Sources of Total-Factor Productivity and Efficiency Changes in China’s Agriculture
Abstract
:1. Introduction
1.1. Chinese Agricultural Technology Efficiency
1.2. Chinese Agricultural Total-Factor Productivity
1.3. Factors Influencing Agricultural Total-Factor Productivity and Technical Efficiency
2. Research Method
2.1. Model Building
2.2. Data and Variable Declaration
2.2.1. Variable Selection
2.2.2. Construction of Variables Influencing TFP and Its Components
2.2.3. Data Source
2.2.4. Data Processing
2.2.5. Descriptive Statistical Analysis
2.2.6. Model Setup
3. Empirical Result Analysis
3.1. Estimated Results
3.2. Total-Factor Productivity and Its Decomposition
3.3. Determinants of TFP Change, TC, and TE
4. Conclusions and Policy Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grabowski, R.; Self, S. Structural change in Asia, the real effective exchange rate, and agricultural productivity. J. Econ. Financ. 2019, 44, 198–210. [Google Scholar] [CrossRef]
- Wang, S.L.; Huang, J.; Wang, X.; Tuan, F. Are China’s regional agricultural productivities converging: How and why? Food Policy 2019, 86, 101727. [Google Scholar] [CrossRef]
- Wu, J.; Ge, Z.; Han, S.; Xing, L.; Zhu, M.; Zhang, J.; Liu, J. Impacts of agricultural industrial agglomeration on China’s agricultural energy efficiency: A spatial econometrics analysis. J. Clean. Prod. 2020, 260, 121011. [Google Scholar] [CrossRef]
- Ayerst, S.; Brandt, L.; Restuccia, D. Market constraints, misallocation, and productivity in Vietnam agriculture. Food Policy 2020, 101840. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.; Anik, A.R. Productivity and efficiency impact of climate change and agroecology on Bangladesh agriculture. Land Use Policy 2020, 94, 104507. [Google Scholar] [CrossRef]
- Lu, X.-H.; Jiang, X.; Gong, M.-Q. How land transfer marketization influence on green total factor productivity from the approach of industrial structure? Evidence from China. Land Use Policy 2020, 95, 104610. [Google Scholar] [CrossRef]
- Farrell, M.J. The Measurement of Productive Efficiency. J. R. Stat. Soc. Ser. A Gen. 1957, 120, 253. [Google Scholar] [CrossRef]
- Rahman, S.; Barmon, B.K. Greening modern rice farming using vermicompost and its impact on productivity and efficiency: An empirical analysis from Bangladesh. Agriculture 2019, 9, 239. [Google Scholar] [CrossRef] [Green Version]
- Kawagoe, T.; Hayami, Y.; Ruttan, V.W. The intercountry agricultural production function and productivity differences among countries. J. Dev. Econ. 1985, 19, 113–132. [Google Scholar] [CrossRef]
- Chen, Z.; Song, S.F. Efficiency and technology gap in China’s agriculture: A regional meta-frontier analysis. China Econ. Rev. 2008, 19, 287–296. [Google Scholar] [CrossRef]
- Yin, N.; Wang, Y. Impacts of rural labor resource change on the technical efficiency of crop production in china. Agriculture 2017, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, H.-P. Productivity growth in China’s agriculture during 1985–2010. J. Integr. Agric. 2013, 12, 1896–1904. [Google Scholar] [CrossRef]
- Mao, W.; Koo, W.W. Productivity growth, technological progress, and efficiency change in chinese agriculture after rural economic reforms: A DEA approach. China Econ. Rev. 1997, 8, 157–174. [Google Scholar] [CrossRef]
