 2.516 | 2.246 | 2.322 | 2.311 |
Total farm size (hectare) | ||||
Medium | 0.540 | 0.499 | 0.500 | 0.501 |
High | 0.251 | 0.434 | 0.250 | 0.434 |
Per capita expenditure (USD/year) | ||||
Medium | 0.502 | 0.500 | 0.497 | 0.501 |
High | 0.251 | 0.434 | 0.253 | 0.435 |
Have access to off-farm income | 0.455 | 0.498 | 0.379 | 0.486 |
Access to market and institutional information | ||||
Distance to output market (walking minutes) | 60.694 | 59.956 | 32.552 | 34.809 |
Distance to extension office (walking minutes) | 78.455 | 57.323 | 12.307 | 10.212 |
Attended mango training | 0.742 | 0.438 | 0.310 | 0.463 |
Perceptions | ||||
Know fruit fly infestation symptoms | 0.830 | 0.376 | ||
Aware about negative effects of pesticides | 0.601 | 0.490 | ||
Perceived pesticide effectiveness | 0.704 | 0.457 | 0.454 | 0.499 |
Aware about fruit fly IPM | 0.903 | 0.296 | 0.796 | 0.404 |
Fruit fly severity | 0.593 | 0.492 | 0.816 | 0.388 |
Social capital and networks | ||||
Mango group membership | 0.189 | 0.392 | ||
Confidence in government extension | 0.603 | 0.490 | ||
Number of people that can be relied on in critical needs | 4.563 | 5.753 | ||
Have relatives in government positions | 0.434 | 0.496 | ||
Location dummies | ||||
Miraba Abaya | 0.121 | 0.326 | ||
Meru | 0.251 | 0.434 | ||
Machakos | 0.254 | 0.436 | ||
Makuenni | 0.221 | 0.416 |
References
- Weinberger, K.; Lumpkin, T.A. Diversification into Horticulture and Poverty Reduction: A Research Agenda. World Dev. 2007, 35, 1464–1480. [Google Scholar] [CrossRef]
- Billah, M.; Afreh-Nuamah, K.; Obeng-Ofori, D.; Nyarko, G. Review of the pest status, economic impact, and management of fruit-infesting flies (Diptera: Tephritidae) in Africa. Afr. J. Agric. Res. 2015, 10, 1488–1498. [Google Scholar]
- World Bank. Agriuclture for Development; World Bank: Washington, DC, USA, 2008. [Google Scholar]
- FAO Food and Agriculture Organization of the United Nations (2010): Production and Trade 2010. Available online: http://www.fao.org/ (accessed on 11 July 2019).
- Vayssières, J.F.; Goergen, G.; Lokossou, O.; Dossa, P.; Akponon, C. A new Bactrocera species in Benin among mango fruit fly (Diptera: Tephritidae) species. Fruits 2005, 60, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Ekesi, S. Field infestation and suppression of the invasive fruit fly Bactrocera invadens (Drew, Tsuruta and White) on citrus in Kenya. Acta Hortic. 2015, 1065, 1019–1026. [Google Scholar] [CrossRef]
- Ekesi, S.; Mohamed, S.; Tanga, C.M. Comparison of Food-Based Attractants for Bactrocera invadens (Diptera: Tephritidae) and Evaluation of Mazoferm–Spinosad Bait Spray for Field Suppression in Mango. J. Econ. Entomol. 2014, 107, 299–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekesi, S.; Nderitu, P.; Rwomushana, I. Field infestation, life history and demographic parameters of the fruit fly Bactrocera invadens (Diptera: Tephritidae) in Africa. Bull. Entomol. Res. 2006, 96, 379–386. [Google Scholar]
- Lux, S.; Ekesi, S.; Dimbi, S.; Mohamed, S.; Billah, M. Mango-Infesting Fruit Flies in Africa: Perspectives and Limitations of Biological. In Biological control in IPM systems in Africa; CAB International: Wallingford, UK, 2003; pp. 277–293. [Google Scholar]
- Gautam, S.; Schreinemachers, P.; Uddin, M.N.; Srinivasan, R. Impact of training vegetable farmers in Bangladesh in integrated pest management (IPM). Crop Prot. 2017, 102, 161–169. [Google Scholar] [CrossRef]
- Vontas, J.; Hernández-Crespo, P.; Margaritopoulos, J.T.; Ortego, F.; Feng, H.T.; Mathiopoulos, K.D.; Hsu, J.C. Insecticide resistance in Tephritid flies. Pestic. Biochem. Physiol. 2011, 100, 199–205. [Google Scholar] [CrossRef]
