Effect of Agronomical and Technological Treatments to Obtain Selenium-Fortified Table Olives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Treatment of the First Experiment
2.2. Plant Treatment of the Second Experiment
2.3. Technological Treatments
2.4. Analytical Methods
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rouached, H. Recent developments in plant zinch omeostasis and the path toward improbe biofortification and phytoremediation programs. Plant. Signal. Behav. 2013, 8, e22681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puccinelli, M.; Malorgio, F.; Pezzarossa, B. Selenium Enrichment of Horticultural Crops. Molecules 2017, 22, 933. [Google Scholar] [CrossRef] [PubMed]
- Haug, A.; Graham, R.; Christophersen, O.; Lyons, G. How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb. Ecol. Health Dis. 2007, 19, 209–228. [Google Scholar]
- Banuelos, G.S.; Lin, Z.Q. Use and Development of Biofortified Agricultural Products; CRC Press: Boca Raton, FL, USA, 2009; pp. 17–70. [Google Scholar]
- Zhu, Y.G.; Pilon-Smits, E.A.H.; Zhao, F.J.; Williams, P.N.; Meharg, A.A. Selenium in higher plants: Understanding mechanisms for biofortification and phytoremediation. Trends Plant. Sci. 2009, 14, 436–442. [Google Scholar] [CrossRef]
- Bouis, H.E.; Welch, R.M. Biofortification-a sustainable agricultural strategy for reducing micronutrient work in the Global South. Crop. Sci. 2010, 50, S20–S32. [Google Scholar] [CrossRef] [Green Version]
- Lyons, G.; Cakmak, I. Agronomic biofortification of food crops with micronutrients. In Fertilizing Crops to Improve Human Health: A Scientific Review; Bruulsema, T.W., Heffer, P., Welch, R.M., Cakmak, I., Moran, K., Eds.; International Plant Nutrition Institute: Norcross, GA, USA, 2012; pp. 97–122. [Google Scholar]
- Combs, G.F. Food system-based approaches to improving micronutrient nutrition: The case for selenium. Biofactors 2000, 12, 39–43. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Brown, P.H. Plant nutrition for sustainable development and global health. Ann. Bot. 2010, 105, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- Fairweather-Tait, S.J.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurst, R. Selenium in human health and disease. Antioxid. Redox Sign. 2011, 14, 1337–1383. [Google Scholar] [CrossRef]
- Méplan, C.; Hesketh, J. The influence of selenium and selenoprotein gene variants on colorectal cancer risk. Mutagenesis 2012, 27, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Fordyce, F.M. Selenium deficiency and toxicity in the environment. In Essentials of Medical Geology, Revised Edition; Selinus, O., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 375–415. [Google Scholar]
- Krinsky, N.; Beecher, G.R.; Burk, R.F.; Chan, A.C.; Erdman, J.W.; Jacob, R.A.; Jialal, I.; Kolonel, L.N.; Marshall, J.R.; Taylor Mayne, P.R.L.; et al. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; Institute of Medicine; The National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Rosenfeld, I.; Beath, O.A. Selenium. Geobotany, Biochemistry, Toxicity and Nutrition; Academic Press: New York, NY, USA, 1964; p. 411. [Google Scholar]
- Terry, N.; Zayed, A.M.; de Souza, M.P.; Tarun, A.S. Selenium in higher plants. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 2000, 51, 401–432. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, K.S.; Dhillon, S.K. Distribution and management of seleniferous soils. Adv. Agro. 2003, 79, 119–185. [Google Scholar]
- White, P.J.; Bowen, H.C.; Parmaguru, P.; Fritz, M.; Spracklen, P.; Spiby, E.; Meacham, C.; Mead, A.; Harriman, M.; Trueman, L.J.; et al. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J. Exp. Bot. 2004, 55, 1927–1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rani, N.; Dhillon, K.S.; Dhillon, S.K. Critical levels of selenium in different crops grown in an alkaline silty loam soil treated with selenite-Se. Plant Soil 2005, 277, 367–374. [Google Scholar] [CrossRef]