- Baráth, L.; Fertő, I. Productivity and convergence in European agriculture. J. Agric. Econ. 2016, 68, 228–248. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.; Salim, R. Six Decades of total factor productivity change and sources of growth in Bangladesh agriculture (1948–2008). J. Agric. Econ. 2013, 64, 275–294. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Han, Z.; Deng, X. Changes in productivity, efficiency and technology of China’s crop production under rural restructuring. J. Rural. Stud. 2016, 47, 563–576. [Google Scholar] [CrossRef]
- Tian, X.; Yu, X. The Enigmas of TFP in China: A meta-analysis. China Econ. Rev. 2012, 23, 396–414. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Balezentis, T.; Ferrier, G.D. Agricultural productivity evolution in China: A generalized decomposition of the Luenberger-Hicks-Moorsteen productivity indicator. China Econ. Rev. 2019, 57, 57. [Google Scholar] [CrossRef]
- Andersen, M.A. Public investment in U.S. agricultural R&D and the economic benefits. Food Policy 2015, 51, 38–43. [Google Scholar] [CrossRef]
- Yan, J.; Chen, C.; Hu, B. Farm size and production efficiency in Chinese agriculture: Output and profit. China Agric. Econ. Rev. 2019, 11, 20–38. [Google Scholar] [CrossRef]
- Zeng, S.; Zhu, F.; Chen, F.; Yu, M.; Zhang, S.; Yang, Y. Assessing the impacts of land consolidation on agricultural technical efficiency of producers: A survey from Jiangsu Province, China. Sustainability 2018, 10, 2490. [Google Scholar] [CrossRef] [Green Version]
- Grashuis, J.; Su, Y. A review of the empirical literature on farmer cooperatives: Performance, ownership and governance, finance, and member attitude. Ann. Public Coop. Econ. 2018, 90, 77–102. [Google Scholar] [CrossRef]
- Bahta, Y.T.; Jordaan, H.; Sabastain, G. Agricultural management practices and factors affecting technical efficiency in Zimbabwe maize farming. Agriculture 2020, 10, 78. [Google Scholar] [CrossRef] [Green Version]
- Aigner, D.; Lovell, C.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econ. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Meeusen, W.; Broeck, J.V.D. Efficiency estimation from cobb-douglas production functions with composed error. Int. Econ. Rev. 1977, 18, 435. [Google Scholar] [CrossRef]
- Danilin, V.I.; Materov, I.S.; Rosefielde, S.; Lovell, C.A.K. Measuring enterprise efficiency in the Soviet Union: A stochastic frontier analysis. Economica 1985, 52, 225. [Google Scholar] [CrossRef]
- Greene, W.H. The econometric approach to efficiency analysis. Meas. Product. Effic. Product. Chang. 2008, 1, 92–250. [Google Scholar]
- Coelli, T.; Rahman, S.; Thirtle, C. A stochastic frontier approach to total factor productivity measurement in Bangladesh crop agriculture, 1961–1992. J. Int. Dev. 2003, 15, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, R.E. Likelihood functions for generalized stochastic frontier estimation. J. Econ. 1980, 13, 57–66. [Google Scholar] [CrossRef]
- Greene, W.H. A Gamma-distributed stochastic frontier model. J. Econ. 1990, 46, 141–163. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Huo, X.; Khan, I.; Ali, H.; Khan, B.; Khan, S.U. Technical efficiency of hybrid maize growers: A stochastic frontier model approach. J. Integr. Agric. 2019, 18, 2408–2421. [Google Scholar] [CrossRef]