- Macharia, I.N.; Mithöfer, M.; Waibel, H. Potential environmental impacts of pesticides use in the vegetable sub-sector in Kenya. Afr. J. Hortic. Sci. 2009, 2, 138–151. [Google Scholar]
- Norton, G.W.; Rajotte, E.G.; Gapud, V. Participatory research in integrated pest management: Lessons from the IPM CRSP. Agric. Hum. Values 1999, 16, 431–439. [Google Scholar] [CrossRef]
- Baral, K.; Roy, B.C.; Rahim, K.M.B.; Chatterjee, H. Socio-Economic Parameters of Pesticide Use and Assessment of Impact of an IPM Strategy for the Control of Eggplant Fruit and Shoot Borer in West Bengal, India; AVRDC: Tashkent, Uzbekistan, 2006; ISBN 92-9058-147-6. [Google Scholar]
- Singh, A.; Vasishtb, A.; Kumara, R.; Dasc, D. Adoption of integrated pest management practices in paddy and cotton: A Case study in Haryana and Punjab. Agric. Econ. Res. Rev. 2008, 21, 221–226. [Google Scholar]
- Dasgupta, S.; Meisner, C.; Wheeler, D. Is environmentally friendly agriculture less profitable for farmers? Evidence on integrated pest management in Bangladesh. Appl. Econ. Perspect. Policy 2007, 29, 103–118. [Google Scholar] [CrossRef]
- Garming, H.; Waibel, H. Pesticides and farmer health in Nicaragua: A willingness-to-pay approach to evaluation. Eur. J. Health Econ. 2009, 10, 125–133. [Google Scholar] [CrossRef]
- Verghese, A.; Sreedevi, K.; Nagaraju, D. Pre and post-harvest IPM for the mango fruit fly, Bactrocera dorsalis (Hendel). In Proceedings of the 7th International Symposium on Fruit Flies of Economic Importance, Salvador, Brazil, 10–15 September 2006; pp. 179–182. [Google Scholar]
- Maumbe, B.; Swinton, S. Why do smallholder cotton growers in Zimbabwe adopt IPM. The Role of Pesticide-Related Health Risks and Technology Awareness. In Proceedings of the 2000 Annual Meeting of the American Agricultural Economics Association, Tampa, FL, USA, 30 July–2 August 2000. [Google Scholar]
- Isoto, R.E.; Kraybill, D.S.; Erbaugh, M.J. Impact of integrated pest management technologies on farm revenues of rural households: The case of smallholder Arabica coffee farmers. Afr. J. Agric. Resour. Econ. 2008, 9, 119–131. [Google Scholar]
- Coombes, C.; Hill, M.; Moore, S.; Dames, J.; Fullard, T. Persistence and virulence of promising entomopathogenic fungal isolates for use in citrus orchards in South Africa. Biocontrol Sci. Technol. 2013, 23, 1053–1066. [Google Scholar] [CrossRef]
- Ekesi, S.; Billah, M.K. A Field Guide to the Management of Economically Important Tephritid Fruit Flies in Africa, 2nd ed.; ICIPE Science Press: Nairobi, Kenya, 2007; ISBN 92 9064 209. [Google Scholar]
- Ekesi, S.; De Meyer, M.; Malacrida, A. Taxonomy, Bioecology, and Management of Native and Exotic Fruit Fly Species in Africa. Annu. Rev. Entomol. 2015, 61, 219–238. [Google Scholar] [CrossRef]
- Muriithi, B.W.; Affognon, H.D.; Diiro, G.M.; Kingori, S.W.; Tanga, C.M.; Nderitu, P.W.; Mohamed, S.A.; Ekesi, S. Impact assessment of Integrated Pest Management (IPM) strategy for suppression of mango-infesting fruit flies in Kenya. Crop Prot. 2016, 81, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Kibira, M.; Affognon, H.; Njehia, B.; Muriithi, B.; Ekesi, S. Economic Evaluation of Integrated Management of Fruit Fly in Mango Production in Embu County, Kenya. Afr. J. Agric. Resour. Manag. 2015, 10, 343–353. [Google Scholar]
- Ekesi, S.; Chabi-Olaye, A.; Subramanian, S.; Borgemeister, C.; Wesonga, J.; Kahane, R. Horticultural Pest Management and the African Economy: Successes, Challenges and Opportunities in a Changing Global Environment. Acta. Hortic. 2011, 911, 165–184. [Google Scholar] [CrossRef]
- Mohamed, S.; Ekesi, S.; Hanna, R. Evaluation of the impact of Diachasmimorpha longicaudata on Bactrocera invadens and five African fruit fly species. J. Appl. Entomol. 2008, 132, 789–797. [Google Scholar] [CrossRef]