- Gupta, M.; Gupta, S. An overview of selenium uptake, metabolism, and toxicity in plants. Front. Plant Sci. 2017. [Google Scholar] [CrossRef] [Green Version]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium, and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Bodnar, M.; Konieczka, P.; Namiesnik, J. The properties, functions, and use of selenium compounds in living organisms. J. Environ. Sci. Health Part C 2012, 30, 225–252. [Google Scholar] [CrossRef]
- Wu, Z.; Bañuelos, G.S.; Lin, Z.Q.; Liu, Y.; Yuan, L.; Yin, X.; Li, M. Biofortification and phytoremediation of selenium in China. Front. Plant Sci. 2015, 6, 136. [Google Scholar] [CrossRef]
- Sors, T.G.; Ellis, D.R.; Na, G.N.; Lahner, B.; Lee, S.; Leustek, T.; Pickering, I.J.; Salt, D. Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J. 2005, 42, 785–797. [Google Scholar] [CrossRef]
- Missana, T.; Alonso, U.; García-Gutiérrez, M. Experimental study and modeling of selenite sorption onto illite and smectite clays. J. Colloid Interface Sci. 2009, 334, 132–138. [Google Scholar] [CrossRef]
- Li, H.F.; McGrath, S.P.; Zhao, F.J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol. 2008, 178, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Feist, L.J.; Parker, D.R. Ecotypic variation in selenium accumulation among populations of Stanleya pinnata. New Phytol. 2001, 149, 61–69. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, G.; Chen, J.; Hu, Q. Uptake and transport of selenite and selenate by soybean seedlings of two genotypes. Plant Soil 2003, 253, 437–443. [Google Scholar] [CrossRef]
- Malagoli, M.; Schiavon, M.; dall’Acqua, S.; Pilon-Smits, E.A. Effects of selenium biofortification on crop nutritional quality. Front. Plant. Sci. 2015, 6, 280. [Google Scholar] [CrossRef] [Green Version]
- Ximénez-Embún, P.; Alonso, I.; Madrid-Albarrán, Y.; Cámara, C. Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants. J. Agric. Food Chem. 2004, 52, 832–838. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R.; Bowen, H.C.; Johnson, S.E. Selenium and its relationship with sulfur. In Sulfur in Plants―An Ecological Perspective; Hawkesford, M.J., de Kok, L.J., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 225–252. [Google Scholar]
- Pilon-Smits, E.A.H. Plant selenium metabolism–genetic manipulation, phytotechnological applications, and ecological implications. In Environmental Contamination: Health Risks and Ecological Restoration; Wong, M.H., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 293–311. [Google Scholar]
- Pilon-Smits, E.A.H.; LeDuc, D.L. Phytoremediation of selenium using transgenic plants. Curr. Opin. Biotech. 2009, 20, 207–212. [Google Scholar] [CrossRef]
- Bisberg, B.; Gissel-Nielsen, G. The uptake of applied selenium by agricultural plants. 1. The influence of soil type and plant species. Plant Soil 1969, 31, 287–298. [Google Scholar] [CrossRef]
- Gissel-Nielsen, G.; Bisberg, B. The uptake of applied selenium by agricultural plants. 2. The utilization of various selenium compounds. Plant Soil 1970, 32, 382–396. [Google Scholar] [CrossRef]
- Pezzarossa, B.; Malorgio, F.; Tonutti, P. Effects of selenium uptake by tomato plants on senescence, fruit ripening and ethylene evolution. In Biology and Biotechnology of the Plant Hormone Ethylene II; Chang, A.K., Klee, C., Bleecker, H., Pech, A.B., Grierson, D.J.C., Eds.; Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 275–276. [Google Scholar]