- Berk, I.; Kasman, A.; Kılınç, D. Towards a common renewable future: The System-GMM approach to assess the convergence in renewable energy consumption of EU countries. Energy Econ. 2020, 87, 103922. [Google Scholar] [CrossRef]
- Liu, X.; Saraiva, P. GMM estimation of spatial autoregressive models in a system of simultaneous equations with heteroskedasticity. Econ. Rev. 2017, 38, 359–385. [Google Scholar] [CrossRef]
- Gafter, L.M.; Tchetchik, A. The role of social ties and communication technologies in visiting friends tourism- A GMM simultaneous equations approach. Tour. Manag. 2017, 61, 343–353. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econ. 1998, 87, 115–143. [Google Scholar] [CrossRef] [Green Version]
- Carstensen, K.; Toubal, F. Foreign direct investment in central and eastern European countries: A dynamic panel analysis. J. Comp. Econ. 2004, 32, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-J.; Schmidt, P. One-step and two-step estimation of the effects of exogenous variables on technical efficiency levels. J. Prod. Anal. 2002, 18, 129–144. [Google Scholar] [CrossRef]
- Iglesias-Gómez, G.; Castellanos, P.; Seijas, A.; Castellanos-García, P. Measurement of productive efficiency with frontier methods: A case study for wind farms. Energy Econ. 2010, 32, 1199–1208. [Google Scholar] [CrossRef]
- Cao, L.; Qi, Z.; Ren, J. China’s industrial total-factor energy productivity growth at sub-industry level: A two-step stochastic metafrontier malmquist index approach. Sustainability 2017, 9, 1384. [Google Scholar]
- Song, J.; Chen, X. Eco-efficiency of grain production in China based on water footprints: A stochastic frontier approach. J. Clean. Prod. 2019, 236, 236. [Google Scholar] [CrossRef]
- Moutinho, V.; Madaleno, M.; Macedo, P. The effect of urban air pollutants in Germany: Eco-efficiency analysis through fractional regression models applied after DEA and SFA efficiency predictions. Sustain. Cities Soc. 2020, 59, 102204. [Google Scholar] [CrossRef]
- O’Donoghue, C.; Heanue, K. The impact of formal agricultural education on farm level innovation and management practices. J. Technol. Transf. 2016, 43, 844–863. [Google Scholar] [CrossRef]
- Rada, N.; Schimmelpfennig, D. Evaluating research and education performance in Indian agricultural development. Agric. Econ. 2018, 49, 395–406. [Google Scholar] [CrossRef]
- Khanal, U.; Wilson, C.; Shankar, S.; Hoang, V.-N.; Lee, B.L. Farm performance analysis: Technical efficiencies and technology gaps of Nepalese farmers in different agro-ecological regions. Land Use Policy 2018, 76, 645–653. [Google Scholar] [CrossRef]
- Chiang, F.-S.; Sun, C.-H.; Yu, J.-M. Technical efficiency analysis of milkfish (Chanos chanos) production in Taiwan—An application of the stochastic frontier production function. Aquaculture 2004, 230, 99–116. [Google Scholar] [CrossRef]
- Badar, H.; Ghafoor, A.; Adil, S.A. Factors affecting agricultural production of Punjab (Pakistan). Pak. J. Agric. Sci. 2007, 44, 506–510. [Google Scholar]