- Ekesi, S.; Mohamed, S.A.; De Meyer, M. Fruit Fly Research and Development in Africa-towards a Sustainable Management Strategy to Improve Horticulture; Springer International Publishing: Cham, Switzerland, 2016; ISBN 3-319-43226-5. [Google Scholar]
- Lux, S.A.; Copeland, R.S.; White, I.M.; Manrakhan, A.; Billah, M.K. A New Invasive Fruit Fly Species from the Bactrocera dorsalis (Hendel) Group Detected in East Africa. Insect Sci. Appl. 2003, 23, 355–361. [Google Scholar] [CrossRef]
- Muriithi, B.W.; Diiro, G.M.; Affognon, H.; Ekesi, S. Economic Impact of Integrated Pest Management Strategies for the Suppression of Mango-Infesting Fruit Fly Species in Africa. In Fruit Fly Research and Development in Africa—Towards a Sustainable Management Strategy to Improve Horticulture; Ekesi, S., Mohamed, S.A., De Meyer, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 755–770. ISBN 978-3-319-43226-7. [Google Scholar]
- Korir, J.K.; Affognon, H.D.; Ritho, C.N.; Kingori, W.S.; Irungu, P.; Mohamed, S.A.; Ekesi, S. Grower adoption of an integrated pest management package for management of mango-infesting fruit flies (Diptera: Tephritidae) in Embu, Kenya. Int. J. Trop. Insect Sci. 2015, 35, 80–89. [Google Scholar] [CrossRef]
- Midingoyi, S.G.; Kassie, M.; Muriithi, B.; Diiro, G.; Ekesi, S. Do Farmers and the Environment Benefit from Adopting Integrated Pest Management Practices? Evidence from Kenya. J. Agric. Econ. 2019, 70, 452–470. [Google Scholar] [CrossRef]
- Griliches, Z. Hybrid corn: An exploration in the economics of technological change. Econom. J. Econom. Soc. 1957, 25, 501–522. [Google Scholar] [CrossRef] [Green Version]
- Zepeda, L. Predicting bovine somatotropin use by California dairy farmers. West. J. Agric. Econ. 1990, 15, 55–62. [Google Scholar]
- Feder, G.; Just, R.E.; Zilberman, D. Adoption of Agricultural Innovations in Developing Countries: A Survey. Econ. Dev. Cult. Chang. 1985, 33, 255–298. [Google Scholar] [CrossRef] [Green Version]
- Kinnucan, H.; Hatch, U.; Molnar, J.J.; Venkateswaran, M. Scale neutrality of bovine somatotropin: Ex ante evidence from the Southeast. J. Agric. Appl. Econ. 1990, 22, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lesser, W.; Bernard, J.; Billah, K. Methodologies for ex ante projections of adoption rates for agbiotech products: Lessons learned from rBST. Agribusiness 1999, 15, 149–162. [Google Scholar] [CrossRef]
- Lesser, W.; Magrath, W.; Kalter, R. Projecting Adoption Rates: Application of an” Ex Ante” Procedure to Biotechnology Products. North Cent. J. Agric. Econ. 1986, 159–174. [Google Scholar] [CrossRef]
- Barham, B.L. Adoption of a politicized technology: bST and Wisconsin dairy farmers. Am. J. Agric. Econ. 1996, 78, 1056–1063. [Google Scholar] [CrossRef]
- Kolady, D.; Lesser, W. Adoption of genetically modified eggplant in India: An ex ante analysis. In Proceedings of the American Agricultural Economic Association Annual Meeting, Rhode Island, UK, 24–27 July 2005. [Google Scholar]
- Atanu, S.; Love, H.A.; Schwart, R. Adoption of emerging technologies under output uncertainty. Am. J. Agric. Econ. 1994, 76, 836–846. [Google Scholar]
- Nyangena, W. The role of social capital in sustainable development: An analysis of soil conservation in rural Kenya. In Agricultural Investment and Productivity: Building Sustainability in East Africa; RFF Press: Washington, DC, USA, 2011; pp. 31–50. [Google Scholar]
- McFadden, D. Econometric analysis of qualitative response models. Handb. Econom. 1984, 2, 1395–1457. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT press: Cambridge, MA, USA, 2010; ISBN 0-262-29679-9. [Google Scholar]
- Greene, W.H. Econometric Analysis, 6th ed.; Pearson: New York, NY, USA, 2008; ISBN 978-0-13-513245-6. [Google Scholar]