- Tsuneyoshi, T.; Yoshida, J.; Takashi, S. Hydroponic cultivation offers. A practical means of producing selenium-enriched garlic. J. Nutr. 2006, 136, 870S–872S. [Google Scholar] [CrossRef] [Green Version]
- Malorgio, F.; Diaz, K.; Ferrante, A.; Mensuali, A.; Pezzarossa, B. Effects of selenium addition on minimally processed leafy vegetables grown in floating system. J. Agric. Food Chem. 2009, 89, 2243–2251. [Google Scholar] [CrossRef]
- Ferrarese, M.; Mahmoodi Sourestani, M.; Quattrini, E.; Schiavi, M.; Ferrante, A. Biofortification of spinach plants applying selenium in the nutrient solution of floating system. Veg. Crops Res. Bull. 2012, 76, 127–136. [Google Scholar] [CrossRef]
- D’Amato, R.; Proietti, P.; Nasini, L.; Del Buono, D.; Tedeschini, E.; Businelli, D. Increase in the selenium content of extra virgin olive oil: Quantitative and qualitative implications. Grasas Aceites 2014, 65, e025. [Google Scholar]
- Kopsell, D.A.; Sams, C.E.; Barickman, T.C.; Deyton, D.E. Selenization of basil and cilantro through foliar applications of selenate-selenium and selenite-selenium. Hortscience 2009, 44, 438–442. [Google Scholar] [CrossRef]
- Pezzarossa, B.; Remorini, D.; Gentile, M.L.; Massai, R. Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. J. Sci. Food Agric. 2012, 92, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Gupta, U.C.; Winter, K.A.; McRae, K.B. Selenium application of crops through foliar applications. Can. J. Soil Sci. 1988, 68, 519–526. [Google Scholar] [CrossRef]
- Winkel, L.; Vriens, B.; Jones, G.; Schneider, L.; Pilon-Smits, E.; Banuelos, G. Selenium cycling across soil-plant-atmosphere interfaces: A critical review. Nutrients 2015, 7, 4199–4239. [Google Scholar] [CrossRef] [Green Version]
- Ros, G.; van Rotterdam, A.; Bussink, D.; Bindraban, P. Selenium fertilization strategies for bio-fortification of food: An agro-ecosystem approach. Plant Soil 2016, 404, 99–112. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Y.N.; Han, T. Changes of physiology and fruit quality in stored nectarine treated with selenium and boron. J. Beijing Agric. College 2005, 20, 1–4. [Google Scholar]
- Liu, Q.; Ning, C.; Wang, D.; Wenjiang, W.; Guoliang, W. Effect of spraying selenium on the pear fruit quality. Acta Hort. 2012, 940, 545–549. [Google Scholar]
- Babalar, M.; Mohebbi, S.; Zamani, Z.; Askari, M.A. Effect of foliar application with sodium selenate on selenium biofortification and fruit quality maintenance of ‘Starking Delicious’ apple during storage. J. Sci. Food Agric. 2019, 99, 5149–5156. [Google Scholar] [CrossRef]
- Groth, S.; Budke, C.; Neugart, S.; Ackermann, S.; Kappenstein, F.S.; Daum, D.; Rohn, S. Influence of a Selenium Biofortification on Antioxidant Properties and Phenolic Compounds of Apples (Malus domestica). Antioxidants 2020, 9, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proietti, P.; Nasini, L.; Del Buono, D.; D’Amato, R.; Tedeschini, E.; Businelli, D. Selenium protects olive (Olea europaea L.) from drought stress. Sci. Hortic. 2013, 164, 165–171. [Google Scholar] [CrossRef]
- D’Amato, R.; De Feudis, M.; Hasuoka, P.E.; Regni, L.; Pacheco, P.H.; Onofri, A.; Businelli, D.; Proietti, P. The Selenium Supplementation Influences Olive Tree Production and Oil Stability Against Oxidation and Can Alleviate the Water Deficiency Effects. Frontiers Plant Sci. 2018, 9, 1191. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, R.; Proietti, P.; Onofri, A.; Regni, L.; Esposto, S.; Servili, M.; Businelli, D.; Selvaggini, R. Biofortification (Se): Does it increase the content of phenolic compounds in virgin olive oil (VOO)? PLoS ONE 2017, 12, e0176580. [Google Scholar]
- IOC. Table Olive Consumption. Available online: http://www.internationaloliveoil.org/documents/viewfile/4195-consommation3-ang/ (accessed on 14 May 2017).