- Sauer, J.; Frohberg, K.; Hockmann, H. Stochastic efficiency measurement: The curse of theoretical consistency. J. Appl. Econ. 2006, 9, 139–165. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.; Wiboonpongse, A.; Sriboonchitta, S.; Chaovanapoonphol, Y. Production efficiency of jasmine rice producers in northern and North-Eastern Thailand. J. Agric. Econ. 2009, 60, 419–435. [Google Scholar] [CrossRef] [Green Version]
- Adom, P.K.; Adams, S. Decomposition of technical efficiency in agricultural production in Africa into transient and persistent technical efficiency under heterogeneous technologies. World Dev. 2020, 129, 104907. [Google Scholar] [CrossRef]
- Liu, Z.; Zhuang, J. Determinants of technical efficiency in post-collective chinese agriculture: Evidence from farm-level data. J. Comp. Econ. 2000, 28, 545–564. [Google Scholar] [CrossRef]
- Wang, J.R.; Cramer, G.L.; Wailes, E.J. Production efficiency of Chinese agriculture: Evidence from rural household survey data. Agric. Econ. 2004, 15, 17–28. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Wu, Z.-G.; Zhu, T.-H.; Yang, L.; Ma, G.-Y.; Chien, H.-P. Agricultural policy, climate factors and grain output: Evidence from household survey data in rural China. J. Integr. Agric. 2013, 12, 169–183. [Google Scholar] [CrossRef]
Variable | Unit | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|
I. Factors affecting agricultural output | |||||
Agricultural output | 108 Yuan | 1130.443 | 1047.48 | 13.9 | 5174.9 |
Labor input | 104 Person | 993.6597 | 717.925 | 34.62 | 3398 |
Crop-sown area | 103 Ha | 5304.828 | 3590.794 | 120.94 | 14,902.72 |
Machinery power | 104 Kilowatt | 2858.595 | 2736.308 | 95.32 | 13,353.02 |
Plastic film | 104 Ton | 7.0992 | 6.4387 | 0.0821 | 34.3524 |
Pesticides | 104 Ton | 5.4474 | 4.325183 | 0.16 | 17.35 |
II. Factors affecting agricultural TFP and its components | |||||
Household savings | Yuan | 79,390.12 | 61,266.59 | 5763.087 | 460,782.3 |
Rural family size | Person | 3.373998 | 0.6579 | 0.47 | 8.77 |
Illiteracy rate | Percent | 10.5772 | 5.8873 | 2.7 | 33.74 |
Government expenditure | 104 Yuan | 2,644,250 | 2,445,640 | 25,341 | 1.02 × 107 |
Agricultural development project expenditure | 104 Yuan | 145,769.4 | 96,796.02 | 10,274 | 588,281.4 |
Agricultural disaster rate | Percent | 23.56 | 15.02 | 0 | 93.59 |
Irrigation rate | Percent | 40.42 | 15.83 | 14.46 | 95.49 |
Population density | Ten thousand | 0.0434 | 0.0626 | 0.0004 | 0.3826 |
Elderly population ratio | Percent | 9.94 | 2.86 | 4.342 | 21.53 |
Model (1) Half Normal | Model (2) Exponential | Model (3) Truncated | Model (4) Gamma | ||
---|---|---|---|---|---|
Constant | 5.3961 *** | 5.3278 *** | 5.4348 *** | 5.3142 *** | |
(0.0555) | (0.0910) | (0.4618) | (0.0818) | ||
Labor | 0.2633 ** | 0.2695 ** | 0.2593 ** | 0.2690 ** | |
(0.1250) | (0.1279) | (0.1297) | (0.1277) | ||
Planting | −0.0413 | −0.0475 | −0.0375 | −0.0472 | |
(0.1042) | (0.1061) | (0.1086) | (0.1065) | ||
Machinery | 0.1044 * | 0.1064 * | 0.1040 | 0.1068 | |
(0.0616) | (0.0625) | (0.0740) | (0.0730) | ||
Film | 0.3408 *** | 0.3410 *** | 0.3402 *** | 0.3409 *** | |
(0.0507) | (0.0506) | (0.0528) | (0.0529) | ||
Pesticide | 0.3496 *** | 0.3454 *** | 0.3513 *** | 0.3452 *** | |
(0.0848) | (0.0849) | (0.0816) | (0.0819) | ||
labor ∗ labor | 0.0195 | 0.0192 | 0.0197 | 0.0193 | |
(0.0890) | (0.0891) | (0.1044) | (0.1035) | ||
planting ∗ planting | 0.4133 *** | 0.4228 *** | 0.4095 *** | 0.4236 *** | |