- Kassie, M.; Jaleta, M.; Shiferaw, B.; Mmbando, F.; Mekuria, M. Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technol. Forecast. Soc. Chang. 2013, 80, 525–540. [Google Scholar] [CrossRef]
- Pender, J.; Alemu, D. Determinants of Smallholder Commercialization of Food Crops: Theory and Evidence from Ethiopia; EPTD & MTID; IFPRI: Washington, DC, USA, 2007. [Google Scholar]
- Quisumbing, A.R.; Pandolfelli, L. Promising approaches to address the needs of poor female farmers: Resources, constraints, and interventions. World Dev. 2010, 38, 581–592. [Google Scholar] [CrossRef]
- Heltberg, R.; Tarp, F. Agricultural supply response and poverty in Mozambique. Food Policy 2002, 27, 103–124. [Google Scholar] [CrossRef] [Green Version]
- Von Braun, J.; Kennedy, E. Agricultural Commercialization, Economic Development, and Nutrition; IFPRI: Washington, DC, USA, 1994. [Google Scholar]
- Feder, G.; Lau, L.J.; Lin, J.Y.; Luo, X. The relationship between credit and productivity in Chinese agriculture: A microeconomic model of disequilibrium. Am. J. Agric. Econ. 1990, 72, 1151–1157. [Google Scholar] [CrossRef]
- Teklewold, H.; Kassie, M.; Shiferaw, B. Adoption of multiple sustainable agricultural practices in rural Ethiopia. J. Agric. Econ. 2013, 64, 597–623. [Google Scholar] [CrossRef]
- Kassie, M.; Teklewold, H.; Jaleta, M.; Marenya, P.; Erenstein, O. Understanding the adoption of a portfolio of sustainable intensification practices in eastern and southern Africa. Land Use Policy 2015, 42, 400–411. [Google Scholar] [CrossRef]
- Li, J.; Gómez, M.I.; Rickard, B.J.; Skinner, M. Factors Influencing Adoption of Integrated Pest Management in Northeast Greenhouse and Nursery Production. Agric. Resour. Econ. Rev. 2013, 42, 310. [Google Scholar] [CrossRef]
- Wollni, M.; Lee, D.R.; Thies, J.E. Conservation agriculture, organic marketing, and collective action in the Honduran hillsides. Agric. Econ. 2010, 41, 373–384. [Google Scholar] [CrossRef]
- Jayne, T.S.; Yamano, T.; Nyoro, J. Interlinked credit and farm intensification: Evidence from Kenya. Agric. Econ. 2004, 31, 209–218. [Google Scholar] [CrossRef]
- Barrett, C.B. Market Institutions in Sub-Saharan Africa: Theory and Evidence. Am. J. Agric. Econ. 2005, 87, 1089–1090. [Google Scholar] [CrossRef]
- Lee, D.R. Agricultural sustainability and technology adoption: Issues and policies for developing countries. Am. J. Agric. Econ. 2005, 87, 1325–1334. [Google Scholar] [CrossRef]
- Neill, S.P.; Lee, D.R. Explaining the adoption and disadoption of sustainable agriculture: The case of cover crops in northern Honduras. Econ. Dev. Cult. Chang. 2001, 49, 793–820. [Google Scholar] [CrossRef] [Green Version]
- Kassie, M.; Shiferaw, B.; Muricho, G. Adoption, and Impact of Improved Groundnut Varieties on Rural Poverty: Evidence from RURAL UGANDA; Environmental Development Discussion Paper; Resources for the Future RFF: Washington, DC, USA, 2010. [Google Scholar]
- Shiferaw, B.; Kassie, M.; Jaleta, M.; Yirga, C. Adoption of improved wheat varieties and impacts on household food security in Ethiopia. Food Policy 2014, 44, 272–284. [Google Scholar] [CrossRef]
- Muriithi, B.W.; Menale, K.; Diiro, G.; Muricho, G. Does gender matter in the adoption of push-pull pest management and other sustainable agricultural practices? Evidence from Western Kenya. Food Secur. 2018, 10, 253–272. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Chen, H.; Nguyen, T.T.L.; Buntong, B.; Bouapao, L.; Gautam, S.; Le, N.T.; Pinn, T.; Vilaysone, P.; Srinivasan, R. Too much to handle? Pesticide dependence of smallholder vegetable farmers in Southeast Asia. Sci. Total Environ. 2017, 593, 470–477. [Google Scholar] [CrossRef]