- Young, V.R. Adult amino acid requirements: The case for a major revision in current recommendations. J. Nutr. 1994, 124, 1517S–1523S. [Google Scholar] [CrossRef]
- Imura, K.; Okada, A. Amino acid metabolism in pediatric patients. Nutrition 1998, 14, 143–148. [Google Scholar] [CrossRef]
- Delplanque, B. Intérêt nutritionnel des huiles d’olives. OCL-Ol. Corps Gras Li. 1998, 6, 1–6. [Google Scholar]
- Irmak, S. Table Olives & Our Health & Quality. J. Nutr. Diet. Pract. 2018, 2, 001–004. [Google Scholar]
- Ray, N.; Lam, N.; Luc, R.; Bonvino, N.; Karagiannis, T. Cellular and molecular effects of bioactive phenolic compounds in olives and olive oil. In Olive and Olive Oil Bioactive Constituents; Boskou, D., Ed.; AOCS Press: Urbana, IL, USA, 2015; pp. 53–91. [Google Scholar]
- Silva, S.; Sepodes, B.; Rocha, J.; Direito, R.; Fernandes, A.; Brites, D.; Figueira, M.E. Protective effects of hydroxytyrosol-supplemented refined olive oil in animal models of acute inflammation and rheumatoid arthritis. J. Nutr. Biochem. 2015, 26, 360–368. [Google Scholar] [CrossRef]
- Jimenez, A.; Rodriguez, R.; Fernandez-Caro, I.; Guillen, R.; Fernandez-Bolanos, J.; Heredia, A. Dietary fibre content of table olives processed under different European styles: Study of physico-chemical characteristics. J. Sci. Food Agric. 2000, 80, 1903–1908. [Google Scholar] [CrossRef]
- López-López, A.; Jiménez-Araujo, A.; García-García, P.; Garrido-Fernández, A. Multivariate analysis for the evaluation of fiber, sugars, and organic acids in commercial presentations of table olives. J. Agric. Food Chem. 2007, 55, 10803–10811. [Google Scholar] [CrossRef] [PubMed]
- Dugo, G.; La Pera, L.; Giuffrida, D.; Salvo, F.; Lo Turco, V. Influence of the olive variety and the zone of provenience on selenium content determined by cathodic stripping potentiometry (CSP) in virgin olive oils. Food Chem. 2004, 88, 135–140. [Google Scholar]
- Garrido Fernández, A.; Fernández-Díez, M.J.; Adams, R.M. Production and processing. In Table olives; Springer: London, UK, 1997. [Google Scholar]
- Sánchez Gómez, A.H.; Garcıá Garcıá, P.; Rejano Navarro, L. Elaboration of table olives. Grasas Aceites 2006, 57, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Mettouchi, S.; Bey, M.B.; Tamendjari, A.; Louaileche, H. Antioxidant activity of table olives as influenced by processing method. Int. J. Chem. Biomol. 2016, 2, 8–14. [Google Scholar]
- Romeo, F.V.; Piscopo, A.; Poiana, M. Effect of drying, chemical and natural processing methods on black Biancolilla olives. Grasas Aceites 2012, 63, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Ünal, K.; Nergiz, C. The effect of table olive preparing methods and storage on the composition and nutritive value of table olives. Grasas Aceites 2003, 54, 71–76. [Google Scholar] [CrossRef]
- Uceda, M.; Frias, L. Harvest Dates. Evolution of the Fruit Oil Content, Oil Composition and Oil Quality. In Proceedings of the II Seminario Oleícola Internacional; International Olive Oil Council: Cordoba, Spain, 1975; pp. 125–130. [Google Scholar]
- Fernández-Diez, M.J.; Castro, R.; Fernández, A.; Cancho, F.G.; Pellissó, F.G.; Vega, M.N.; Moreno, A.H.; Mosquera, I.M.; Navarro, L.R.; Quintana, M.C.D.; et al. Biotecnología de la Aceituna de Mesa; Instituto de la Grasa y sus Derivados: Sevilla, Spain, 1985. [Google Scholar]