(0.1088) | (0.1094) | (0.1193) | (0.1164) | ||
machinery ∗ machinery | 0.0808 | 0.0816 | 0.0806 | 0.0820 | |
(0.0523) | (0.0539) | (0.0648) | (0.0648) | ||
film ∗ film | −0.1116 *** | −0.1106 *** | −0.1119 *** | −0.1102 *** | |
(0.0358) | (0.0376) | (0.0365) | (0.0365) | ||
pesticide ∗ pesticide | 0.0224 | 0.0154 | 0.0258 | 0.0150 | |
(0.0627) | (0.0622) | (0.0731) | (0.0713) | ||
labor ∗ planting | −0.1580 | −0.1621 | −0.1572 | −0.1623 | |
(0.1620) | (0.1621) | (0.1835) | (0.1813) | ||
labor ∗ machinery | 0.3577 *** | 0.3593 *** | 0.3576 ** | 0.3588 ** | |
(0.1378) | (0.1392) | (0.1481) | (0.1454) | ||
labor ∗ film | −0.6530 *** | −0.6539 *** | −0.6514 *** | −0.6529 *** | |
(0.0909) | (0.0974) | (0.0948) | (0.0941) | ||
labor ∗ pesticide | 0.4020 *** | 0.4130 *** | 0.3961 *** | 0.4134 *** | |
(0.0894) | (0.0892) | (0.1050) | (0.1028) | ||
planting ∗ machinery | −0.6158 *** | −0.6258 *** | −0.6131 *** | −0.6269 *** | |
(0.1461) | (0.1469) | (0.1647) | (0.1620) | ||
planting ∗ film | 0.3807 *** | 0.3770 *** | 0.3815 *** | 0.3758 *** | |
(0.1129) | (0.1198) | (0.1142) | (0.1143) | ||
planting ∗ pesticide | −0.4146 *** | −0.4231 *** | −0.4087 *** | −0.4231 *** | |
(0.1257) | (0.1274) | (0.1340) | (0.1309) | ||
machinery ∗ film | 0.3032 *** | 0.3067 *** | 0.3026 *** | 0.3071 *** | |
(0.0593) | (0.0599) | (0.0595) | (0.0594) | ||
machinery ∗ pesticide | −0.2016 * | −0.1926 * | −0.2046 * | −0.1912 * | |
(0.1085) | (0.1097) | (0.1121) | (0.1100) | ||
film ∗ pesticide | 0.1334 * | 0.1309 | 0.1318 * | 0.1295 * | |
(0.0743) | (0.0837) | (0.0754) | (0.0738) | ||
trend | 0.1968 *** | 0.1980 *** | 0.1966 *** | 0.1982 *** | |
(0.0114) | (0.0122) | (0.0135) | (0.0133) | ||
trend ∗ trend | −0.0048 *** | −0.0049 *** | −0.0048 *** | −0.0049 *** | |
(0.0006) | (0.0006) | (0.0007) | (0.0007) | ||
trend ∗ labor | 0.0064 | 0.0061 | 0.0067 | 0.0061 | |
(0.0116) | (0.0121) | (0.0118) | (0.0118) | ||
trend ∗ planting | 0.0200 * | 0.0205 * | 0.0195 * | 0.0205 * | |
(0.0108) | (0.0112) | (0.0109) | (0.0108) | ||
trend ∗ machinery | 0.0013 | 0.0010 | 0.0014 | 0.0009 | |
(0.0072) | (0.0073) | (0.0089) | (0.0088) | ||
trend ∗ film | −0.0138 ** | −0.0140 ** | −0.0137 ** | −0.0140 ** | |
(0.0057) | (0.0057) | (0.0064) | (0.0064) | ||
trend ∗ pesticide | −0.0115 | −0.0110 | −0.0116 | −0.0110 | |
(0.0076) | (0.0076) | (0.0075) | (0.0075) | ||
AIC | −51.1 | −51.0 | −49.1 | −49.9 | |
0.0655 *** | 0.0465 *** | 0.0582 * | |||
(0.0224) | (0.0031) | (0.0577) | |||
0.9134 *** | 0.3714 *** | 0.8754 | |||
(0.1282) | (0.0760) | (0.5723) | |||
= | 0.4338 | ||||
(0.3901) | |||||
0.1082 | |||||
(0.9242) | |||||
13.313 | 12.7145 | ||||
(9.9385) | (10.275) | ||||
P | 0.7936 *** | ||||
(0.2230) | |||||
Log likehood | 55.5517 | 55.4929 | 55.5560 | 55.9488 | |
Wald chi2 (27) | 13,123.12 *** | 13,005.08 *** | 13,069.22 *** |
Regularity Conditions | ||
---|---|---|
Check | Value | Value |
Labor | 0.3620 | −12,268.88 |
Planting | 0.0274 | −11,934.56 |
Machinery | 0.2560 | −118,558.08 |
Film | 35.5655 | −10,597.01 |
Pesticide | 52.2398 | −6627.062 |
Province | TE Score | TC | EC | TFP Change |
---|---|---|---|---|
Beijing | 0.8847 | 1.0730 | 0.9966 | 1.0695 |
Tianjin | 0.8853 | 1.0866 | 1.0037 | 1.0908 |
Hebei | 0.8875 | 1.1125 | 0.9974 | 1.1099 |
Shanxi | 0.8219 | 1.1145 | 0.9987 | 1.1132 |