- Flor, R.J.; Chhay, K.; Sorn, V.; Maat, H.; Hadi, B.A.R. The technological trajectory of Integrated Pest Management for rice in Cambodia. Sustainability 2018, 10, 1732. [Google Scholar] [CrossRef] [Green Version]
- Allahyari, M.S.; Damalas, C.A.; Ebadattalab, M. Farmers’ technical knowledge about integrated pest management (IPM) in olive production. Agriculture 2017, 7, 101. [Google Scholar] [CrossRef] [Green Version]
- Meijer, S.S.; Catacutan, D.; Ajayi, O.C.; Sileshi, G.W.; Nieuwenhuis, M. The role of knowledge, attitudes, and perceptions in the uptake of agricultural and agroforestry innovations among smallholder farmers in sub-Saharan Africa. Int. J. Agric. Sustain. 2015, 13, 40–54. [Google Scholar] [CrossRef]
- Di Falco, S.; Bulte, E. The Impact of Kinship Networks on the Adoption of Risk-Mitigating Strategies in Ethiopia. World Dev. 2013, 43, 100–110. [Google Scholar] [CrossRef]
- Van den Berg, H.; Jiggins, J. Investing in Farmers—The Impacts of Farmer Field Schools in Relation to Integrated Pest Management. World Dev. 2007, 35, 663–686. [Google Scholar] [CrossRef]
Kenya | Ethiopia | |||
---|---|---|---|---|
n | % | n | % | |
Non-adopters | 86 | 17 | 104 | 30 |
Early adopters | 261 | 51 | 127 | 36 |
Late adopters | 161 | 32 | 117 | 34 |
Total | 508 | 348 |
Kenya | Ethiopia | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Non-Adopters (n = 86) | Early Adopters (n = 261) | Late Adopters (n = 161) | F-Test | Non-Adopters (n = 104) | Early Adopters (n = 127) | Late Adopters (n = 117) | F-Test | |||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||
Household characteristics | ||||||||||||||
Age of household head (years) | 61.802 | 12.504 | 56.958 | 11.758 | 57.050 | 11.893 | 5.81 *** | 56.567 | 14.636 | 57.591 | 13.826 | 54.248 | 13.604 | 1.800 |
Gender of head (0 = Female, 1 = Male) | 0.860 | 0.349 | 0.920 | 0.273 | 0.894 | 0.308 | 1.34 | 0.596 | 0.493 | 0.780 | 0.416 | 0.803 | 0.399 | 7.400 *** |
Household size (adult equivalent) | 2.521 | 0.956 | 2.532 | 0.796 | 2.683 | 0.853 | 1.83 | 2.818 | 0.908 | 3.179 | 0.970 | 3.115 | 0.967 | 4.520 ** |
Highest education in the households (years) | 11.535 | 3.220 | 12.146 | 2.840 | 11.807 | 3.026 | 1.59 | 9.385 | 3.325 | 10.110 | 3.384 | 9.991 | 3.175 | 1.540 |
Household resources | ||||||||||||||
Number of mango producing trees | ||||||||||||||
Medium (dummy) | 0.593 | 0.494 | 0.525 | 0.500 | 0.547 | 0.499 | 0.61 | 0.510 | 0.502 | 0.433 | 0.497 | 0.504 | 0.502 | 0.880 |
High (dummy) | 0.209 | 0.409 | 0.264 | 0.442 | 0.255 | 0.437 | 0.52 | 0.183 | 0.388 | 0.339 | 0.475 | 0.214 | 0.412 | 4.400 ** |
Livestock owned in Tropical Livestock Units (TLU) | 2.160 | 1.771 | 2.747 | 2.374 | 2.574 | 2.452 | 2.09 | 1.990 | 1.960 | 2.625 | 2.611 | 2.287 | 2.227 | 2.190 |
Total farm size (hectare) | ||||||||||||||
Medium (dummy) | 0.198 | 0.401 | 0.284 | 0.452 | 0.248 | 0.433 | 1.970 | 0.471 | 0.502 | 0.543 | 0.500 | 0.479 | 0.502 | 0.750 |
High dummy) | 0.640 | 0.483 | 0.517 | 0.501 | 0.540 | 0.500 | 1.300 | 0.144 | 0.353 | 0.299 | 0.460 | 0.291 | 0.456 | 4.510 ** |
Per capita expenditure (USD/year) | ||||||||||||||
Medium (dummy) | 0.291 | 0.457 | 0.310 | 0.464 | 0.416 | 0.494 | 3.07 ** | 0.308 | 0.464 | 0.598 | 0.492 | 0.556 | 0.499 | 11.490 *** |
High (dummy) | 0.314 | 0.467 | 0.368 | 0.483 | 0.261 | 0.440 | 2.64 * | 0.404 | 0.493 | 0.189 | 0.393 | 0.188 | 0.392 | 9.350 *** |
Credit constrained (1 = Yes, 0 = No) | 0.093 | 0.292 | 0.038 | 0.192 | 0.168 | 0.375 | 10.71 *** | 0.125 | 0.332 | 0.189 | 0.393 | 0.214 | 0.412 | 1.560 |
Have access to off-farm income (1 = Yes, 0 = No) | 0.419 | 0.496 | 0.437 | 0.497 | 0.534 | 0.500 | 2.350 * | 0.385 | 0.489 | 0.409 | 0.494 | 0.342 | 0.476 | 0.600 |
Access to market and institutional information | ||||||||||||||
Distance to output market (walking minutes) | 51.860 | 38.922 | 58.015 | 58.393 | 63.658 | 53.087 | 1.400 | 33.202 | 28.432 | 34.441 | 37.790 | 29.923 | 36.666 | 0.540 |