- Othman, B.N.; Roblain, D.; Thonart, P.; Hamdi, M. Tunisian table olive phenolic compounds and their antioxidant capacity. J. Food Sci. 2008, 73, C235–C240. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of free radical method to evaluate antioxidant activity. Lebensm Wiss. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- De Bruno, A.; Zappia, A.; Piscopo, A.; Poiana, M. Qualitative evaluation of fermented olives grown in Southern Italy (cvs. Carolea, Grossa of Gerace and Nocellara Messinese). Emir J. Food Agr. 2019, 31, 587–596. [Google Scholar] [CrossRef]
- Fontanella, M.C.; D’Amato, R.; Regni, L.; Proietti, P.; Beone, G.M.; Businelli, D. Selenium speciation profiles in biofortified sangiovese wine. J. Trace Elem. Med. Bio. 2017, 43, 87–92. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, Y.; Shi, G.; Zhang, X. Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chem. 2017, 219, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Hartikainen, H.; Xue, T.L.; Piironen, V. Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 2000, 225, 193–200. [Google Scholar] [CrossRef]
- Cartes, P.; Gianfera, L.; Mora, M.L. Uptake of selenium and its antioxidative activity in ryegrass when applied a selenate and selenite forms. Plant Soil 2005, 276, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Djanaguiraman, M.; Devi, D.D.; Shanker, A.K.; Sheeba, A.; Bangarusamy, U. Selenium-an antioxidative protectant in soybean during senescence. Plant Soil 2005, 272, 77–86. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Hossain, M.A.; Fujita, M. Selenium in higher plants: Physiological role, antioxidant metabolism and abiotic stress tolerance. J. Plant Sci. 2010, 5, 354–375. [Google Scholar]
- Fernández, V.; Sotiropoulos, T.; Brown, P.H. Foliar Fertilisation: Principles and Practices, 1st ed.; International Fertilizer Industry Association (IFA): Paris, France, 2013. [Google Scholar]
- Piscopo, A.; De Bruno, A.; Zappia, A.; Poiana, M. Antioxidant activity of dried green olives (Carolea cv.). LWT Food Sci Technol. 2014, 58, 49–54. [Google Scholar] [CrossRef]
- Boskou, D. Table Olives: A Vehicle for the Delivery of Bioactive Compounds. J. Exp. Food Chem. 2017, 3, 1000123. [Google Scholar] [CrossRef] [Green Version]
- Piscopo, A.; Romeo, F.V.; Poiana, M. Effect of drying process on almond (Prunus dulcis (Mill.) D.A. Webb) Kernel composition. Riv. Ital. Sostanze Gr. 2011, 88, 153–160. [Google Scholar]
- Piga, A.; Poiana, M.; Pinna, I.; Agabbio, M.; Mincione, A. Drying performance of five Italian apricot cultivars. Sci. Aliment. 2004, 24, 247–259. [Google Scholar] [CrossRef]
- Mezeyová, I.; Hegedusova, A.; Andrejiová, A.; Hegedus, O.; Golian, M. Phytomass and content of essential oils in Ocimum basilicum after foliar treatment with selenium. J. Int. Sci. Publ. 2016, 4, 19–27. [Google Scholar]
- Schiavon, M.; Dall’Acqua, S.; Mietto, A.; Pilon-Smits, E.A.H.; Sambo, P.; Masi, A.; Malagoli, M. Selenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon L.). J. Agric. Food Chem. 2013, 61, 10542–10554. [Google Scholar] [CrossRef] [PubMed]