Neimeng | 0.8236 | 1.1222 | 0.9892 | 1.1106 |
Liaoning | 0.8874 | 1.0957 | 1.0003 | 1.0961 |
Jilin | 0.8868 | 1.1123 | 0.9926 | 1.1046 |
Heilongjiang | 0.8830 | 1.1225 | 1.0067 | 1.1301 |
Shanghai | 0.8700 | 1.0692 | 1.0073 | 1.0774 |
Jiangsu | 0.9268 | 1.1099 | 1.0009 | 1.1109 |
Zhejiang | 0.8791 | 1.0946 | 1.0061 | 1.1014 |
Anhui | 0.8312 | 1.1154 | 0.9995 | 1.1151 |
Fujian | 0.9089 | 1.0943 | 1.0031 | 1.0978 |
Jiangxi | 0.8315 | 1.1107 | 1.0024 | 1.1133 |
Shandong | 0.8718 | 1.1001 | 1.0023 | 1.1028 |
Henan | 0.8849 | 1.1204 | 0.9992 | 1.1198 |
Hubei | 0.8709 | 1.1134 | 1.0072 | 1.1215 |
Hunan | 0.8655 | 1.1145 | 1.0025 | 1.1178 |
Guangdong | 0.8991 | 1.1110 | 0.9980 | 1.1087 |
Guangxi | 0.8779 | 1.1236 | 0.9989 | 1.1222 |
Hainan | 0.8754 | 1.0879 | 0.9994 | 1.0869 |
Chongqing | 0.8761 | 1.1150 | 1.0054 | 1.1213 |
Sichuan | 0.9029 | 1.1194 | 1.0020 | 1.1217 |
Guizhou | 0.8322 | 1.1294 | 1.0078 | 1.1379 |
Yunnan | 0.8454 | 1.1163 | 0.9975 | 1.1134 |
Shaanxi | 0.9286 | 1.1261 | 1.0001 | 1.1272 |
Gansu | 0.8291 | 1.0991 | 0.9958 | 1.0941 |
Qinghai | 0.8447 | 1.1128 | 1.0033 | 1.1171 |
Ningxia | 0.8789 | 1.1026 | 1.0005 | 1.1033 |
Xinjiang | 0.8841 | 1.0994 | 1.0016 | 1.1010 |
Model (a) | Model (b) | Model (c) | |
---|---|---|---|
TE Score | TC | TFP Change | |
Constant | 0.7107 *** | 1.6600 *** | −1.0527 *** |
(0.1073) | (0.0461) | (0.0424) | |
Illiteracy rate | 0.0094 | −0.0174 ** | −0.0019 ** |
(0.0160) | (0.0073) | (0.0008) | |
Household savings | 0.0377 ** | −0.1044 *** | −0.0086 *** |
(0.0186) | (0.0117) | (0.0028) | |
Rural family size | −0.0298 | 0.1457 *** | 0.0123 *** |
(0.0285) | (0.0306) | (0.0044) | |
Government expenditure | −0.0848 *** | −0.0532 *** | −0.0029 * |
(0.0134) | (0.0075) | (0.0017) | |
Agricultural development | 0.0907 *** | 0.0340 *** | 0.0009 |
Project expenditure | (0.0220) | (0.0093) | (0.0016) |
Agricultural disaster rate | −0.0202 *** | 0.0097 *** | 0.0010 * |
(0.0076) | (0.0036) | (0.0006) | |
Irrigation rate | 0.0187 | 0.0015 | 0.0020 |
(0.0212) | (0.0134) | (0.0015) | |
Population density | −0.0964 | 0.3259 *** | 0.0203 |
(0.1334) | (0.1008) | (0.0137) | |
Elderly population ratio | 0.0617 ** | 0.0362 * | 0.0054 ** |
(0.0303) | (0.0194) | (0.0021) | |
EC | 0.9379 *** | ||
(0.0269) | |||
TC | 1.1618 *** | ||
(0.0049) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Dong, C.; Liu, S.; Rahman, S.; Sriboonchitta, S. Sources of Total-Factor Productivity and Efficiency Changes in China’s Agriculture. Agriculture 2020, 10, 279. https://doi.org/10.3390/agriculture10070279
Liu J, Dong C, Liu S, Rahman S, Sriboonchitta S. Sources of Total-Factor Productivity and Efficiency Changes in China’s Agriculture. Agriculture. 2020; 10(7):279. https://doi.org/10.3390/agriculture10070279
Chicago/Turabian StyleLiu, Jianxu, Changrui Dong, Shutong Liu, Sanzidur Rahman, and Songsak Sriboonchitta. 2020. "Sources of Total-Factor Productivity and Efficiency Changes in China’s Agriculture" Agriculture 10, no. 7: 279. https://doi.org/10.3390/agriculture10070279
APA StyleLiu, J., Dong, C., Liu, S., Rahman, S., & Sriboonchitta, S. (2020). Sources of Total-Factor Productivity and Efficiency Changes in China’s Agriculture. Agriculture, 10(7), 279. https://doi.org/10.3390/agriculture10070279