Distance to extension office (walking minutes) | 71.826 | 54.988 | 73.701 | 53.787 | 84.404 | 60.848 | 2.2 | 14.788 | 10.511 | 11.882 | 10.060 | 10.564 | 9.756 | 5.000 |
Attended mango training (1 = Yes, 0 = No) | 0.733 | 0.445 | 0.747 | 0.435 | 0.702 | 0.459 | 0.520 | 0.288 | 0.455 | 0.386 | 0.489 | 0.248 | 0.434 | 2.900 |
Confidence in government extension (1 = Have confidence, 0 = Otherwise) | 0.452 | 0.500 | 0.630 | 0.485 | 0.709 | 0.456 | 8.230 | |||||||
Perceptions | ||||||||||||||
Know fruit fly infestation symptoms (1 = Know at least 2 symptoms, 0 = Otherwise) | 0.817 | 0.388 | 0.756 | 0.431 | 0.923 | 0.268 | 6.300 | |||||||
Aware of negative effects of pesticides (1 = Aware, 0 = Otherwise) | 0.519 | 0.502 | 0.811 | 0.393 | 0.444 | 0.499 | 21.270 | |||||||
Perceived pesticide effectiveness (1 = Effective, 0 = Otherwise) | 0.686 | 0.467 | 0.655 | 0.476 | 0.727 | 0.447 | 1.18 | 0.385 | 0.489 | 0.512 | 0.502 | 0.453 | 0.500 | 1.870 |
Aware about fruit fly IPM (1 = Aware, 0 = Otherwise) | 0.884 | 0.322 | 0.877 | 0.329 | 0.919 | 0.273 | 0.94 | 0.702 | 0.460 | 0.882 | 0.324 | 0.786 | 0.412 | 5.900 |
Fruit fly severity (1 = Severe, 0 = Otherwise) | 0.558 | 0.500 | 0.605 | 0.490 | 0.528 | 0.501 | 1.26 | 0.769 | 0.423 | 0.827 | 0.380 | 0.846 | 0.362 | 1.160 |
Social capital and networks | ||||||||||||||
Mango group membership (1 = Yes, 0 = No) | 0.174 | 0.382 | 0.161 | 0.368 | 0.217 | 0.414 | 1.08 | |||||||
Number of people that can be relied on in critical needs (number) | 4.250 | 4.553 | 5.252 | 7.657 | 4.094 | 4.009 | 1.460 | |||||||
Have relatives in government positions (1 = Yes, 0 = No) | 0.519 | 0.502 | 0.441 | 0.498 | 0.350 | 0.479 | 3.250 | |||||||
Locations dummies | ||||||||||||||
Miraba Abaya | 0.163 | 0.372 | 0.087 | 0.282 | 0.120 | 0.330 | 1.59 | |||||||
Meru | 0.221 | 0.417 | 0.218 | 0.414 | 0.236 | 0.426 | 0.09 | |||||||
Machakos | 0.256 | 0.439 | 0.280 | 0.450 | 0.217 | 0.414 | 1.01 | |||||||
Makueni | 0.233 | 0.425 | 0.261 | 0.440 | 0.248 | 0.433 | 0.14 | |||||||
Meru | 0.221 | 0.417 | 0.218 | 0.414 | 0.236 | 0.426 | 0.09 |
Kenya | Ethiopia | |||||
---|---|---|---|---|---|---|
Early Adopters vs. Non-Adopters (1) | Late Adopters vs. Non-Adopters (2) | Early Adopters vs. Late Adopters (3) | Early Adopters vs. Non-Adopters (4) | Late Adopters vs. Non-Adopters (5) | Early Adopter vs. Late Adopter (6) | |
Households characteristics | ||||||
Age of household head | −0.041 | −0.038 | −0.003 | −0.005 | −0.027 | 0.022 |
(0.013) *** | (0.014) *** | (0.010) | (0.012) | (0.012) ** | (0.011) ** | |
Gender of head (1 = Female 0 = Male) | 0.703 | 0.28 | 0.424 | 0.566 | 1.094 | −0.528 |
(0.409) * | (0.443) | (0.395) | (0.395) | (0.379) *** | (0.367) | |
Household size (adult equivalent) | −0.197 | −0.04 | −0.158 | 0.191 | −0.096 | 0.286 |
(0.190) | (0.201) | (0.151) | (0.220) | (0.214) | (0.215) | |
Highest education in the households | 0.082 | 0.021 | 0.061 | 0.014 | 0.036 | −0.023 |
(0.045) * | (0.052) | (0.044) | (0.050) | (0.052) | (0.053) | |
Credit constrained (1 = Yes 0 = No) | −0.726 | 0.811 | −1.537 | 0.66 | 0.397 | 0.263 |
(0.509) | (0.458) * | (0.398) *** | (0.491) | (0.445) | (0.374) | |
Household resources | ||||||
Number of mango producing trees | ||||||
Medium | −0.276 | −0.055 | −0.221 | −0.167 | −0.266 | 0.099 |
(0.346) | (0.367) | (0.278) | (0.402) | (0.392) | (0.378) | |
High | 0.017 | 0.22 | −0.203 | 0.646 ** | −0.124 | 0.771 |
(0.443) | (0.467) | (0.336) | (0.446) | (0.460) | (0.438) * | |
Livestock owned in TLU | 0.138 | 0.142 | −0.003 | 0.102 * | 0.004 | 0.098 |
(0.075) * | (0.079) * | (0.050) | (0.085) | (0.094) | (0.064) | |
Total farm size (hectare) | ||||||