- Madrau, M.A.; Piscopo, A.; Sanguinetti, A.M.; Del Caro, A.; Poiana, M.; Romeo, F.V.; Piga, A. Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. Eur. Food Res. Technol. 2009, 228, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Piscopo, A.; De Bruno, A.; Zappia, A.; Poiana, M. Increase in antioxidant activity of brined olives (Carolea cv.) thermally treated in different packaging types. Eur. J. Lipid Sci. Technol. 2016, 118, 1132–1140. [Google Scholar]
Parameter | LT | FA |
---|---|---|
Sand (%) | 89.82 | 27.38 |
Silt (%) | 3.64 | 20.93 |
Clay (%) | 6.54 | 51.69 |
pH [H2O] (1:2.5) | 6.9 | 6.1 |
Total carbonates (% CaCO3) | 0.3 | 0.3 |
Active carbonates (% CaCO3) | 0.2 | 0.1 |
EC (mS cm−1) | 0.3 | 0.2 |
Organic matter (%) | 0.1 | 1.6 |
Ntot (%) | 0.1 | 1.2 |
C/N ratio | 3.6 | 7.9 |
Cation Exchange Capacity (meq 100 g−1) | 28.5 | 42.8 |
Pava (mg kg−1) | 7.7 | 8.8 |
Kex (mg kg−1) | 43.0 | 167.8 |
Caex (meq 100 g−1) | 16.4 | 34.3 |
Mgex (meq 100 g−1) | 6.7 | 0.5 |
Na ex (meq 100 g−1) | 0.5 | 0.4 |
Ca/Ma ratio | 2.5 | 69.7 |
K/Mg ratio | 0.02 | 0.9 |
Element | Concentration (mg L−1) | Source |
---|---|---|
N | 150 | Ammonium nitrate and calcium nitrate |
P | 13 | Orthophosphoric acid |
K | 140 | Potassium sulphate |
Mg | 14 | Magnesium sulphate |
Ca | 170 | Calcium nitrate |
Fe | 2.0 | Fe-EDTA |
Mn | 1.0 | Mn-EDTA |
Zn | 0.3 | Zn-EDTA |
Cu | 0.1 | Cu-EDTA |
Treatment | Fruit Fresh Weight (g) | Ripening Index | Flesh Firmness (kg) | Flesh/Stone Ratio | Se Content (µg kg−1) |
---|---|---|---|---|---|
BC | 6.52 | 0.97 | 0.27 a | 5.26 | 180 c |
L | 6.56 | 0.97 | 0.28 a | 5.27 | 195 c |
M | 6.55 | 0.97 | 0.29 a | 5.33 | 374 b |
H | 6.52 | 0.91 | 0.33 b | 5.31 | 641 a |
Sign. | ns | ns | ** | Ns | ** |
Physicochemical Analysis | Antioxidant Capacity | |||||
---|---|---|---|---|---|---|
Brines | TA (% Lactic acid) | pH | Chlorides (%) | TPC (g GA L−1) | ABTS (mmol Trolox L−1) | DPPH (mmol Trolox L−1) |
BC | 0.28 | 4.29 | 7.80 | 2.28 a | 15.65 b | 12.25 b |
L | 0.27 | 4.30 | 7.93 | 2.09 ab | 18.09 a | 13.61 ab |
M | 0.22 | 4.56 | 7.78 | 1.88 b | 16.99 ab | 14.81 a |
H | 0.32 | 4.40 | 7.72 | 1.91 b | 15.48 b | 14.82 a |
Sign. | ns | ns | ns | ** | ** | * |
Olives | Dry Matter (%) | aw | pH | TPC (g GA kg- dw−1) | ABTS (mmol Trolox g−1) | DPPH (mmol Trolox g−1) |
BC | 32.04 | 0.954 a | 5.28 b | 5.29 ab | 7.77 ab | 6.43 a |
L | 31.48 | 0.947 b | 5.80 a | 5.44 a | 8.09 a | 5.98 ab |
M | 31.89 | 0.950 ab | 5.47 ab | 4.14 c | 6.66 b | 4.85 c |
H | 31.88 | 0.950 ab | 5.43 ab | 4.71 bc | 7.03 ab | 5.03 bc |
Sign. | ns | * | * | ** | ** | ** |
Treatment | Fruit Fresh Weight (g) | Ripening Index | Flesh Firmness (kg) | Flesh/Stone | Se Content (µg kg−1) |
---|---|---|---|---|---|
PC | 3.90 | 6.97 | 0.14 a | 4.73 | 16 d |
T1 | 3.84 | 6.97 | 0.17 a | 4.52 | 24 c |
T2 | 3.88 | 6.97 | 0.18 a | 4.49 | 25 c |
T3 | 3.85 | 6.96 | 0.25 b | 4.74 | 33 b |
T4 | 3.99 | 6.94 | 0.30 c | 4.66 | 55 a |
Sign. | ns | ns | ** | ns | ** |
Analysis | Plant Treatments/ Drying Pre-Treatment | UT | DUT | DB | DDS | Sign. |
---|---|---|---|---|---|---|
DM (%) | PC | 47.95 B | 91.20 aA | 90.82 aA | 92.03 aA | ** |
T1 | 47.39 B | 88.87 abA | 88.65 bA | 89.23 bA | ** | |
T2 | 47.64 C | 85.35 bcB | 86.41 cB | 89.70 abA | ** | |
T3 | 49.52 B | 84.63 cA | 86.54 cA | 87.82 bA | ** | |