Medium | −0.361 | −0.433 | 0.072 | 0.767 | 0.34 | 0.427 |
(0.391) | (0.426) | (0.292) | (0.415) * | (0.393) | (0.413) | |
High | −0.002 | 0.051 | −0.053 | 1.313 | 1.239 | 0.074 |
(0.494) | (0.540) | (0.367) | (0.550) ** | (0.541) ** | (0.492) | |
Per capita expenditure (USD/year) | ||||||
Medium | 0.056 | 0.456 | −0.399 | 0.924 | 0.944 | −0.02 |
(0.328) | (0.348) | (0.260) | (0.437) ** | (0.410) ** | (0.375) | |
High | −0.157 | −0.435 | 0.279 | −0.839 | −0.909 | 0.07 |
(0.346) | (0.390) | (0.299) | (0.465) * | (0.449) ** | (0.483) | |
Have access to off-farm income | −0.229 | 0.408 | −0.637 | −0.046 | −0.167 | 0.121 |
(0.297) | (0.318) | (0.246) *** | (0.327) | (0.327) | (0.314) | |
Access to market and institutional information | ||||||
Distance to output market (walking minutes) | 0.003 | 0.004 | −0.001 | 0.003 | −0.005 | 0.008 |
(0.003) | (0.003) | (0.002) | (0.004) | (0.005) | (0.005) | |
Distance to extension office (walking minutes) | 0.000 | 0.003 | −0.003 | −0.042 | −0.045 | 0.003 |
(0.002) | −0.003 | (0.002) | (0.020) ** | (0.020) ** | (0.018) | |
Attended mango training | 0.059 | −0.463 | 0.521 | 0.647 | 0.068 | 0.578 |
(0.301) | (0.326) | (0.272) * | (0.378) * | (0.400) | (0.372) | |
Confidence in government extension | 0.487 | 0.837 | −0.351 | |||
Perceptions | (0.355) | (0.354) ** | (0.366) | |||
Know fruit fly infestation symptoms | −0.626 | 0.986 | −1.613 | |||
(0.457) | (0.542) * | (0.524) *** | ||||
Aware about negative effects of pesticides | 1.712 | 0.252 | 1.46 | |||
(0.376) *** | (0.352) | (0.335) *** | ||||
Perceived pesticide effectiveness | −0.079 | 0.175 | −0.254 | −0.066 | 0.13 | −0.196 |
(0.290) | (0.320) | (0.246) | (0.372) | (0.363) | (0.344) | |
Aware about fruit fly IPM | 0.227 | 0.914 | −0.687 | −0.139 | −0.31 | 0.171 |
(0.443) | (0.540) * | (0.421) | (0.669) | (0.616) | (0.682) | |
Fruit fly severity | 0.14 | 0.07 | 0.07 | 0.037 | −0.218 | 0.255 |
(0.270) | (0.298) | (0.233) | (0.434) | (0.476) | (0.471) | |
Social capital and networks | ||||||
Mango group membership | −0.037 | 0.297 | −0.335 | |||
(0.374) | (0.402) | (0.299) | ||||
Number of people that can be relied on in critical needs | 0.038 | −0.028 | 0.066 | |||
(0.041) | (0.031) | (0.033) ** | ||||
Have relatives in government positions | −0.997 | −0.897 | −0.1 | |||
(0.377) *** | (0.374) ** | −0.316 | ||||
Mirab Abaya | −0.13 | 0.103 | −0.233 | |||
(0.588) | (0.579) | (0.593) | ||||
Meru | 0.09 | −0.101 | 0.191 | |||
(0.384) | (0.408) | (0.312) | ||||
Makueni | 0.215 | −0.535 | 0.75 | |||
(0.376) | (0.406) | (0.309) ** | ||||
Machakos | 0.067 | −0.382 | 0.449 | |||
(0.433) | (0.459) | (0.345) | ||||
Constant | 2.109 | 1.125 | 0.984 | −2.096 | 0.489 | −2.586 |
(1.266) * | (1.371) | (0.976) | (1.306) | (1.283) | (1.294) ** | |
Number of observations | 508 | 348 | ||||
Wald chi2(46)/(50) | 73.99 *** | 114.57 *** | ||||
Pseudo R2 | 0.080 | 0.2142 | ||||
Log pseudolikelihood | −470.82 | −299.534 |
Kenya | Ethiopia | |||||
---|---|---|---|---|---|---|
Early Adopters | Late Adopters | Non-Adopters | Early Adopters | Late Adopters | Non-Adopters | |
Households characteristics | ||||||
Age of household head | −0.004 * | −0.001 | 0.005 *** | 0.002 | −0.004 *** | 0.003 * |
Gender of head (0 = Female, 1 = Male) | 0.119 | −0.047 | −0.072 | −0.010 | 0.141 ** | −0.131 *** |
Household size (adult equivalent) | −0.039 | 0.021 | 0.018 | 0.042 | -0.042 | 0.000 |
Highest education in the households | 0.016 * | −0.008 | −0.008 | −0.001 | 0.006 | −0.005 |
Household resources | ||||||
Number of mango producing trees | ||||||
Medium | −0.055 | 0.029 | 0.026 | 0.000 | −0.028 | 0.029 |
High | −0.029 | 0.040 | −0.011 | 0.129 ** | −0.083 | −0.047 |
Livestock owned in TLU | 0.011 | 0.008 | −0.018 * | 0.017 * | −0.010 | −0.007 |
Total farm size (hectare) | ||||||
Medium | −0.019 | −0.032 | 0.051 | 0.098 | −0.018 | −0.080 |
High | −0.008 | 0.010 | −0.002 | 0.102 | 0.086 | −0.188 *** |
Per capita expenditure (USD/year) | ||||||
Medium | −0.058 | 0.085 * | −0.027 | 0.066 | 0.076 | −0.142 |
High | 0.023 | −0.059 | 0.036 | −0.056 | −0.083 | 0.140 ** |
Credit constrained (1 = Yes 0 = No) | −0.283 *** | 0.263 *** | 0.019 | 0.073 | −0.005 | −0.069 |
Have access to off-farm income | −0.111 ** | 0.113 ** | −0.001 | 0.009 | −0.029 | 0.019 |
Access to market and institutional information | ||||||
Distance to output market (walking minutes) | 0.000 | 0.000 | 0.000 | 0.001 | −0.001 | 0.000 |
Distance to extension office (walking minutes) | 0.000 | 0.001 | 0.000 | −0.003 | −0.004 | 0.006 ** |
Attended mango training | 0.080 | −0.099 ** | 0.018 | 0.102 * | −0.061 | −0.041 |
Confidence in government extension | 0.003 | 0.103 * | −0.105 ** | |||
Perceptions | ||||||
Know fruit fly infestation symptoms | −0.209 *** | 0.242 *** | −0.033 | |||
Aware about negative effects of pesticides | 0.272 *** | −0.134 *** | −0.138 *** | |||
Perceived pesticide effectiveness | −0.043 | 0.046 | −0.002 | −0.030 | 0.016 | 0.014 |
Aware about fruit fly IPM | −0.081 | 0.145 * | −0.064 | 0.025 | 0.029 | −0.054 |
Fruit fly severity | 0.022 | -0.007 | −0.015 | 0.027 | −0.037 | 0.010 |
Social capital and networks | ||||||
Mango group membership | −0.052 | 0.063 | −0.012 | |||
Number of people that can be relied on in critical needs | 0.009 | −0.009 ** | 0.000 | |||
Have relatives in government positions | −0.085 * | −0.061 | 0.146 *** | |||
Location fixed effects | Yes | Yes | Yes | −0.013 |
Kenya | Ethiopia | |||||
---|---|---|---|---|---|---|
Early Adopters | Late Adopters | Non-Adopters | Early Adopters | Late Adopters | Non-Adopters | |
Mean values | 0.514 | 0.317 | 0.169 | 0.365 | 0.336 | 0.299 |
Mango training (100%) | 0.507 | 0.337 | 0.156 | 0.397 | 0.343 | 0.260 |
Farmers with medium number of mango trees (75%) | 0.530 | 0.311 | 0.159 | 0.369 | 0.358 | 0.273 |
Aware of fruit fly IPM (100%) | 0.560 | 0.260 | 0.180 | 0.359 | 0.349 | 0.292 |
Fruit fly severity (20%) | 0.526 | 0.313 | 0.160 | 0.358 | 0.374 | 0.268 |
Perceived pesticide effectiveness (20%) | 0.537 | 0.304 | 0.160 | 0.367 | 0.361 | 0.273 |
Know fruit fly infestation symptoms (100%) | 0.456 | 0.273 | 0.271 | |||
Aware of negative effects of pesticides (100%) | 0.344 | 0.369 | 0.286 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muriithi, B.W.; Gathogo, N.G.; Diiro, G.M.; Mohamed, S.A.; Ekesi, S. Potential Adoption of Integrated Pest Management Strategy for Suppression of Mango Fruit Flies in East Africa: An Ex Ante and Ex Post Analysis in Ethiopia and Kenya. Agriculture 2020, 10, 278. https://doi.org/10.3390/agriculture10070278
Muriithi BW, Gathogo NG, Diiro GM, Mohamed SA, Ekesi S. Potential Adoption of Integrated Pest Management Strategy for Suppression of Mango Fruit Flies in East Africa: An Ex Ante and Ex Post Analysis in Ethiopia and Kenya. Agriculture. 2020; 10(7):278. https://doi.org/10.3390/agriculture10070278
Chicago/Turabian StyleMuriithi, Beatrice W., Nancy G. Gathogo, Gracious M. Diiro, Samira A. Mohamed, and Sunday Ekesi. 2020. "Potential Adoption of Integrated Pest Management Strategy for Suppression of Mango Fruit Flies in East Africa: An Ex Ante and Ex Post Analysis in Ethiopia and Kenya" Agriculture 10, no. 7: 278. https://doi.org/10.3390/agriculture10070278
APA StyleMuriithi, B. W., Gathogo, N. G., Diiro, G. M., Mohamed, S. A., & Ekesi, S. (2020). Potential Adoption of Integrated Pest Management Strategy for Suppression of Mango Fruit Flies in East Africa: An Ex Ante and Ex Post Analysis in Ethiopia and Kenya. Agriculture, 10(7), 278. https://doi.org/10.3390/agriculture10070278