T4 | 48.63 B | 88.43 abcA | 87.41 bcA | 89.96 abA | ** | |
Sign. | ns | ** | ** | ** | ||
aw | PC | 0.98 A | 0.74 bB | 0.66 cBC | 0.63 cC | ** |
T1 | 0.98 A | 0.84 aB | 0.82 aB | 0.77 abC | ** | |
T2 | 0.98 A | 0.84 aB | 0.84 aB | 0.78 aC | ** | |
T3 | 0.97 A | 0.84 aB | 0.81 aC | 0.79 aC | ** | |
T4 | 0.98 A | 0.79 abB | 0.73 bC | 0.72 bC | ** | |
Sign. | ns | ** | ** | ** | ||
pH | PC | 5.60a A | 5.40a B | 5.49 AB | 5.46a AB | * |
T1 | 5.47 bA | 5.07 bB | 5.58 A | 5.30 bAB | ** | |
T2 | 5.51 abA | 5.24abC | 5.57 A | 5.41 abB | ** | |
T3 | 5.51 abA | 5.32 abB | 5.59 A | 5.33 abB | ** | |
T4 | 5.56 abA | 5.29 abC | 5.53 AB | 5.45 aB | ** | |
Sign. | * | * | ns | ** | ||
TA (%) | PC | 0.62 A | 0.99 B | 0.87 bBC | 0.74 C | ** |
T1 | 0.59 A | 1.09 A | 0.87 bB | 0.78 B | ** | |
T2 | 0.56 A | 1.01 A | 0.85 bB | 0.66 C | ** | |
T3 | 0.57 A | 1.01 A | 0.73 bB | 0.74 B | ** | |
T4 | 0.62 A | 1.03 A | 1.07 aA | 0.63 B | ** | |
Sign. | ns | ns | ** | ns | ||
TPC (g GA kg−1 dw) | PC | 67,61 aA | 21,77 aB | 9,10 dB | 9,00 dB | ** |
T1 | 73,23 aA | 23,49 aBC | 27,19 aB | 22,21 aC | ** | |
T2 | 59,53 bA | 18,65 bB | 14,11 cC | 13,13 cC | ** | |
T3 | 30,60 dA | 12,76 dB | 15,56 bB | 15,77 bB | ** | |
T4 | 44,61 cA | 15,77 cB | 15,35 bcB | 13,80 cB | ** | |
Sign. | ** | ** | ** | ** | ||
ABTS (mmol Trolox kg−1 dw) | PC | 145,12 bA | 71,45 aB | 65,32 bB | 73,29 dB | ** |
T1 | 180,31 aA | 57,41 bcB | 66,85 bB | 66,47 eB | ** | |
T2 | 146,85 bA | 53,01 cC | 58,42 cC | 90,58 bB | ** | |
T3 | 153,08 bA | 60,58 bC | 58,13 cC | 84,35 cB | ** | |
T4 | 142,60 bA | 70,24 aC | 69,99 aC | 103,48 aB | ** | |
Sign. | ** | ** | ** | ** | ||
DPPH (IC50 µg g−1 dw) | PC | 194,29 cA | 35,89 cB | 49,18 bB | 38,26 B | ** |
T1 | 237,29 bA | 33,49 cD | 48,04 bB | 38,18 C | ** | |
T2 | 243,86 abA | 57,33 bB | 46,76 bC | 43,69 C | ** | |
T3 | 272,2 1aA | 71,02 aB | 59,36 aBC | 44,15 C | ** | |
T4 | 200,24 cA | 56,89 bB | 49,77 bB | 42,17 B | ** | |
Sign. | ** | ** | ** | ns |
Analysis | Se Spraying Number (S) | Drying Pre-Treatment (DP) | S × DP |
---|---|---|---|
DM | ** | ** | ** |
aw | ** | ** | ** |
pH | ** | ** | ** |
TA | ** | ** | ** |
TPC | ** | ** | ** |
ABTS | ** | ** | ** |
DPPH | ** | ** | ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Bruno, A.; Piscopo, A.; Cordopatri, F.; Poiana, M.; Mafrica, R. Effect of Agronomical and Technological Treatments to Obtain Selenium-Fortified Table Olives. Agriculture 2020, 10, 284. https://doi.org/10.3390/agriculture10070284
De Bruno A, Piscopo A, Cordopatri F, Poiana M, Mafrica R. Effect of Agronomical and Technological Treatments to Obtain Selenium-Fortified Table Olives. Agriculture. 2020; 10(7):284. https://doi.org/10.3390/agriculture10070284
Chicago/Turabian StyleDe Bruno, Alessandra, Amalia Piscopo, Francesco Cordopatri, Marco Poiana, and Rocco Mafrica. 2020. "Effect of Agronomical and Technological Treatments to Obtain Selenium-Fortified Table Olives" Agriculture 10, no. 7: 284. https://doi.org/10.3390/agriculture10070284
APA StyleDe Bruno, A., Piscopo, A., Cordopatri, F., Poiana, M., & Mafrica, R. (2020). Effect of Agronomical and Technological Treatments to Obtain Selenium-Fortified Table Olives. Agriculture, 10(7), 284. https://doi.org/10.3390/agriculture10070284